\newswitch

The switch Package
Version 1.1a

Alceu Frigeri*

May 2025

Abstract

This package offers two commands aimed at implementing a switch/case alike command.

Contents
1 Introduction 1
2 Commands 1
2.1 User Document ones 1
2.1.1 Example. 2
2.2 Expldones e 2
221 Example. 2
3 Advanced Use 3

1 Introduction

There are many ways to implement a switch/case alike programming structure. Notably, one can
use \str_case:nn from expl3, or go over a loop using \pdfstrcmp, or construct an if-then-else tower,
etc.
This implements a solution, based on [1], which has the advantage, once the cases are set up,
of being constant time: a single (\ifcsname) is needed to select the correct code to be executed.
Note: The implementation creates a \csname for each case, and it uses the primitive
\ifcsname to select the correct case.
Note: The coding is done using expl3, just for the sake of readability, in the package
comments one can find an implementation using just TEX primitives.

2 Commands

Two set of commands are created, one to be used in a expl3 code régime, and another set to be
used in a user document.

2.1 User Document ones

\newswitch (switch) {(default-code)}

It will create a new switch (switch), which will expects a single argument. In case the argument
doesn’t corresponds to any defined case, (default-code) will be used. The resulting (switch) com-
mand is expandable, if (default-code) and (case-code) (added by \addcase) also are. This is just
an alias for \switch_new:Nn

Note: #1 can be used in (default-code). An error is raised if (switch) is already
defined.

*https://github.com/alceu-frigeri/switch

\addcase \addcase (switch) {(case)}{(case-code)}

It will add a (case) to a previously defined (switch) and associates (case-code) with it. (case) will
be fully expanded at definition time. Once defined one can call \switch {case}, which will put
said (case-code) in the input stream. This is just an alias for \switch_addcase:Nnn.

2.1.1 Example

First we create a switch, and associate a few (or more) cases. Note the possibility of using an
auxiliary (fully expandable) macro/command when defining the cases.

\def\CaseAstring{case-A}

\newswitch \myCase {I~ don't™ know:~ #1\par}
\addcase \myCase {\CaseAstring} {A~ was~ used\par}
\addcase \myCase {case-B} {B~ was”~ used\par}

To use the (switch), one just has to call it with (case) as an argument. Note the possibility of
using an auxiliary macro/command (which has to be fully expandable) as a (case).

\def\somemacro{case-A}
\def\someothermacro{case-X}

If B, then B was used

If B, then \myCase{case-B} If A, then A was used
L s G erlease L) If X, then I don’t know: case-X
If X, then \myCase{case-X} R
if somemacro: A was used
if somemacro: \myCase{\somemacro} if someothermacro: I don’t know: case-X

if someothermacro: \myCase{\someothermacro}

2.2 Expl3 ones

\switch_new:Nn \switch_new:Nn (switch) {(default-code)}
It will create a new switch (switch), which will, in principle, expects a single, type n, argu-
ment. In case the argument doesn’t corresponds to any defined case, (default-code) will be
used. The resulting (switch) command is expandable, if (default-code) and (case-code) (added by
\switch_addcase:Nnn) also are.

Note: #1 can be used in (default-code). An error is raised if (switch) is already
defined.

\switch_addcase:Nnn \switch_addcase:Nnn (switch) {(case)}{(case-code)}

It will add a (case) to a previously defined (switch) and associates (case-code) with it. (case) will
be fully expanded at definition time. Once defined one can call \switch {case}, which will put
said (case-code) in the input stream.

\switch_if_exist:NITF * \switch_if_exist:NTF (switch) {(if-true)}{(if-false)}
\switch_if_case_exist:NnTF % \switch_if_case_exist:NnTF (switch) {(case)} {(if-true)} {(if-false)}

new: 2025-05-13

Tests if the (switch), or (case), are defined or not. It doesn’t test if they are really a (switch)/(case).

