Contents 3 Summary and examples of
new commands
1 Installation 1
4 Remarks
2 Package pict2e and this ex-
tension curve2e 2 | 5 Acknowledgements
Abstract

1

Package curve2e user manual

Claudio Beccari

claudio(dot)beccari(at)gmail (dot)com

Version 2.6.0 — Last revised 2024-11-13

This file contains the user manual of the curve2e extension package
to the pict2e bundle; the latter was described by Lamport himself in the
1994 second edition of his KTEX handbook.

Please take notice that on April 2011 a package pict2e upgraded
version has been released that incorporates some of the commands de-
fined in early versions of this package curve2e; apparently there are no
conflicts, because this package contains only the advanced features that
extend the above package.

Since this extension redefines some commands and introduces some
more drawing facilities (that allow to draw circular arcs and arbitrary
curves with the minimum of user intervention) users need a user manual
that contains several actual examples; this auxiliary manual is contained
in file curve2e-manual.pdf. The software available to show the drawing
code and its result after compilation is incompatible with the usual
ETEX 1txdoc class for code documentation, therefore a separate user
manual has been made available. If users want to explore the curve2e
code and its documentation they have available the curve2e.pdf file.
Either file is readable by entering in a terminal window the command
texdoc curve2e-manual or texdoc curve2e.pdf; please do not forget
the extension when you want to read the code documentation.

Installation

6

27

29

If TEX system was installed with a TEX Live or a MiKTEX complete and updated
distribution this package is already installed; in order to verify open a terminal
or command prompt window and use it to enter the texdoc curve2e-manual
command; as soon as the command is executed a screen window should open
displaying this manual. If this does not happen, either you misspelt the com-
mand (it happens more often than not), or your installation is not complete and
updated.

I suggest you to use your computer installation facilities to install this bundle.
Otherwise, download this curve2e.zip package from one of the CTAN (Compre-
hensive TeX Archive Network) archives, to your downloads folder. Before doing
anything else verify if you have a personal texmf tree; if not, create one reading
you distribution instruction; let us assume that your personal texmf archive is
in HOME/texmf (on Windows change the slash with a backslash) and HOME is a
path starting from the root of you hard disk and going though several other
folders. On Windows 10 it might be C:\Users\YourName; on Linux it might
simply be 7; on Mac it would be ~/\Library, but sometimes the HOME might
be different, especially on Windows platforms. Create the following subfolders:

1. HOME/texmf/source/latex/curve2e/
2. HOME/texmf/doc/latex/curve2e/
3. HOME/texmf/tex/latex/curve2e/

Now move file curve2e.zip to the .../source/latex/curve2e/ folder;
then decompress the .zip file with the software you have available on your plat-
form. Run pdflatex on the .dtx file; then compile the curve2e-manual.tex
file. You might need to repeat these compilations two or three times in order to
have the table of contents and all the references correctly connected.

This done, move the .pdf files to the .../doc/latex/curve2e/ folder. and
move the .sty files to the .../tex/latex/curve2e/ folder.

Clear the .../source/latex/curve2e/ folder from the auxiliary files, all
those remaining in the folder except those that have the extensions .zip, .dtx,
.tex, and .txt. Read the README. txt file.

If your TEX system is correctly set up, your files in your personal tree should
be immediately usable; probably you have to create or update the file-name
database with MiKTEX; in this case read the documentation of your MiKTEX
installation to discover how to do it.

Remember to delete all these subfolders if you decide to install a complete
updated version of your favourite distribution, and you’d better keep it updated
approximately once every 7 or 10 days. This is much simpler than to struggle
with these manual operations.

2 Package pict2e and this extension curve2e

Package pict2e was announced in issue 15 of latexnews around December 2003;
it was declared that the new package would replace the dummy one that had
been accompanying every release of I4TEX 2¢ since its beginnings in 1994. The
dummy package was just issuing an info message that simply announced the
temporary unavailability of the real package.

Eventually Géfllein and Niepraschk implemented what Lamport himself had
already documented in the second edition of his A TEX handbook, it was a AN TEX
package that contained the macros capable of removing all the limitations con-
tained in the standard commands of the original picture environment; specifi-
cally what follows.

1. The line and vector slopes were limited to the ratios of relative prime
one-digit integers of magnitude not exceeding 6 for lines and 4 for vectors.

2. Filled and unfilled full circles were limited by the necessarily limited num-
ber of specific glyphs contained in the special KTEX picture fonts.

bt

Quarter circles radii were also limited for the same reason.

Ovals (rectangles with rounded corners) could not be too small because of
the unavailability of small radius quarter circles, nor could be too large,
in the sense that after a certain radius the rounded corners remained the
same curvature and would not increase proportionally to the oval size.
Vector tips had only one possible shape and matched the limited number
of vector slopes.

For circles and inclined lines and vectors just two possible thicknesses were
available.

Package pict2e removes most if not all the above limitations.

1.

o

Line and vector slopes are virtually unlimited; the only remaining limita-
tion is that the direction coefficients must be three-digit integer numbers;
they need not be relatively prime; with the 2009 upgrade even this limi-
tation was removed and now slope coefficients can be any fractional num-
ber whose magnitude does not exceed 16 384, the maximum dimension in
points that TEX can handle.

Filled and unfilled circles can be of any size.

Ovals can be designed with any specified corner curvature and there is
virtually no limitation to such curvatures; of course corner radii should
not exceed half the lower value between the base and the height of the
oval.

There are two shapes for the arrow tips; the triangular one traditional
with IXTEX vectors, or the arrow tip with PostScript style.

The \linethickness command changes the thickness of all lines, straight,
curved, vertical, horizontal, arrow tipped, et cetera.

This specific extension package curve2e adds the following features.

1.

Point coordinates can be specified with macros; this is similar to “naming”
points; it eases editing the user’s graphic work, because points that are
used several times are specified with a single macro; it also eases the
transmission of coordinates between different macros and environments.
It is also important for the following feature, described in the following
entry..

Point coordinates my be specified in both cartesian and polar form: inter-
nally they are handled as cartesian coordinates, but the user can specify
his/her points also in polar form. In order to avoid confusion with other
graphic packages, curve2e uses the usual comma separated couple (x,y)
of integer or fractional numbers for cartesian coordinates, and the couple
(0):(p) for polar coordinates (the angle preceding the radius).

All graphic object commands accept polar or cartesian coordinates at the
choice of the user who may use for each object the formalism s/he prefers.
Also the \put and \multiput commands have been redefined so as to
accept cartesian or polar coordinates.

Of course the user should pay attention to the meaning of cartesian vs. po-
lar coordinates. Both imply a displacement with respect to the actual ori-
gin of the axes. So when a circle center is placed at coordinates a, b with
a normal \put command, the circle is placed exactly in that point; with a
normal \put command the same happens if coordinates a:p are specified.

10.

But if the \put command is nested into another \put command, the cur-
rent origin of the axes is displaced — this is obvious and the purpose of
nesting \put commands is exactly that. But if a segment is specified so
that its ending point is at a specific distance and in specific direction from
its starting point, polar coordinates appear to be the most convenient
to use; in this case, though, the origin of the axes becomes the starting
point of the segment, therefore the segment might be drawn in a strange
way. Attention has been paid to avoid such misinterpretation, but maybe
some unusual situation may not have come to my mind; feedback is very
welcome. Meanwhile pay attention when you use polar coordinates.

At user level most if not all coordinate pairs and slope pairs are treated
as ordered pairs, that is compler numbers; in practice the user does not
notice any difference from what s/he was used to, but all the mathematical
treatment to be applied to these entities is coded as complex number
operations, since complex numbers may be viewed non only as ordered
pairs, but also as vectors or as roto-amplification operators.

Commands for setting the line terminations were introduced; the user can
chose between square or rounded caps; the default is set to rounded caps;
now this feature is directly available with pict2e.

Commands for specifying the way two straight or curves lines join to one
another.

Originally the \1ine macro was redefined so as to allow large (up to three
digits) integer direction coefficients, but maintaining the same syntax as in
the original picture environment; now pict2e removes the integer number
limitations and allows fractional values, initially implemented by curve2e;
now direction coefficients may be specified in polar form.

A new macro \Line was originally defined by curve2e so as to avoid the
need to specify the horizontal projection of inclined lines; now this func-
tionality is available directly with pict2e; but this curve2e macro name
now conflicts with the pict2e 2009 version; therefore its name is changed
to \LIne and supposedly it will not be used very often, if ever, by the end
user (but it is used within this package macros).

A new macro \LINE was defined in order to join two points specified with
their coordinates; this is now the normal behaviour of the \Line macro of
pict2e, so that in this package \LINE is now renamed \segment; there is
no need to use the \put command with this segment specification.

