Specification of the Exim Mail
Transfer Agent

Exim Maintainers

Specification of the Exim Mail Transfer Agent

Author: Exim Maintainers

Copyright © 2018 University of Cambridge

Revision 4.92.1 18 Jul 2019

Contents

1. INTFOAUCTION ..ottt 1
1.1 EXIiM dOCUMENTATIONeiiiiiiii e 1
1.2 FTP Site @and WEDSITEScuoriiiiiiiiiiiee s 2
1.3 MAIIING TISTS ettt 2
1.4 BUQ FEPOIES ..ttt bbbttt bttt 3
1.5 Where to find the Exim distriDution ..o 3
1.6 LIMITALIONS ..ottt 4
1.7 Runtime configuration ..ot 4
1.8 CalliNg INTEITACE ...c.eeeeieeic et 4
1.9 TEIrMINOIOQY ..evenetiieiee ettt 4

2. INCOrporated COUE ...ttt 6

3. How Exim receives and delivers mailccooooiice 8
3.1 OVerall PhIlOSOPNYooveiiiiiieiee ettt 8
3.2 POICY CONTIOL ...ttt sttt ae b et eneeneseens 8
3.3 USEI FIHEIS ettt 8
3.4 Message identifiCation ..o 9
3.5 ReCEIVING MAIL ..ottt 9
3.6 Handling an inComiNg MESSAJEccccereuiririiririeirieeetet ettt 10
3.7 Life OF @ MESSAGE ...cecuiieiiieieee et 10
3.8 Processing an address for deliVErY ... 11
3.9 Processing an address for Verification ... 12
3.10 Running an individual FOULENcoiiiriiiiiiccc s 12
3.11 DUPliCAte AAIESSEScviiiiiiiieic et 13
3.12 Router PreCONItIONSccoveuiirieirieirieet ettt 13
3.13 Delivery in detailco.coriiiiie s 14
3.14 Retry MECHANISIMc.oiiiiiiii ettt 15
3.15 Temporary delivery failure ... 15
3.16 Permanent delivery failure ... 15
3.17 Failures to deliver bouNCe MESSAJEScevviiiiriiiiiiiiccee s 16

4. Building and installing EXim ... 17
4.1 UNPACKING ittt sttt 17
4.2 Multiple machine architectures and operating Systemscccccccveevencincerecnineene. 17
4.3 PCORE TIBFAIY ..ottt sttt a et sesteseneeneas 17
4.4 DBM lIBFAriES ...c.coveuiriiiiieiieee ettt 17
4.5 Pre-building configurationccooeireiniiniiicc s 19
4.6 SUPPOIL FOF ICONV() eiuiieieiiiiiieteie ettt 19
4.7 Including TLS/SSL encryption SUPPOITc.ceiriririeieirieeerse et 19
4.8 USE OF ICPWIAPPELS ...ttt 20
4.9 Including SUPPOIT FOr IPVBc.covrieiiiiiieiieiee s 21
4.10 Dynamically loaded lookup module SUPPOItc.ceirieiirieiniieieeeeceeceeenes 21
4.11 The DBUIldING PrOCESSooviviiiiiiieirtcee ettt 21
4.12 Output from “MaKE”c.ooiiiiiiiiee et 21
4.13 Overriding build-time options for EXim ..o 22
4.14 OS-Specific NEAET filESoveeiiiee e 23
4.15 Overriding build-time options for the MONItOr ... 24
4.16 Installing Exim binaries and SCrPLScccoerreririinieinire s 24
4.17 Installing info doCUMENTALIONc.ooviiiiiiiiiic s 25
4.18 Setting up the SPOOI AIFECLONYc.coveiiiiiiiiiieee s 25
419 TESHING ettt 25