\switch_undefine:N \switch_undefine:N (switch)
\switch_case_undefine:Nn \switch_case_undefine:Nn (switch) {(case)}

new: 2025-05-13

Undefine the (switch) and/or specific (case). Please note, when undefining a (switch), the \csname
associated with the cases aren’t undefined (if needed, they have to be undefined one by one).

2.2.1 Example

First we create a switch, and associate a few (or more) cases. Note the possibility of using an
auxiliary (fully expandable) macro/command when defining the cases.

\ExplSyntaxOn

\def\CaseAstring{case-A}

\switch_new:Nn \TextCase {I~ don't~ know:~ #1\par}
\switch_addcase:Nnn \TextCase {\CaseAstring} {A~ was™~ used\par}
\switch_addcase:Nnn \TextCase {case-B} {B~ was”~ used\par}
\ExplSyntax0ff

To use the (switch), one just has to call it with (case) as an argument. Note the possibility of
using an auxiliary macro/command (which has to be fully expandable) as a (case).

\def\somemacro{case-A}

\def\someothermacro{case-X} If B, then B was used
If B, then \TextCase{case-B} If A, then A was used
If A, then \TextCase{case-A} If X, then I don’t know: case-X

If X, then \TextCase{case-X} . A
if somemacro: \TextCase{\somemacro} if somemacro: was used
if someothermacro: \TextCase{\someothermacro} if someothermacro: I don’t know: case-X

3 Advanced Use

Since the resulting (switch) is fully expandable (if the provided (case-code)s also are), one can
design the (case-code)s to absorb more than one parameter/tokens.

Careful: make sure that all (case-code)s absorb the same number of parameters, to
avoid “leftovers” or tricky errors.
For instance, note the use of \@gobble to absorb an unused parameter, or how \cmdY is defined
(with two parameters) then used with a “fixed one”. The resulting command, \TCase, absorbs 2
tokens/parameters:

\NewDocumentCommand \cmdX{m} {I got #1}
\NewDocumentCommand \cmdY{mm} {Two: #1 and #2}
\NewDocumentCommand \Astring{} {case-A}

\makeatletter

\newswitch \TCase {I” don't” know:~ #1 \@gobblel}
\makeatother

\addcase \TCase {\Astring} {\cmdY{A~ given}}

\addcase \TCase {case-B} {B~ was”~ used. \cmdX}

If B, then \TCase{case-B}{extra-B}\par If B, then B was used. I got extra-B
e e e If A, then Two: A given and extra-A
If X, then \TCase{case-X}{extra-X}\par It X7 then T don’t know: case-X

Needless to say, the same applies under expl3.

\ExplSyntaxOn

\cs_new:Npn __cmdX:n #1 {I” got™ #1}
\cs_new:Npn __cmdY:nn #1#2 {Two:~ #1~ and”~ #2}
\tl_new:N \1l__case_tl

\tl_set:Nn \1l__case_tl {case-A}

\switch_new:Nn \TxCase {I~ don't~ know:~ #1 \use_none:n}
\switch_addcase:Nnn \TxCase {\1__case_t1} {__cmdY:nn{A~ given}}
\switch_addcase:Nnn \TxCase {case-B} {B~ was™ used.” __cmdX:n}

\ExplSyntax0ff
If B, then \TxCase{case-B}{extra-B}\par If B, then B was used. I got extra-B
Oy b WG el oo o If A, then Two: A given and extra-A

If X, then \TxCase{case-X}{extra-X}\par It X, then I don’t know: case-X

References

[1] Paul Gaborit. Stack Exchange answer about Implementing Switch Cases. 2012. URL: https://
tex.stackexchange.com/questions/64131/implementing-switch-cases/343306#343306
(visited on 12/10/2016).

https://tex.stackexchange.com/questions/64131/implementing-switch-cases/343306#343306
https://tex.stackexchange.com/questions/64131/implementing-switch-cases/343306#343306

	Introduction
	Commands
	User Document ones
	Example

	Expl3 ones
	Example

	Advanced Use