A new macro \DashLine (alias: \Dline) is defined in order to draw dashed
lines joining any two given points; the dash length and gap (equal to
one another) get specified through one of the macro arguments. The
starting point may be specified in cartesiano or polar form; the end point
in cartesian format specifies the desired end point; but, if the second point
is in polar form, it is meant relative to the starting point, not as an absolute
end point. See the examples further on.

A similar new macro \Dotline is defined in order to draw dotted straight
lines as a sequence of equally spaced dots, where the gap can be specified
by the user; such straight line may have any inclination, as well as the
above dashed lines. Polar coordinates for the second point have the same
relative meaning as specified for the \Dashline macro. The dot diameter
may be specified with an optional argument; by default this diameter
equals the 1pt width.

11.

12.

13.

14.

15.

16.

17.

18.

The pict2e package already defines macros such as \moveto, \lineto, \curveto,

Similar macros are redefined for vectors; \vector redefines the original
macro but with the vector slope limitations removed and the vector di-
rection may be given in polar form; \Vector gets specified with its two
horizontal and vertical components in analogy with \LIne; \VECTOR joins
two specified points (without using the \put command) with the arrow
pointing to the second point. \VVECTOR may be available if used with
a sufficiently recent IXTEX kernel version; it draws a vector between two
given points, with arrow tips at both ends.

A new macro \polyline for drawing polygonal lines is defined that accepts
from two vertices up to an arbitrary (reasonably limited) number of them
(available now also in pict2e); here it is redefined so as to allow an optional
specification of the way segments for the polyline are joined to one another.
Vertices may be specified with polar coordinates and are always relative
to the preceding point.

The pict2e \polygon macro draws closed polylines (in practice general
polygons) has been redefined in such a way that it can accept the various
vertices specified with (relative) polar coordinates. The polygon* macro
produces a color filled polygon; the default color is black, but a different
color may be specified with the usual \color command given within the
same group where \polygon* is enclosed.

A new macro \Arc is defined in order to draw an arc with arbitrary ra-
dius and arbitrary aperture (angle amplitude); this amplitude is speci-
fied in sexagesimal degrees, not in radians; a similar functionality is now
achieved with the \arc macro of pict2e, which provides also the starred
version \arc* that fills up with the current color the sector generated by
a circular arc. It must be noticed that the syntax is slightly different, so
that it’s reasonable that these commands, in spite of producing identical
arcs, might be more comfortable with this or that syntax.

Two new macros \VectorArc and \VectorARC (alias \VVectorArc) are
defined in order to draw circular arcs with an arrow at one or both ends.
A new macro \Curve is defined so as to draw arbitrary curved lines by
means of cubic Bézier splines; the \Curve macro requires only the curve
nodes and the directions of the tangents at each node. The starred version
fills up the interior of the curve with the current color.

The above \Curve macro is a recursive macro that can draw an unlimited
(reasonably limited) number of connected Bézier spline arcs with specifi-
cation of the tangent direction at the interpolation nodes. It is possible
to use a lower level macro \CbezierTo that does the same but lets the
user specify the control points of each arc; it is more difficult to use but
it is more performant.\Curve recognises also an optional argument to set
a direction change, that is a cusp.

The basic macros used within the cumulative \Curve macro can be used
individually in order to draw any curve, one cubic arc at the time; but they
are intended for internal use, even if it is not prohibited to use them; by
themselves such arcs are not different form those used by Curve, but the
final command, \FillCurve, should be used in place of \CurveFinish, so
as to fill up the closed path with the locally specified color; see figure 11.
It is much more convenient to use the starred version of the \Curve macro.

\closepath, \fillpath, and \strokepath; curve2e just redefines them so as
to accept also polar coordinates; of course these macros can be used by the end
user, and sometimes they perform better than the macros defined in this pack-
age, because the user has a better control on the position of the Bézier splines
control points; in this case the control points are sort of rigid. It would be very
useful to resort to the hobby package, but its macros are compatible with those
of the tikz and pgf packages, not withcurve2e; an interface should be created in
order to deal with the hobby package, but this has not been done yet.

In order to make the necessary calculations many macros have been defined
S0 as to use complex number arithmetics to manipulate point coordinates, di-
rections (unit vectors, also known as ‘versors’), rotations and the like. In the
first versions of this package the trigonometric functions were also defined in a
way that the author believed to be more efficient than those defined by the trig
package; in any case the macro names were sufficiently different to accommodate
both definition sets in the same ITEX run. With the progress of the ITEX3
language, package xfp functionalities have become available, and any sort of
calculations can be done floating point decimal numbers; therefore the most
common algebraic, irrational and transcendental functions can be computed in
the background with the stable internal floating point facilities. We maintain
some computation with complex number algebra, but use the xfp functionalities
for other computations.

Many aspects of this extension could be fine tuned for better performance;
many new commands could be defined in order to further extend this extension.
If the new service macros are accepted by other TEX and ITEX programmers,
this version could become the start for a real extension of the pict2e package or
even become a part of it. Actually some macros have already been included in
the pict2e package. The \Curve algorithm, as said before, might be redefined so
as to use the macros introduced by the hobby package, that implements for the
tikz and pgf packages the same functionalities that John Hobby implemented
for the METAFONT and METAPOST programs.

For these reasons I suppose that every enhancement should be submitted to
Géflein, Niepraschk, and Tkadlec who are the prime maintainers of pict2e; they
are the only ones who can decide whether or not to incorporate new macros in
their package.

3 Summary and examples of new commands

This package curve2e extends the power of pict2e with the following modifica-
tions and the following new commands.

1. This package curve2e calls directly the INTEX packages color and pict2e; it
passes to the latter one any possible option that it can receive; actually the
only options that make sense for pict2e are those concerning the arrow tip
shapes, either XTEX (default) or PostScript styled, because it is assumed
that if this package is used, the original I TEX commands are of no interest:
see the pict2e documentation in order to find the correct options pict2e
can receive. If the user wants to use the xcolor package, it has to load it
before curve2e.

2. Since they are used very much in the following examples, we recall some
commands to label certain drawing elements, such as points, lines, arcs,

and similar lines, and to insert legends in some figures. They are \legenda,
\Zbox and \Pbox; their syntax is the following:

\legenda ({coordinates)) {(formula)}
\Zbox ({coordinates)) [{position)]{{formula)} [{dot diameter)]
\Pbox ({coordinates)) [(position)]{(text)} [(dot diameter)] {*)<(angle)>

They are described in any up to date documentation of curve2e.
. The user is offered new commands in order to control the line terminators
and the line joins; specifically:

e \roundcap: the line is terminated with a semicircle;

e \squarecap: the line is terminated with a half square;

e \roundjoin: two lines are joined with a rounded join;

e \beveljoin: two lines are joined with a bevel join;

e \miterjoin: two lines are joined with a miter join.

All the above commands should respect the intended range; but since
they act at the PostScript or PDF level, not at TEX level, it might be
necessary to issue the necessary commands in order to restore the previous
terminator or join; in other words, groups and environments do not have
any influence on these commands.

. The commands

\linethickness{(thickness)}
\thicklines

\thinlines
\defaultlinethickness{(thickness)}

always redefine the internal \@wholewidth and \@halfwidth so that the
latter ones always refer to a full width and to a half of it in this way
if you issue the command \defaultlinethickness{2pt} all thin lines will
be drawn with a thickness of 1pt while, if a drawing command directly
refers to the internal value \@wholewidth, its line will be drawn with a
thickness of 2pt. If one issues the declaration \thinlines all lines will
be drawn with a 1 pt width, but if a command refers to the internal value
\@halfwidth the line will be drawn with a thickness of 0.5 pt. The com-
mand \linethickness redefines the above internals but does not change
the default width value; all these width specifications apply to all lines,
straight ones, curved ones, circles, ovals, vectors, dashed lines, and so
on. It’s better to recall that \thinlines and \thicklines are declara-
tions that do not take arguments; on the pposite the other commands, as
shown in the above syntax medallion, accept a specific thickness value,
that is either a length specification complete of its units, or a dimensional
expression.

. Straight lines and vectors are redefined in such a way that fractional slope
coefficients may be specified; the zero length line and vector does not
produce errors and is ignored; the zero length vectors draw only the arrow
tips.