iii

4.20 Replacing another MTA With EXIMccooiiiiieeeeeee e 26

4.21 UPGrading EXIMccooiiiiiiieeeceeete ettt ettt b et eb e st et e b ereeraenbene 27
4.22 Stopping the Exim daemon 0N SOIArSc.coveioiiiiiieieececeeeeese e 27
. The EXim command liN@ ..o e 28
5.1 Setting options by program NAMEc.ocueveieiieiiiiiceeeeeeeeee e 28
5.2 Trusted and admin USEISccooeieieirieiiieieeieeee ettt sttt neeneas 28
5.3 Command liN€ OPLIONScoouiiuiiiieeeeeeeeee ettt 29
. The Exim runtime configuration fileccoooeiiie e, 51
6.1 Using a different configuration file ..o 51
6.2 Configuration file fOrmatc.ooveiiiiieee e 52
6.3 File inclusions in the configuration fileccccoviiieiiiccee e 53
6.4 Macros in the configuration file ..o 53
6.5 MaCIrO SUDSHITULION ..ot 53
6.6 RedefiNiNg MACIOS ...c.ooovieieiee ettt ettt et b et esbesreeraensanne 54
6.7 OVerriding MACIO VAIUEScooueiieieiieieeieeeeeeete ettt ettt eve s s s v s eneas 54
6.8 EXample Of MACIO USAQEcoviivieereiicieceeeeteettetet ettt ettt ettt b et s reeaaensane 54
6.9 BUIIIN MACIOS ..ottt b et eneas 54
6.10 Conditional skips in the configuration filec.ccooveieiiiiiceeeee, 55
6.11 ComMMON OPLION SYNTAX ...cuiiviciiiiieieeeeee ettt et b e eaeas 55
6.12 BOOIEAN OPLIONS ..ottt ettt ettt esbe st era b ene 55
B.13 INTEYET VAIUES ...ttt et ettt st b s ae et essesreesaessannen 56
6.14 OCtal INtEYET VAIUESceeiiieieeeeeeeee ettt eneas 56
6.15 Fixed POINT NUMDELS ...oeiieiiiiceeeeeetece ettt ettt st a b b ra b ae 56
B.16 TIME INTEIVAISooeieieieeeee ettt be st eneas 56
B.17 SHHNG VAIUES ...ttt ettt et a st ae b s e eneas 56
6.18 EXPANAEA SIINGS ..ooviiiiieieiecteeeeee ettt ettt ettt sb e s ae b essesreesaensannen 57
6.19 USEr and groUp NAIMEScc.ocueeuieiieiiceeeecteeteet ettt et ve et te e ess s e s e e s essesreesaessansens 57
6.20 LISt CONSIIUCTION ..ottt sttt be st eneeneas 57
6.21 Changing list SEPAratorsccoccveiiioiieceee e 57
6.22 EMPLY itE€MS IN NISTS .ooviiiiiiiceeeee ettt s 58
6.23 Format of driver configurationsccocuovieieiiiicceeecee e 58
. The default configuration filecccooi i 60
40 T Y= e (o T T SO STU SRRSO PRRSRRR 60
7.2 Main configuration SEHINGSc.ooviiieicecece e 60
7.3 ACL CONFIQUIALION ...ttt ettt enea 63
7.4 Router CONfIQUIAIONc.ocueiiiiicieeeee ettt et b et b ssenne 66
7.5 Transport CONFIGQUIALIONc.ooviiiieieiiececee ettt s 69
7.6 DEfaUIt FEINY FUIE ..ottt b b b eaeesene 71
7.7 Rewriting CONfIQUIAtIONc.coviiuiieiiiieceeeee ettt s 71
7.8 Authenticators configurationc.cooeoiiieiceceeeee e 71
. Regular @XPreSSIONS ..ottt sttt b e 73
. File and database IOOKUPSccoouiiioiiiicceeccee e 74
9.1 Examples of different I00KUP SYNTAXccovvieiiiiiiiieeecceeee et 74
9.2 LOOKUPD LYPES .oevieeecieeeeteettetet ettt ettt ettt ettt et et sb e b e s teesse s e s ae e st essesreesnensansen 75
9.3 SiNgle-Key I0OKUP LYPEScuocvieeiiiiieeeeeeeteeee ettt enea 75
9.4 QuETrY-StYle IOOKUPD TYPESooviieiiieiiieieeeee ettt ns 77
9.5 Temporary errors iN IOOKUPSccvovviiiiiieiiieetetee ettt s se e 78
9.6 Default values in single-Key I00KUPScooieieiiiiiiieieieeeceeee ettt 78
9.7 Partial matching in single-Key I00KUPSc.ooveiiriiiiieieecectceeeeeetee et 79