6. New line and vector macros are defined that avoid the necessity of spec-
ifying the horizontal component; \put(3,4){\LIne(25,15)} specifies a
segment that starts at point (3,4) and goes to point (3 + 25,4 + 15); the
command \segment (3,4) (28,19) achieves the same result without the
need of using the \put command. Therefore \LIne is just for internal
usage, rather than a user command. Now curve2e has available also the
“arc vectors” with the arrow tips at one or at both ends. The \segment
syntax is

[\segment ({starting point)) ({ending point))]

The same applies to the vector commands \Vector and \VECTOR and
\VVECTOR; the latter command behaves as \VECTOR but draws a vector
with arrow tips at both ends; furthermore this command is available only
with main versions 2 or higher of curvee.

\put ((starting point)){\Vector ((vector cartesian or polar components)) }
\VECTOR ({starting point)) ({ending point))
\VVECTOR ({starting point)) ({ending point))

Experience has shown that the commands intended to join two specified
points are particularly useful; see figure 1.

\unitlength=0.01\linewidth
\begin{picture}(80,20)

\AutoGrid[red]
\put (0,0){\vector(1.5,2.3){10}})
\put (20,0){\Vector(10,15.33333) } —

\VECTOR (40,0) (50,15.33333)
\ifdefined\VVECTOR \VVECTOR(60,0) (80,10)\fi
\end{picture}

Figure 1: Three (displaced) identical vectors obtained with the three vector
macros; a double tipped vector is also shown. The darker cyan color is an usage
example optional grid coloring

7. The \polyline command has already been introduced in pict2e: in curve2e
it is redefined so as to accept also polar coordinates; this new version of
\polyline accepts also an optional argument to specify how two consec-
utive segments join together; it accepts an unlimited list of point coordi-
nates, possibly stored in macros, enclosed within round parentheses; the
command draws a sequence of connected segments that join in order the
specified points; the syntax is:

[\polyline [{optional join style)] ((P1)) ({(Ps)) ... ((Py))]

See figure 2 where a regular pentagon is drawn; usage of polar coordinates
is also shown; please notice how polar coordinates act in this figure.

\unitlength=0.5mm

\begin{picture}(40,32) (-20,-17)
\polyline(90:20) (162:20) (234:20) (306:20) (378:20) (90:20)
\end{picture}

Figure 2: Polygonal line obtained by means of the \polyline command; vertex
coordinates are in polar form.

Examples of using polar and cartesian coordinates are shown in figure 3.
Notice the \AutoGrid macro that draws the grid of mesh lines that are
very useful to set objects at the right positions. The main lines are
10\unitlength apart so that the main squares are clearly visible; if the
squares are too small only the median lines are traced with thinner lines;
if the squares are not so small thin lines are traced 2\unitlength apart;
otherwise the thin median lines and the thinner 1\unitlength apart are
traced as in regular millimetre drawing paper. The rendering on the screen
depends very much on its pixel density, nevertheless we think that e nicely
thick grid is very helpful while drawing geometric graphs. When the draw-
ing is completed the \AutoGrid command may be commented out so that
the grid does not appear in the final document.

\unitlength =0.02\textwidth 90:30 30;30
\begin{picture}(40,30)
\AutoGrid 45:30

\Zbox (40,0) [1]{40,03}[1]
\Zbox (90:30) [bc] {90{:}30}[1]
\Zbox (45:30) [bc] {45{:330}[1] ul
\Zbox (30,30) [bc]{30,30}[1] .
\multiput (0,0) (20:10){5}Y% s

{\makebox (0,0){\rule{1.5mm}{1.5mm}}} .

\end{picture} 40,0

Figure 3: Use of cartesian and absolute polar coordinates. The \Zbox macro is
just a shortcut to set a small dot with a (math) legend close to it.

A similar example may be obtained with the \polygon macro that does
not require to terminate the polyline at the starting point. Figure 4 shows
how to get a coloured filled pentagon.

\unitlength =.5mm

\begin{picture}(40,32) (-20,-20)

\color{magenta}
\polygon*(90:20) (162:20) (234:20) (306:20) (378:20)
\end{picture}

Figure 4: A pentagon obtained by means of the \polygon* command; vertex
coordinates are in relative polar form.

8. The new command \Dashline (alias: \Dline for backwards compatibil-
ity):

[\Dashline ({first point)) ({second point)){(dash and gap length)}]

draws a dashed line containing as many dashes as possible, just as long as
specified, and separated by a gap exactly the same size; actually, in order
to make an even gap-dash sequence, the desired dash length is used to do
some computations in order to find a suitable length, close to the one spec-
ified, such that the distance of the end points is evenly divided in equally
sized dashes and gaps. The end points may be anywhere in the drawing
area, without any constraint on the slope of the joining segment. The
desired dash length is specified as a fractional multiple of \unitlength;
see figure 5.

\unitlength =1mm

\begin{picture}(40,40) . Py
\AutoGrid(40,40) $
\Dashline(0,0) (40,10){4} *
\put (0,0) {\circlex{2}} Lis
\Dashline (40,10) (0,25) {4} < i

\put (40,10) {\circlex{2}} TR
\Dashline(0,25) (20,40) {4} (EE R

\put (0,25){\circle*x{2}} .
\put (20,40) {\circle*{2}} . id
\Dotline(0,0) (40,40){2}[0.75mm] P SRR AAAR s e

\put (40,40){\circlex{2}} LA

\end{picture}

Figure 5: Dashed lines and graph grid

Another example of usage of cartesian and polar coordinates usage is
shown in figure 3 together with its code.

9. Analogous to \Dashline, a new command \Dotline draws a dotted line
with the syntax:

\Dotline ({first point)) ({end point)){(dot gap)}

See figures 5 and 7 for examples.

10. \GraphGrid and \AutoGrid are commands that draw a red grid under
the drawing with lines separated 10\unitlengths apart; it is described
only with a comma separated couple of numbers, representing the base
and the height of the grid, see figure 5; it’s better to specify multiples of
ten and the grid can be placed anywhere in the drawing canvas by means
of \put, whose cartesian coordinates are multiples of 10; nevertheless the
grid line distance is rounded to the nearest multiple of 10, while the point
coordinates specified to \put are not rounded at all; therefore some care
should be used to place the working grid on the drawing canvas.

\GraphicGrid({grad base, grid height))
\AutoGrid

This grid is intended as an aid while drawing; even if you sketch your
drawing on millimetre paper, the drawing grid turns out to be very useful;

10

\unitlength =0.025\textwidth
\begin{picture}(40,30)
\noinnerlines % <-------- !

\AutoGrid(40,30)\thicklines / / 7/ \]
o / Ve
\color{red}’ / / ¢
\Dashline(0,0) (40,10) {2} / / X
\Dashline (0,0) (40,20) {2} % 7N
\Dashline(0,0) (40,30) {2} Iy N2 N
\Dashline (0,0 (30,30) {2} VA e U
\Dashline(0,0) (20,30){2} / /L, L EAN \ _|
\Dashline(0,0) (10,30) {2}), T~ N
\Dashline (40,0) (108:30){2} ly, 2|7 == <> A
\Dashline (40,0) (126:30){2} L= —|” Sy

\Dashline(40,0) (144:30) {2}
\Dashline (40,0) (162:30) {2}
\end{picture}

Figure 6: Different length dashed lines with the same nominal dash length;
notice the relative polar coordinates used for the dashed lines starting at the
grid lower right vertex.

11.

12.

one must only delete or comment out the command when the drawing
is finished. Several examples of usage of such grid are shown in several
figures.

\Autogrid does not require arguments, but requires the canvas dimensions
and offsets to be specified as multiples of 10; if the latter are specified they
are simply ignored.

New trigonometric function macros have been computed by means of the
functionalities of the xfp included in the IXTEX kernel. The difference with
the other existing macros is that angles are specified in sexagesimal de-
grees, so that the users need not transform to radians. The computations
are done taking into account that “abnormal” values that can occasion-
ally be avoided, for example tan 90° must be avoided and replaced with a
suitably large number, because the TEX system does not handle “infinity”.
These trigonometric functions are used within the complex number macros;
but if the user wants to use them the syntax is the following:

\Sin0f(angle)to(control sequence)
\Cos0f (angle)to(control sequence)
\Tan0f (angle)to(control sequence)

The (control sequence) may then be used, for example, as a multiplying
factor of a length.

Arcs can be drawn as simple circular arcs, or with one or two arrows at
their ends (curved vectors); the syntax is:

11

\unitlength =0.025\textwidth

\begin{picture}(40,30)

\AutoGrid(40,30) T 1 o
\Dot1line(0,0) (40,10){1.5} [2pt] 1 L SLEEERAmEN 10
\Dotline(0,0) (40,20){1.5} [2pt] + . L &
\Dotline(0,0) (40,30){1.5} [2pt] ’ r LT
\Dot1line(0,0) (30,30){1.5} [2pt] e e e e
\Dotline(0,0)(20,30){1.5} [2pt] s e et t
\Dot1line(0,0) (10,30){1.5} [2pt] AR e aRRe SRR IE %
{\color{red}\relax I ENEEL RO YN R '°.. RS CE A |
\Dot1line(40,0) (108:30){1.5} IR 3N o BRI A OR N BaN NCP RN CRY
\Dotline(40,0) (126:30){1.5}[2pt] e e’ oet"’ SEALE SANRE M0t
\Dotline(40,0) (144:30){1.5}[2pt] N <A
\Dotline(40,0) (162:30){1.5} [2pt]}%

\end{picture}

Figure 7: Different length dotted lines with the same nominal dot gap; again
notice the relative polar coordinates for the dotted lines starting at the grid
lower right vertex.

\unitlength =0.5mm
\begin{picture}(60,40)
\GraphGrid(60,40)

\Arc(0,20) (30,0) {60}

\VECTOR (0,20) (30,0) \VECTOR(0,20) (32.5,36)

\VectorArc(0,20) (15,10) {60} ‘ (
\put (20,20) {\makebox (0,0) [1]{$60"\circ$}}

\VectorARC(60,20) (60,0){-180}

\VVectorArc(60,20) (135:10){90}

\end{picture}

Figure 8: Arcs and curved vectors

\Arc ({center)) ((starting point)){{angle)}
\VectorArc ((center)) ({starting point)){({angle)}
\VectorARC ((center)) ({starting point)){({angle)}
\VVectorArc ({center)) ({starting point)){{angle)}

If the angle is specified numerically it must be enclosed in braces, while
if it is specified with a control sequence the braces (curly brackets) are
not necessary. The above macro \Arc draws a simple circular arc without
arrows; \VectorArc draws an arc with an arrow tip at the ending point;
\VectorARC (alias \VVectorArc) draws an arc with arrow tips at both
ends; see figure 8.
Notice that the starting point may be specified with polar coordinates;
differently to cartesian coordinates, that are absolute with respect with
the drawing axes, the polar ones are relative to the center of the arcs with
or without vector tips.

13. The available commands allow to create the drawings necessary to prove
some geometrical theorems; for example let us prove the Pitagora’s theo-

12

\unitlength =1mm

\begin{picture}(70,80) (-10,-50) A

\AutoGrid

\thicklines

\polygon(0,0) (50,0) (18,24) a b
\thinlines

\polyline(0,0) (0,-50) (50,-50) (50,0)

\Pbox (0,0) [r]{C} [0.75ex]

\Pbox (18,0) [b1]{H} [0.75ex] d
\Pbox (50,0) [11{B}[0.75ex] C
\Pbox(18,24) [b]{A}[0.75ex]

\Pbox (0,-50) [br]{E}[0.75ex]

\Pbox (50,-50) [b1]1{D}[0.75ex]

\Pbox (18,-50) [br]{F}[0.75ex]

\Zbox (10,12) [br]{a}[0]

\Zbox (33,12) [b1]{b}[0]

\Zbox (25,0) [t1{c}[0] €
\Zbox (9,0) [b]1{d}[0]

\Zbox (30,0) [b]l{e}[0]

\Zbox (50,-25) [r]{c}[0]

\Zbox (25,-50) [b]{c}[0]

\Zbox (0,-25) [1]1{c}[0]
\Dashline(18,24) (18,-50){1.5}
\end{picture} E E

14.

(%

|
|
!
|
|
|
|
*
|
|
t
|
|
|
|
t
|
|
I
|
t
|
|
.

Figure 9: Geometrical construction to prove Pitagora’s theorem

rem. Figure 9 displays a right triangle with its hypothenuse laying hori-
zontally; its vertices are labeled A, B, and C, being A the right angle vertex.
The height relative to the hypothenuse intersects this side in point H, and
divides the whole triangle ABC, in two similar smaller ones AHC, andABH.
Segments CH, andHB, add to the whole hypothenuse length. Figure 9 dis-
plays also the square CBDE, built on the hypothenuse and divided in two
rectangles CHFE, and HBDF, where HF is the continuation of the height
line.

The lengths of the original right triangle sides are a, b, ¢ as marked on the
figure; Point H divides the hypothenuse of length ¢ in two shorter segments
of lengths d, e, respectively, as marked in the figure

Since the three triangles are similar, we can set up the relationships be-
tween their sides:

dia=a:c=d=ad’/c
e:b=b:c=e="b%/c

Therefore rectangle CHFE area equals ¢-d = c-a?/c = a®. Similarly

rectangle HBDF area equals ¢ - e = ¢ - b?/c = b?. The square built on the
hypothenuse has an area equal to ¢?; therefore it is

¢ =a® + b

which proves the Pitagora’s theorem.

A multitude of commands have been defined in order to manage complex
numbers; actually complex numbers are represented as a comma separated
pair of fractional numbers; internally these macros use only the cartesian
form, and output, unless differently specified is also in cartesian form; but

13

input can be in polar form. They are used to address specific points in
the drawing plane, but also as operators so as to scale and rotate other
objects. In the following (vector) means a comma separated pair of frac-
tional numbers, (vector macro) means a macro that contains a comma
separated pair of fractional numbers; (angle macro) means a macro that
contains the angle of a vector in sexagesimal degrees; (argument) means
a brace delimited numeric value, even a macro; (numeric macro) means
a macro that contains a fractional number; macro is a valid macro name,
i.e. a backslash followed by letters, or anything else that can receive a
definition. A direction of a vector is its versor; the angle of a vector is
the angle between the vector and the positive z axis in counterclockwise
direction, as it is used in the Euler formula ¥ = Mel¥.

s N

\MakeVectorFrom(numeric macro){numeric macro)to{vector macro)
\CopyVect(first vector)to(second vector macro)
\ModOfVect{vector)to(modulus macro)
\DirOfvect{vector)to{versor macro)
\ModAndDir0fVect(vector)to{modulus macroyand({versor macro)
\ModAndAngleOfVect(vector)to{modulus macro)and({angle macro)
\DistanceAndDir0fVect (st vector) minus(2nd vector)

to(distance macro) and(versor macro)
\Xpart0fVect(vector)to(macro)
\Ypart0fVect(vector)to(macro)

\DirFromAngle(angle)to({versor macro)

\Arg0fVect(vector)to{angle macro)

\ScaleVect(vector)by(scaling factor)to{vector macro)

\ConjVect(vector)to(conjugate vector macro)

\SubVect (subtrahend vector)from{minuend vector)to{vector macro)

\AddVect(first vectoryand(second vector)to{vector macro)

\Multvect{{first vector)}*{(second vector)}*{({vector macro)} (the
asterisks are optional; either one changes the second vector
into its complex conjugate)

\MultVect(first vector)by(second vector)to{vector macro)
(discouraged; maintained for backwards compatibility)

\MultVect(first vector)by*(second vector)to(vector macro)
(discouraged; maintained for backwards compatibility)

\Divvect{(dividend vector)}{(divisor vector)}{{vector macro)} notice
that this new command warns the user if the divisor is zero

\DivVect(dividend vector)by(divisor vector)to{vector macro)
(discouraged: maintained for backwards compatibility)

. J

15. General curves can be drawn with the pict2e macro \curve but it requires
the specification of the third-order Bézier-spline control points; sometimes
it’s better to be very specific with the control points and there is no other
means to do a decent graph; sometimes the curves to be drawn are not
so tricky and a general set of macros can be defined so as to compute the
control points, while letting the user specify only the nodes through which

14

the curve must pass, and the tangent direction of the curve in such nodes.
Such commands are the following:

e \Curve draws a sequence of arcs as explained above, using third order
(cubic) Bézier splines. The starred version of this command fills the
internal part of the curve with the current color; if the last arc finishes
where the fist arc starts, it is clear what is the interior; if it does not,
the driver (not the code of this package, but the driver between this
code and the physical representation on paper or screen) assumes
a straight line closure of the whole path. The syntax offers several
variants but it is substantially the following:

\Curve ({node)) <(direction)>. .. ({node)) <(direction)>
\Curve* ((node)) <(direction)>. .. ({node)) <(direction)>
... <(direction)> [{new direction)] ({node)). ..

See some more explanation below.

o \Qurve is similar to \Curve, but with second order (quadratic) Bézier
splines. The starred version fills the interior with the current color.
Its syntax si similar to that of \Curve.

e \CurveBetween draws a single cubic Bézier spline between two given
nodes and with two given direction vectors. This macro is similar to
\Curve, but it is used to draw a third order Bézier curve between
just two nodes and require just two directions

e \CBezierBetween draws a single cubic Bézier spline between two
given nodes, with two given direction versors along which the con-
trol node distances are specified. This is the most general macro
(rather difficult to use) with which not only the arc end points are
specified but also the control nodes coordinates are given. It is simi-
lar to \CurveBetween but the contol points of the single arc can be
specified; the arc is perfect, but the syntax is more complicated. See
below for examples.