9.8 LOOKUP CACNING ittt sttt ettt et b e s ae et essesreesaensennan 80
9.9 QUOLING IOOKUP LAc.vieiiiciiciiciecee ettt eaeas 80
9.10 MOre abOut ANSADcooiiiieeee ettt eneas 81
9.11 DNsdb 100KUP MOGIfIEISooviiieieieeiecee ettt s s e 81
9.12 Pseudo dnsdb reCOrd tYPEScoovieiieieiieceeeecteee ettt s 82
9.13 Multiple dNSAD IOOKUPSoooviiieiieiecticee ettt s sa e 83
9.14 MOre @bOUL LDAP ...ttt eneas 83
9.15 Format Of LDAP QUETIEScvoiieieeieeteceeeeeeeetee ettt ettt ve e ve e 83
.16 LDAP QUOTING .ottt ettt st ettt e ss bt ssessesbeesaensannens 84
9.17 LDAP CONNECHIONS ..ottt sttt be st eneeneas 84
9.18 LDAP authentication and control informationc.coeeeeeiiiieiiineeeeee, 85
9.19 Format of data returned by LDAPcooiiieeeeeee et 87
9.20 MOre @bOUL NISH ..ottt ns 87
.21 SQL IOOKUPS ...ovvvietititeteeeteete ettt ettt ettt ettt b s ts et e sse s et eseesessesenseneas 88
9.22 More about MySQL, PostgreSQL, Oracle, InterBase, and Redisc..ccccccveuvniee. 88
9.23 Specifying the Server in the QUETY ..o 89
9.24 Special MySQL fEATUIEScooueieeeeeeeeeeeeeee ettt 89
9.25 Special PostgreSQL fEAtUIESc.ooveuieiiieieeeeeeeee et 90
9.26 More about SQLIEccceiieieieiiiieieeiceee ettt 90
9.27 MOre abOUt REAIS ..ottt 90
10. Domain, host, address, and local part listsc.cceoveiiiiiii 91
10.1 EXPANSION OF [ISTS ..ooiiiiciiceieeeeeee ettt 91
10.2 Negated itemMS INTISIS ..ocviiiieicece e 91
10.3 File NAMES IN LISIS ..o 92
10.4 An Isearch file is not an out-of-liNe liStc.covviieieiiieee e, 92
10.5 NAMEA IISTS .ottt st ens 92
10.6 Named lists compared With MACIOSccocveviiiiicieeceecee e 93
10.7 Named liSt CACNING ...vooviieeieeeee ettt 93
10.8 DOMAIN TISES ..eeeiieiieiieee ettt be st ens 94
T0.9 HOSTIISTS .ottt be et ens 96
10.10 Special host list PAMEINSccvoveiieeeeee s 96
10.11 Host list patterns that match by IP address ..o 96
10.12 Host list patterns for single-key lookups by host addressccceveveevieviicveeeennnne. 97
10.13 Host list patterns that match by host name ..o, 98
10.14 Behaviour when an IP address or name cannot be foundc..ccoooevveviiveiennne. 99
10.15 Mixing wildcarded host names and addresses in host listsc.cccevveveviieeiennnn. 99
10.16 Temporary DNS errors when looking up host informationcc.ccceevineinieneee 100
10.17 Host list patterns for single-key lookups by host namecccccoeveeieieieneneennenen. 100
10.18 Host list patterns for query-style I00KUPSccocveieeiiiiieieieceeeeeeeeee e 100
10.19 AAAreSS lISES ...ttt aes 101
10.20 Case of letters in address liStScccocveieiiiiiicicicceeeeee e 103
10.21 LOCAI PAIt lISES ..ottt a e ennas 103
11, SENG EXPANSIONSc.oovoiiiiieeee ettt 104
11.1 Literal text in expanded SIHNGS ...c.ooi oo 104
11.2 Character escape sequences in expanded Stringsccccevveieevicieeciccceeeeee, 104
11.3 Testing String eXPaNnSIONSccoovvioiiiiieieieeeeeeeeee ettt eneas 104
11.4 Forced expansion fAIlUIEcoooiiiieieiceeeee et 105
11.5 EXPANSION ITEIMS ..ocviiiiiicice ettt ettt ettt et et sa s e reesnennas 105
11.6 EXPANSION OPEIALOISocviiiiiciieieie ettt ettt et et a e re e ennas 117
11.7 EXPanSion CONAITIONSccoooviiiiiieiiiececeee ettt ettt ennas 124
11.8 Combining expansion CONAItIONScc.coveiiiiiiciciceceeee e 130
11.9 EXPanSion VariabIES ..ottt 131
12, Embedded Perlo e 151