The main macro is \Curve and must be followed by an “unlimited” se-
quence of node-direction coordinates as a quadruple defined as

({node coordinates))<{direction vector)>

Possibly if a sudden change of direction has to be performed (cusp) another
item can be inserted after one of those quadruples in the form

<) [new direction vector)] ({L.)<{L.)>. ..

Sometimes it is necessary to specify the “tension” or the “looseness” of
a specific Bézier arc; such tension parameters range from 0 (zero) to 4;
the zero value implies a very stiff arc, as if it was a string subject to a
high tension (i.e. with zero looseness); a value of 4 implies a very low
tension (very high looseness), almost as if the string was not subject to
any tension. In METAFONT or METAPOST language such a concept is
used very often; in this package, where the Hobby algorithms are not
used, the parameter value appears to mean the opposite of tension. A
couple of comma separated tension values may be optionally used, they

15

\unitlength =8mm\relax / \

\begin{picture}(5,5)

\put (0,0) {\framebox (5,5) {}}\thicklines\roundcap

\Curve(2.5,0)<0.1,1>(5,3.5)<0,1>%
(4,5)<-1,0>(2.5,3.5)<-0.1,-1.2>[-0.1,1.21%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<0.1,-1>

\end{picture}

Figure 10: A heart shaped curve with cusps drawn with \Curve

\unitlength =8mm\relax

\begin{picture}(5,5)

\put (0,0) {\framebox(5,5){}}\thicklines\roundcap
\color{green}\relax

\Curve*(2.5,0)<0.1,1>(5,3.5)<0,1>%
(4,5)<-1,0>(2.5,3.5)<-0.1,-1.2>[-0.1,1.2]%
(1,5)<-1,0>(0,3.5)<0,-1>(2.5,0)<0.1,-1>

\end{picture}

Figure 11: Coloring the inside of a closed path drawn with \Curvex

are separated with a semicolon from the direction vector, and they apply
to the arc terminating with the last node; their specification must precede
any possible change of tangent according to this syntax!:

.. ({node)) <(direction vector) ; (start tension), {end tension)>({node)) <{direztion)>. ..

The \Curve macro does not (still) have facilities for cycling the path,
that is to close the path from the last specified node-direction to the first
specified node-direction; but, as already mentioned, if the ending node of
the last arc does not coincide with the starting node of the first arc, a
straight line is assumed to join such nodes; this line does not get drawn,
but with starred commands no lines are drawn because only the interior is
coloured. The tangent direction need not be specified with a unit vector,
although only its direction is relevant; the scaling of the specified direction
vector to a unit vector is performed by the macro itself. Therefore one
cannot specify the fine tuning of the curve convexity as it can be done
with other programs or commands, as, for example, with METAFONT or
the pgf/tikz package and environment. See figure 10 for an example.
With the starred version of \Curve, instead of stroking the contour, the
macro fills up the contour with the selected current color, see figure 11.

1The tension may be specified only for cubic splines, because the quadratic ones do not use
enough parameters to control the tension; not all commands for drawing cubic splines accept
this optional tension specification.

16

Figure 12 shows a geometric construction that contains the geometric
elements and symbols used to determine the parameters of a cubic spline
required to draw a quarter circle. This construction contains many of the
commands described so far.

To show what you can do with \CurveBetween see the code and result
shown in figure 13. Notice the effect of changing the directions at both
or at the end nodes of a single cubic spline. The directions are conve-
niently expressed with unit vectors described by polar coordinates. The
\CurveBetween macro is built on \CBezierBetween; this latter command
is very complicated to describe and its use is reserved to experienced users;
its syntax is described in the code documentation file cureve2e.pdf; the
reader is encouraged to examine it in case s/he is willing to use it.

A little more complicated is the use of the \CBezierBetween macro, fig-
ure 14. The directions are specified with unit vectors in polar form; the
control points are specified by adding their distances from their neigh-
bouring nodes; actually the right distance is maintained to the value 1,
while the left one increases from 4 to 10. The black line corresponds to
the standard \CurveBetween where the default distance is computed to
trace an arc of a circle and is approximately 3.5.

In figure 15 the effect of tension specification is shown. The red line cor-
responds to the default tension, since the tension values are not specified.
The black lines correspond to the various values used in the various com-
mands to the \Curve macro. With a tension of zero, the spline is almost
coincident with the horizontal base line of the frame. Increasing the pa-
rameter value to 4.5, the curved becomes taller and taller, until it wraps
itself displaying an evident loop. We would say that the value of 2 is a
reasonable maximum one and that increasing that value is just to obtain
special effects.

Figure 16 displays two approximations of a sine wave; Bézier splines can
approximate transcendental curves, but the approximation may be a poor
one, depending on the approximated curve, when few arcs are used to
draw it. With arcs specified with more complicated macros the approxi-
mation is better even with a lower number of arcs. With many arcs it is
possible to approximate almost nything. On the left side of figure 16 a
modest approximation is obtained with just three standard arcs obtained
with \Curve and four node specifications; on the right we have just two
arcs created with \CBezierBetween with tension specification and con-
trol point distances; this drawing is almost undistinguishable from a real
sinusoid.

In figure 17 some lines are shown; they are drawn with quadratic splines
by means of the \Qurve macro. In the left there are some open and closed
curves inscribed within a square. On the right a “real” circle is compared
to a quadratic spline circle; the word “real” is emphasised because it ac-
tually is an approximation with four quarter-circle cubic splines that, in
spite of being drawn with third degree parametric polynomials, approxi-
mate very well a real circle; on the opposite the quadratic spline circle is
clearly a poor approximation even if the maximum radial error amounts
just to about 6% of the radius.

Notice that the previous version of curve2e contained an error and would
color the outside of the green four-pointed star. The curve2e-v161 pack-

17

\unitlength=0.007\textwidth

\begin{picture}(100,90) (-50,-50)

\put (-50,0) {\vector(1,0){100}}\put (50, 1) {\makebox (0,0) [br] {x}}%
\put (20,-1) {\makebox (0,0) [t1{s}}V

\put (0,0) {\circle*{2}}\put (-1,-1){\makebox (0,0) [tr] {M}}
\legenda(12,-45) {s=\overline{MP_2}=R\sin\thetal}/,

\put (0,-50) {\vector(0,1){90}}%

\put (1,40) {\makebox (0,0) [t1]1{y}}

\put (0,-40) {\circle*x{2}}\put (1,-41) {\makebox (0,0) [1t]1{C}}%
\segment (0,-40) (-40,0) \segment (0,-40) (40,0)%

\put (41, 1) {\makebox (0,0) [br]{P_1}}\put (-40,0) {\circle*{2}}%
\put (41,1) {\makebox (0,0) [b1]{P_2}}\put (40,0) {\circle*{2}}},

\put (0,0) {\linethickness{1pt}\Arc(0,-40) (40,0){90}}%

\segment (-40,0) (-20,20) \put (-20,20) {\circlex{2}1}/,

\put (-20,21.5){\makebox (0,0) [b]{$C_1$3}3}%

\segment (40,0) (20,20) \put (20,20) {\circle*x{2}}%

\put (20,21.5){\makebox (0,0) [b]{C_2}3}%

\put (0,-40) {\put (0,56.5685) {\circle*x{2}}%

\put (1,58) {\makebox (0,0) [b11{P}}}7

\VectorARC(0,-40) (15,-25) {45} \put (10,-18) {\makebox (0,0) [c]1{θ}}V,
\VectorARC(40,0) (20,0) {-45}\put (19,5) {\makebox (0,0) [r]1{θ}}’
\VectorARC(-40,0) (-20,0){45}\put (-19,5) {\makebox (0,0) [1]1{θ}}%
\put (-20,-18) {\makebox (0,0) [b1] {R}}%

\put (-32,13) {\makebox (0,0) [b1] {K}}%

\put (32, 13) {\makebox (0,0) [br] {K}}V

\end{picture}

Figure 12: The code to display the nodes and control points for an arc to be
approximated with a cubic Bézier spline

= Y.