12.1 Setting up s0 Perl can be USEQ ..o 151

12.2 Calling Perl SUDIOULINESc.oovouiiieieeeeeeee e 151
12.3 Calling Exim functions from Perl ..o 152
12.4 Use of standard output and error by Perl ..o, 152
13. Starting the daemon and the use of network interfacesccccocooeee. 153
13.1 Starting a listening daemoOncooiiiieicceeee s 153
13.2 Special IP listening addreSSEScoooueveieeiiiiiieieeeeeeeete e 154
13.3 Overriding local_interfaces and daemon_smtp_portsccccceevvevieveiciciececeeneann. 154
13.4 Support for the submissions (aka SSMTP or SMTPS) protocolccccocveveueenenne. 154
13.5 IPV6 AAAIESS SCOPESvecvieeiiiiceieeieeie ettt ettt ettt st sa b sbeereessesesbeessesesseessensas 155
13.6 DISADING IPVB ...ttt ettt b e ennas 155
13.7 Examples of starting a listening daemonc.ccoceeveiiiecieieicceeeee e 155
13.8 Recognizing the 10Cal NOSEccoooiiiieecee s 156
13.9 Delivering to @ remote NOStccviiiiieeeee e 156
14. Main coNfigUIAtioNcooviiiiii ettt 157
14,1 MISCEIANEOUS ...ttt sttt be st e s e s eneenes 157
14.2 EXIM PAramMEIEISooviiieeeee ettt ettt ettt be s b reeneennas 157
14.3 Privilege CONTIOISovoieiieee ettt 157
T4 4 LOQUING woitiitiietite ettt ettt ettt ettt et ettt et e e teesse b e ebeessesbesbeeteesbenbeebeess et e aaeeneennas 158
14.5 FrOZEN MESSAUES ...ooovicvieeieieiieeeeeteete ettt ettt ettt te s et e s teessesbesbeeseesbessesseessessesseessensas 158
14.6 Data IOOKUPSoooveeeieiiiieetee ettt ettt ettt ettt ettt sbe st e ebe e b e beereessessesseesnensas 158
147 MESSAUE IUS ..ottt ettt ettt et ebe et b e beess e s e aeennennas 158
14.8 Embedded Perl STartupccocoveieioieeeeeee et 158
T4.9 D@EBIMON ..ottt ettt ettt st et et s e b st e nse st eneeseenen 158
14.10 RESOUICE CONIIOI ...oeeeiiieeee ettt 159
14,11 POICY CONIIOIS ..ooviiiieeceeee ettt re bbb b enennas 159
14.12 CallOUt CACNE ...ttt eseneas 160
TA.AB TS ottt ettt ettt et et n ettt et e et e eseneas 160
14.14 Local USEr NANAIINGc.ocvovviiiiieiee ettt ettt sb e enaas 160
14.15 All incoming messages (SMTP and non-SMTP) ..o 161
14.16 Non-SMTP inCOMING MESSAYESc.ocveverieieetieieieeeteeteetet ettt 161
14.17 INCOMING SMTP MESSAJES ...cvovvveiiieiiieiieieeeeeteete ettt eseneas 161
14.18 SMTP EXIENSIONS ..ooooviieiiieiiieteeet ettt se e eseneas 161
14.19 ProCesSiNG MESSAQEScovivvieeieiiiieteeieteete ettt ettt e re et esbesteeseesesbesseessesesseessensas 162
14.20 SYSIEM FIEE .ottt eseneas 162
14.21 Routing and deliVEIY ..ot 162
14.22 Bounce and warning MESSAQEScceccvervirreeeeriiirieteeiesteereeeessesteeseesessesseessessesseessesses 163
14.23 Alphabetical list of Main OPtiONSccooveieirieee e 163
15. Generic OptionNs fOF FOUREESocooviiiiiiecce e 21
16. TRE @CCEPL FOUREE ..ottt s ae e 225
17. The dNSIOOKUP FOULETooieiiieeeee ettt ettt et ae s 226
17.1 Problems with DNS I00KUPSoovouiiiiiiieeeeeeee e 226
17.2 Declining addresses by dNSIOOKUPc.ccvievieieiiiiiieicieecectee et 226
17.3 Private options for dNSIOOKUPc.covievieieiiiceceeceee e 227
17.4 Effect of qualify_single and search_parentscccocveveieininencneeeeeeeeeeen 229
18. The IPHIEral FOUREYooeiiieeee ettt st 230
19. TRE IPIOOKUP FOULEEooooeiiieee ettt st 231