Figure 13: Curves between two points with different start and end slopes

18

\unitlength=0.1\textwidth
\begin{picture}(10,3)

\CurveBetween0,0and10,0WithDirs1,1and{1,-1}

\color{red}%

\CbezierBetween0,0And10,0 WithDirs45:
\CbezierBetween0,0And10,0 WithDirs45:
\CbezierBetween0,0And10,0 WithDirs45:
\CbezierBetween0,0And10,0 WithDirs45:
\CbezierBetween0,0And10,0 WithDirs45:

\end{picture}

1And-45:
1And-45:
1And-45:
1And-45:
1And-45:

1UsingDists4And{1}
1UsingDists6And{1}
1UsingDists8And{1}
1UsingDists10And{1}
1UsingDists12And{1}

Figure 14: Comparison between similar arcs drawn with \CurveBetween with
the default tension values (black) and with several tension values specified (red)

\unitlength =0.01\textwidth
\begin{picture}(70,70)

\put (0,0){\color{black}\framebox(70,70){}}

\put (0,0){\color{red}’

\Curve(0,0)<1,1>(70,0)<1,-1>}
\Curve(0,0)<1,1>(70,0)<1,-1;0,0>
\Curve(0,0)<1,1>(70,0)<1,-1;0.2,0.2>
\Curve(0,0)<1,1>(70,0)<1,-1;2,2>
\Curve(0,0)<1,1>(70,0)<1,-1;4.5,4.5>
\Curve(0,0)<1,1>(70,0)<1,-1;0,3>
\Curve(0,0)<1,1>(70,0)<1,-1;3,0>
\end{picture}

Figure 15: The effects of tension factors

age, attached to this bundle, has been corrected; therefore it is not actu-
ally identical to the previous version, although the latter one performed
correctly for everything else except for color filled quadratic paths.

The “real” circle, even if rendered with quarter circles, is visually very
similar to a true circumference, but any Bézier circle arc that approximates
a circumference arc of the same amplitude, displays a small error at an
angle of 1/4 and 3/4 the total arc amplitude; this error diminishes as
the total arc amplitude diminishes, nevertheless the error is there. If the
arc amplitude amounts to 180°, the maximum error is at 45° and at 135°
angular distances from the staring point. It amounts to 2% of the arc
radius; see figure 18, where a half circle is compared with a sequence of
four arcs of 45° each, drawn by means of the \Curve macro; the code is
the following:

\unitlength=0.005\1inewidth
\begin{picture}(100,50) (-50,0)
\AutoGrid

\Zbox (0,0) [t]1{\textsf{0}}[1]

\Arc(0,0) (50,0) {1803}

\VECTOR(0,0) (45:50) \Zbox (45:25) [br]{R} [0]

\Curve(50,0)<0,1>(45:50)<135:1>(0,50)<-1,0>%

(135:50)<225:1>(-50,0)<0,-1>

19

\unitlength=0.01\textwidth

\begin{picture}(100,50) (0,-25)

\put (0,0){%

\VECTOR(0,0) (45,0) \VECTOR(0,-25) (0,25)

\Pbox(45,0) [b]{x}[0]\Pbox(0,26) [t1]{y[0]}
\Curve(0,0)<77:1>(10,20)<1,0;2,0.4>(30,-20)<1,0;0.4,0.4>(40,0)<77:1;0.4,2>
}

\put (55,0) {%

\VECTOR(0,0) (45,0)\VECTOR(0,-25) (0,25)

\Pbox (45,0) [b]{x} [0]\Pbox (0,26) [t1]1{y}[0]
\CbezierBetweenO,0And20,0WithDirs77:1And-77:1UsingDists28And{28}
\CbezierBetween20,0And40,0WithDirs-77:1And77:1UsingDists28And{28}}
\end{picture}

Y Y

Figure 16: A sequence of arcs; the left figure has been drawn with the \Curve
command with a sequence of four couples of node-direction arguments; the right
figure has been drawn with two commands \CbezierBetween that include also
the specification of the control points

% \Arc(0,0) (50,0){90}\Arc(0,0) (0,50){90}
% \Curve(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>
\end{picture}

The circle radius amounts to R = 50\unitlength, while the external line,
drawn with \Arc, at 45° displays the maximum distance from the circle
center O; it amounts to 51\unitlength, 2% larger than the correct value.
In most circumstances this error is negligible, but sometimes the drawing
by means of \Curve is more appropriate.
An alternative solution consists in tracing two consecutive arcs of 90° each
drawn with \Arc, instead of four arcs of 45° each drawn with \Curve or
with \Arc. The code above contains also the other solutions; they are
commented out but the user can copy the code and paste it in a personal
.tex file, so that each solution can be tested individually, so as to remark
the (invisible) differences.

16. The new version of \multiput is backwards compatibile with the original
version contained in the ITEX kernel. The new macro adds the handling

20

\unitlength=0.0045\textwidth

\begin{picturel}(100,100)

\put (0,0) {\framebox (100,100){}}

\put (50,50) {%
\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>

\color{green}
\Qurvex*(0,-50)<0,1>(50,0)<1,0>[-1,0] (0,50)<0,1>[0,-1] (-50,0)<-1,0>[1,0] (0,-50)<0,-1>

}

\Qurve (0,0)<1,4>(50,50)<1,0>(100,100)<1,4>

\put (5,50) {\Qurve (0,0)<1,1.5>(22.5,20)<1,0>(45,0)<1,-1.5>%,

(67.5,-20)<1,0>(90,0)<1,1.5>}

\Zbox (0,0) [tc]{0,0}\Zbox(100,0) [tc]{100,0}

\Zbox (100, 100) [bc]{100,100}\Zbox (0,100) [bc] {0,100}

\Pall1[2] (0,0)\Pall[2] (100,0)\Pall[2](100,100)\Pall[2](0,100)

\end{picture}

\hfill

\begin{picture}(100,100)

\put (0,0) {\framebox(100,100){}}

\put (50,50) {%

\Qurve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>

\Curve(0,-50)<1,0>(50,0)<0,1>(0,50)<-1,0>(-50,0)<0,-1>(0,-50)<1,0>}

\Zbox (50,50) [t]1{0}\Pall[2] (50,50) \put (50,50) {\Vector (45:50) }\Zbox (67,70) [t1]1{R}

\end{picture}

0,100 100, 100

0,0 100,0

Figure 17: Several graphs drawn with quadratic Bézier splines. On the right a
quadratic spline circle is compared with a cubic line circle.

of the coordinate increments from one position to the next for the (object)
to include in the drawing. The syntax is the following:

(\multiput ({initial point)) ({increment)){({number of items)}{(object)} [(handler)])

The only small change is the addition of the last optional argument that
allows to do several interesting actions on the sequence o objects to be
repeated, for example, to set them on a curved line, instead of on a straight
line, as shown in figure 19.

In this figure we show the code for the picture shown there. The red grid is
nothing new, except that it displays the traditional \multiput used in this
code, shown in a previous example, produces exactly the same result. But

21

o

Figure 18: Comparison between a 180° arc (red) drawn with the \Arc macro,
and a comparable half circle (blaxk) drawn with four 45° \Curve arcs

for what concerns the four “graphs” on the grid, it displays an alignment
of black dots along the diagonal of the grid (again traditional \multiput
rendered with the new version); a number of blue dots along a parabola;
another number of magenta coloured dots alined along a half sine wave; a
number of little green squares aligned along a —15 o sloping line starting
from the center of the grid; notice the polar values that are used as polar

relative coordinate increments.

\unitlength=0.01\1linewidth
\begin{picture}(100,100)
\GraphGrid (100, 100)

\multiput(0,0) (10,10){11}{\circle*{2}}

\color{blue!70!white}

\multiput(0,0) (10,0){11}{\circlex{2}}/
[\GetCoord (\R) \X\Y
\edef\X{\fpeval{\X+10}}
\edef\Y{\fpeval{(\X/10)**2}}
\CopyVect\X,\Y to\R]

\color{magenta}

\multiput (0,0) (10,1){11}{\circlex{2}}}
[\GetCoord (\R) \X\Y

\edef\X{\fpeval{\X+10}}
\edef\Y{\fpeval{sind (\X*1.8)*100}}
\CopyVect\X\Y to\R]

\color{green!80!black}

\multiput(50,50) (-15:5){11}}{%

\polygon*(-1,-1) (1,-1) (1,1) (-1,1)}

\end{picture}

Figure 19: Some examples of the (handler) optional argument

A new command \xmultiput (not available with the previous versions of
curvee) is extended with respect to the original \multiput; it is defined
by using some L3 functions; in particular the cycling counter is accessible
to the BTEX commands and it is stepped up from 1 to the value specified
in the proper command argument (in the original command it starts from
that value and is stepped down to zero). See the figure on page 20 to in-
spect its usage. It is important to notice that if the command\rotatebox
has to be used, as in the example of figure 20, the package graphicx
should be also loaded, because curve2e does not load it.