20. The MANUAIFOUTE FOUTYo e e e e e eeaees 233

20.1 Private options for ManualrOULEccoivvieieiiiiieiceceeeeeee e 233
20.2 Routing rules in roUte_lIStcoviiiiieieeceeeeeeeeee ettt 234
20.3 Routing rules in route_datalccoeeeiiiiiiieieiecceeee et 235
20.4 Format of the list Of NOSIS ...c.ocuiiiiiie e 235
20.5 Format of 0Ne NOSEITEMoouiiiieieeee e 236
20.6 How the list Of NOSIS IS USEAc.ooviiieiiiiieceeeeeee e 236
20.7 How the OptioNS @re USEAc.eoviiiciieiiiiecieeteee ettt ettt b e sbeereennens 237
20.8 Manualroute eXamMPIESccociiiiriieieieeceetet ettt b et reenaens 237
21. The qUErYPIOGram FOULEKcoooviiiiieeieiete ettt ettt v et b e re e s aeesaennas 240
22, TRE redir@Ct FOUTENc.ooeieieeee ettt 242
22.1 RedireCtion dataccooueieieieeee e 242
22.2 Forward files and address Verification ... 242
22.3 Interpreting redireCtion dataocveieiiiieiciieceee e 243
22.4 ltems in a non-filter redireCtion liStc.ocveieeiiiiieeeeeee s 243
22.5 Redirecting to a local MailbOXc.ccveiiviiiiiiieiiiecceeee ettt 243
22.6 Special items in redireCtion lISTSocvoveieiiieeeeeeee e 244
22.7 DUPICAIE AUAIESSESoceeeeviiicteeieeteeteetet ettt ettt sttt b b re b b e beessesbesreereesnens 246
22.8 Repeated redireCtion EXPanSionccoceeieiiniieieieeeeeeet et eb et 246
22.9 Errors in redir€ClioN lISESc.ocviiiiiicicieeceeee ettt 246
22.10 Private options for the redireCt rOULESc.ocovioiiiiieieieeeeceeeee s 246
23. Environment for running local transportscccocoviiieieiiiicce, 255
23.1 CONCUITENT AEIIVETIES ...ttt 255
23.2 UIdS AN QIAS ...eeeieeieiicieeeeeete ettt ettt ettt b et et b e re s enbesbeereennens 255
23.3 Current and home AIr€CIOMIESc.ocivviiiiieieieeeeeeeee et 256
23.4 Expansion variables derived from the addresscccvoieeeviiiieeeieeeeeeieeeeens 256
24. Generic options for traNSPOILSc.ooooieiiiiieee e 257
25. Address batching in local tranSportsccccooioieiiiiiiccee e, 264
26. The appendfile tranSPOrt ... 266
26.1 The file and direCtory OPtIONSccvocieiiiiiieceeeeeeee ettt 266
26.2 Private options for appendfileccoovoiiiieieice e 267
26.3 Operational details for appendingccoeoveiiuiiiiicieiceeee e 276
26.4 Operational details for delivery to @ new fileccccooieeieieiciiieceee, 278
26.5 MailAir AEIVEIY ...ooeeeeeieeeeeee ettt ettt et b bbb e sbeereennens 278
26.6 Using tags to reCord MESSAJE SIZESccevveevieiiiiieiieieeeteeteetete ettt b e eanns 279
26.7 UsiNg @ MailAIrSiZe fil€cc.oovievieiiiieeceeeee ettt 280
26.8 MalISTOre EIVEIYoeviieeeeeeeeeee ettt ettt sbesbeereennens 280
26.9 Non-special NEW file AEIIVEIYcoioieiiiieeeeeeeee e 280
27. The autoreply traNSPOIT ..ot 281
27.1 Private options for QUIOIEPIYcc.ovuieieieieceeeeeee e 281
28. The IMIP IranSPOrt ..o 284
29. The PIiPe trANSPOITc.ooiieieecee ettt ettt e re b reeraennas 286