Th \xmultiput syntax is the is similar to that of \multiput but besides

22

the stepping up or down of the iteration counter, it can access and modify
certain internal with the commands that appear in the (handler) argu-
ment. Actually this (handler) is available also with \multiput. In both
cases the handler can be defined to modify some internals, including the
iteration counter only for \xmultipot, but also the \R and \D internals;
\R contains the coordinates where to put the (object), while \D, if set, con-
tains the angle of rotation of the object. The code and picture examples
in figures 19 and 20 show some examples of usage through tis (handler)
code. .

[\xmultiput ((initial point)) ((increment)){{iterations)}{{object)} [{handler)])

\unitlength=0.0095\1inewidth
\begin{picturel}(100,100)
\GraphGrid(100,100)
\put (560,50) {\thicklines\circle{100}}
\xmultiput [50,50] (60:40) (-30:1){12}%
{\makebox (0,0) {\circle*x{2}}}%
[\MultVect\R by\D to\R]%
\xmultiput [50,50] (60:46) (-30:1){12}%
{\Arg0fVect\R to\Ang
\rotatebox{\fpeval{\Ang-903}}%
{\makebox (0,0) [b] {\Roman{multicnt}}}}%
(\Multvect{\R}{\D}\RI]
\end{picture}

Figure 20: Usage example of the \xmultiput command

17. This implementation of curve2e includes an extension to package xfp, in
the sense that adds three more L3 commands: \fptest, \fpdowhile,
\fpwhiledo to the two already contained and documented in the latter
package. The syntax of such new commands is the following

\fptest{(test)H(true)}{{false)}
\fpdowhile{(test)}{(operations to be repeated)}
\fpwhiledo{(test)} (operations to be repeated)’

The macro \fptest requires two further arguments that contain what to
do if the (test) is true, and what to do if the (test) is false. The (test) is
a logical expressions that connects math relation expressions, even float-
ing point ones, by means of logical operators; such operators are ||, &&,
and !, respectively for OR, AND, NOT; math relation expressions contain
relation operators, even negated ones: for example !< means “not lower
than”, which is equivalent to “equal or grater than”, i.e. =>. The logical
expression is parsed left to right and normal parentheses may be used to
alter this sequence. The logical operators work also between logical vari-
ables, therefore the (test) may contain an interesting mixture of relation
and logical operators.

23

Before using \fpdowhile and \fpwhiledo, the arguments of (test) depends-
on must be set so that the test is true; during the execution of the (oper-
ations to be repeated) there must be some setting that eventually renders
the (test) false. The user should pay attention to set the elements that
(test) depends on, because the risk is to enter an infinite loop and end up
with some error message stating that the working memory of the program
is full. Notice that \fpdowhile first puts the (operations to be repeated)
into the work flow then checks the (test) and possibly repeats the cycle;
on the opposite, \fpwhiledo first checks the (test) then possibly inserts
the (operations to be repeated) and cycles. Evidently with the same (test)
the two while cycles produce different results with a little, but important
difference: if the input data are macros defined by previous computa-
tions, there is no guarantee that the (fest) is initially true; if it sis false,
fpwhiledo does not do anything, while \fpdowhile executes one cycle
and produces in the output stream something that might be nonsense.
Cycles done with \fpwhiledo should be safer and should be preferred.
Nevertheless such commands are very useful also for drawing graphics; the
xmultiput command already makes use of such L3 functions.

As an example of use, we show how to plot a mathematical function ex-

pressed in parametric form:
xr = f1 (t)
y = fa(t)

The plot is executed with a piecewise linear approximation of the curve;
if the ¢ steps are sufficiently small, the plot turns out to be very nice; here
we show an example where we plot a Lissajous curve with two sinusoids
of different periods.

We start by defining the Lissajous function with arguments to specify the
parameter ¢, the sinusoid amplitudes Ay, Ay, the respective “frequencies”,
by means of integer multiples of a unit pulsation, Ny, N3, and the initial
phases @1, ¢2 of such sinusoids. It is better to keep apart the input of the
curve coefficients from the actual curve argument/parameter and output
point coordinates:

\def\LissajousCoefs#1,#2,#3,#4,#5,#6!{/
\edef\LAu{#1}\edef\LNu{#2}\edef \LFu{#31}/
\edef\LAd{#4}\edef\LNd{#5}\edef\LFd{#6}}

\def\LissajousCode#1#2{
\edef\X{\fpeval{\LAu*cosd (\LNu*#1+\LFu)}}7%
\edef\Y{\fpeval{\LAd*cosd (\LNd*#1+\LFd) }}%
\CopyVect\X,\Y to#2\ignorespaces}

As it is shown, the coefficients are specified as a comma separated list; the
I list terminator is taken care by the actual drawing command.

Then the curve drawing command requires the coefficient specification
only the first time it is used; some messages? are output if the coefficients

2Here it would be better to have available a “Macro Error” message; such a macro is
not available, but it would be possible to define it by means of the \GenericError macro
provided by the I4TEX2e kernel. Here we skip this definition in order to avoid overloading
this documentation with such details.

24

\unitlength=0.01\1linewidth
\begin{picture}(100,100) (-50,-50) Y
\AutoGrid

\VECTOR (-50,0) (50,0) \Pbox (50,0) [tr]{x}[0]
\VECTOR(0,-50) (0,50) \Pbox(0,50) [tr]{y}[0]
\Pbox (0,0) [tr]{0}[2]

\thicklines

{\countdef\I=2560 \I=0

have been “forgotten”.

\NewDocumentCommand\Lissajous{m o m}{%
\IfValueTF{#2}{\LissajousCoefs#2!\relax
\LissajousCode{#1}{#3}}/,
{\ifcsname LAu\endcsname
\LissajousCode{#1}{#3}%
\else\PackageError{curve2el},
{This Lissajous’ curve coefficients\MessageBreak
are missing}{Nothing done}\fil}}
\ignorespaces}

The syntax is the following:

[\Lissaj ous{(in)}[(A1),(N1),{(P1),{A2), (N2}, {h2)] (Pout)]

where (Pyyt) is a macro that gets defined with the cartesian coordinates of
the computed output point. Arguments (in) (the ¢ parameter) and (P,yt)
(the comput coordinates) need not be enclosed within braces if they are
given as macros; actually the code shown in figure 21 shows such procedure
that renders the input code simpler to read.

After this definition the diagram is plotted in figure 21.

\fpdowhile{\I !> 360}{% £

\fptest{\I=0}%
{\Lissajous\I[40,2,90,40,3,0]\Pout

\advance\I byl}\strokepath}’

{\Lissajous\I\Pout

\moveto (\Pout) }%

\lineto(\Pout)}%

\end{picture}

18.

Figure 21: A Lissajous diagram

For the independent variable ¢, the parameter of the Lissajous paramet-
ric equations, it is better to work with degrees instead of radians, and
with integer numbers, so that the whole range from 0° to 360° is certainly
spanned. Notice the braces that include the code for the Lissajous dia-
gram; they may be useful to render that group suitable to be \put some-
where else than with its center at the origin of the canvas axes, and/or to
be used as the second argument of a \rotatebox{(angle)} command so
as to rotate the whole diagram.

Another useful application of \fpdowhile is the following: when making
a diagram the axes should get suitable labeled ticks in order to show the

25

graduations; the label of each tick should lay close to the axis on the other
side than the tick. It is also necessary to know if the axis to be marked is
horizontal or vertical, since in the former case each tick is vertical, while
in the latter case it is horizontal. The example in figure ?? shows both
the code and its usage. The syntax of the \Tbox macro is the following.

[\Tbox ({coordinates)) [(reference)]{(label)} [{size)]<(direction)>]

where (coordinates) indicates the position of the tick base along its axis;
(reference) is a letter, either t (if the axis is on top of the label) or b(if
the axis is at the bottom of the label) for vertical ticks or either r (if
the axis is at the right of the label) or 1 (if the axis is at the left of the
label) for horizontal ticks; (label) is the value of the scale or a literal label
that by default is typeset in math mode, so that a math symbol may
be used without the need of entering math mode, while in the unusual
circumstance that a textual label is to be used, users should use the \text
macro; the (size) argument is the size of the tick: if such size is zero, just
the label is set, but in this case the \Tbox macro behaves as the the \Zbox
one, and accepts two reference codes in order to print the label the same
as \Zbox would do when the dot size is zero; the (direction) argument is
the letter V for vertical ticks, and H for horizontal ticks. There is some
redundancy because \Tbox may behave as \Zbox, but experience shows
that this is not a problem.

The source preamble should contain the following code.

\makeatletter
\NewDocumentCommand\Tbox{D(){0,0} 0{cc} m 0{Opt} D<>{Z}}{\bgroup
\edef\TBoxCode{#5}\dimenO=#4\relax %
\edef\tempE{\fpeval{round (#4/\unitlength,3)}1}’
\put (#1){%
\ifdim\dimen0=\z@
\Zbox (0,0) [#2]1{#3}[\z@]l%
\else
\if\TBoxCode V\relax
\let\tempC=b\relax
\if\tempC #2\edef\tempD{0,-\tempE}\else\edef\tempD{0, \tempE}\fi
\segment (0,0) (\tempD) \Zbox (0,0) [#2]{#3} [\ze]Y
\else
\1f\TBoxCode H\relax
\let\tempC=1\relax
\if\tempC #2\edef\tempD{-\tempE,O0}\else\edef\tempD{\tempE,0}\fi
\segment (0,0) (\tempD) \Zbox (0, 0) [#2]{#3} [\ze]%,
\else
\typeout{The specified code\space #5\space is invalid!}},
\typeout{\string\Tbox\space command ignored}},
\fi
\fi
\fi
Fegroup\ignorespaces}i

If the code is contained in a personal .sty file the \makeatletter should
be omitted.

26

As it can be seen, the fifth argument code is preset to to Z so that if
users forget to specify it, error messages pop op and can be seen in both
the console window and in the log file, but no tick and label are typeset.
This kind of commands to label in one way or another may be very useful
depending on the users’ kind of drawings. Figure 22 contains also the
iterations to label the axes and are done with the \fpdowhile macro; it
can be seen that the actual coordinate of each tick is transformed into the
actual label that is put in its position by the \Zbox command; of course
the diagram scale and the actual label are related to one another but do
not have the same value.

4 Remarks

In spite of the relative simplicity of the macros contained in this package, the
described macros, as well as the original ones included in the pict2e package,
allow to produce fine drawings that were unconceivable with the original EXTEX
picture environment. Leslie Lamport himself announced an extension to his
environment when KTEX 2: was first released in 1994; in the ltnews news-
letter of December 2003, the first implementation of Lamport’s extension was
announced; the first version of this package curve2e was issued in 2006. It was
time to have a better drawing environment; this package is a simple attempt to
follow the initial path while further extending the drawing facilities.

There are other packages in the CTAN archives that deal with tracing curves
of various kinds. PSTricks and pgf/tikz are the most powerful ones. And they are
becoming the standard for computer drawing. Their documentation is huge and
the multitude of extra modules to perform special tasks is countless. Therefore
they are difficult to use; when the user gets used to their particular syntax and
got sufficient familiarity with several modules, s/he can use these bundles very
comfortably.

This difficulty in becoming a TikZ or PS expert is why I think a simpler
drawing machinery should be appreciated. I admit it: I like the picture envi-
ronment; and I like to deal with simple codes so as to create my own macros.

But there is also curves that is intended to draw almost anything by using
little dots or other symbols partially superimposed to one another. It uses only
quadratic Bézier curves and the curve tracing is eased by specifying only the
curve nodes, without specifying the control nodes; with a suitable package op-
tion, it is possible to reduce the memory usage by using short straight segments
drawn with the PostScript facilities offered by the dvips driver.

Another package, ebezier performs about the same as curve2e but draws its
Bézier curves by using little dots partially superimposed to one another. The
documentation is quite interesting since it explains very clearly what exactly
are the Bézier splines. Apparently ebezier should be used only for DVI output
without recourse to PostScript or PDF machinery.

The picture package extends the performance of the picture environment
(extended with pict2e) by accepting coordinates and lengths in real absolute
dimensions, not only as multiples of \unitlength; it provides commands to
extend that functionality to other packages. In certain circumstances it may be
very useful.

Package xpicture builds over the picture INTEX environment so as to allow to

27

\centering\unitlength=0.007\1linewidth

\begin{picture}(100,70) (-50,-10)%

\AutoGrid

\thicklines

\VECTOR (-50,0) (50,0)\Zbox (50,0) [br]1{x} [Optl%

\VECTOR(0,0) (0,60)\Zbox (0,60) [t1]1{y} [Opt1%

%

{\def\Coord{-40}/,
\fpdowhile{\Coord<=40}{\edef\X{\fpeval{round (\Coord/20,1)}}%
\Tbox (\Coord,0) [t]{\X}[1.5mm]<V>\edef\Coord{\fpeval{\Coord+10}}}%
%

\def\Coord{10}
\fpdowhile{\Coord<=50}{\edef\Y{\fpeval{round(\Coord/20,1)}}%
\Tbox (0,\Coord) [r]1{\Y}[1.5mm] <H>\edef\Coord{\fpeval{\Coord+10}}3}%
Y

%

{\color{blue}\linethickness{1.5pt}/

\Curve (-40,0)<1,0>(0,20)<45:1>% Parabola: y=0.25(x_2)"2
\Curve(0,20)<1,0>(20,0)<0,-1>% Quarter circle: x"2+y~2=1
\Curve(20,0)<0,1>(40,34.64)<49:1>}), Hyperbola:x"2-y =1
\thinlines

\Dashline(0,0) (45,45){2}/, asymptote

\end{picture}

Ay
251

|
—15/ 41 |=05 0 05 1 [15| 2

|
-2

Figure 22: The code to draw a diagram with labeled axes

28

draw the usual curves that are part of an introductory analytic geometry course;
lines, circles, parabolas, ellipses, hyperbolas, and polynomials; the syntax is
rather comfortable, although it is not a simple extension of the picture own
syntax; for all these curves it uses the quadratic Bézier splines.

Package hobby extends the cubic Bézier spline handling with the algorithms
John Hobby created for METAFONT and METAPOST. But by now this package
interfaces very well with tikz; it has not (yet) been adapted to the common
picture environment extended with pict2e, and, why not, with curve2e.

If you are interested in further extensions of curve2e, besides creating your-
self the macros you need, examine the euclideangeometry package; I created it
in order to have available further functionalities useful to deal with more com-
plicated geometrical constructions. Another small extension is graphpaper by
which users can produce themselves drawing paper with bilinear coordinates,
semi-logarithmic and bi-logarithmic coordinates, polar linear or semilogarithmic
coordinates, and Smith charts. They are an extension chain of the packages that
extend the picture environment: graphpaper calls euclideangeometry which
calls curve2e which calls pict2e. I find all this very useful. Of corse these
packages and their documentation are all contained in TEX Live.

I am about to complete a book on electromagnetism and electronic circuit
theory: it contains some 300 drawings, diagrams, electronic circuits. 1 created
them with curve2e and some macros based on this picture extension package.
The graphics of my book are pretty nice, and I am sure that a professional
technical artist can draw better ones, but such an artist would be very expensive
and the process would require a lot of time to correct, modify, add details, and
so on, while doing things by oneself is certainly a better solution. Packages
tikz/pgfplots and PStricks? Certainly they are very good and much more
powerful, but, besides being sort of difficult to learn to use, they require a lot
of working memory and more often than not I ran out of computer memory.

5 Acknowledgements

I wish to express my deepest thanks to the many persons who submitted notices
about bugs or inconsistencies.

Michel Goosens spotted some errors and very kindly submitted them to me
so that I was able to correct them.

I collaborated extensively with Josef Tkadlec in order to implement a better
real long division so as to get correctly the quotient fractional part and to avoid
as much as possible any numeric overflow; many Josef’s ideas were incorporated
in the long division macro that was implemented in the previous version of this
package, although the macro used by Josef was slightly different. Both versions
aim/aimed at a better accuracy and at widening the operand ranges. In this
version of curve2e I abandoned our long division macro, and substituted it with
the floating point division provided by the xfp package functionalities that are
now part of the IHTEX kernel.

Daniele Degiorgi spotted a fault in the kernel definition of \1inethickness
that heavily influenced also curve2e; see the code documentation curve2e.pdf
file.

Domenicus van der Wijst spotted a sneaky bug in the updated \Arc macro;
for arcs not wider than 180° that macro worked properly, while for larger angle

29

apertures it produced syntax errors. It was just a typo, but very sneaky.

Jin-Hwan Cho and Juho Lee suggested a small but crucial modification in
order to have curve2e work smoothly also with XeTeX (XeLaTeX). Actually
if pict2e, version 0.2x or later, dated 2009/08/05 or later, is being used, such
modification is not necessary any more, but it is true that it was imperative
when legacy versions were used.

Ashish Kumar Das spotted an inconsistency in the design of vectors with
PostScript style arrow tips with large line width settings, that did not show up
with IXTEX styled ones.

30