Vil

29.1 CONCUITENT AEIIVEIY ..ottt ettt eaeas 286

29.2 Returned status and data ..o 286
29.3 How the COMMANA IS FUN ...oouiiiiiiieieieeee et 287
29.4 Environment VariabIEScooooieioiiiieeeeeeeee e 288
29.5 Private options fOr PIPEcc.oovieuiiiiiiceceecete ettt 288
29.6 Using an external local delivery agent ...t 293
30. The SMIP IrANSPOLIToooei et 295
30.1 Multiple messages on a single CONNECHIONc.ocveeeviiiieieeececeeee e 295
30.2 Use of the $host and $host_address variablescoooveeeeeeeeeeeeeeeeeeeeeeeeeeeeeee. 295
30.3 Use of $tls_cipher and $tls peerdn ... 295
30.4 Private options fOr SMIPccoooiiiieiiecee e 295
30.5 How the limits for the number of hosts to try are usedcccoveeeviiiciecieriieenee, 307
31, AddreSS FEWHITINGcooooiiiiiieceece ettt ettt e e b ennas 309
31.1 Explicitly configured address reWritingccccevvieeeieniiiieieee et 309
31.2 When does rewriting NApPRENTc.o oo 309
31.3 Testing the rewriting rules that apply on iNputccooviiieiieiiicee, 310
31.4 REWIHING FUIES ..ottt ettt et b e s teeas b reenneneas 310
31.5 ReWNING PAIEINS c..oovviiieiceee ettt nnas 311
31.6 Rewriting replaCemeENtSc.ocviieiiieceeeee ettt 312
31.7 ReWIHING FlagS oottt ettt st en s 312
31.8 Flags specifying which headers and envelope addresses to rewrite 312
31.9 The SMTP-time rewriting flagccoooeeuiieieeeeeeeee e 312
31.10 Flags controlling the rewriting ProCESSccovevvieieieriieeeeeeeeeeee e 313
31.11 ReWrtiNg EXAMPIESocuiiiiiieeee ettt et nnas 313
32. Retry configuration ... s 315
32.1 Changing rELrY FUIESc.oouiiuiieeiceceeeeeee ettt eae s 315
32.2 FOrmat Of FEIIY TUIES ..ottt st 315
32.3 Choosing which retry rule to use for address errorscccccoeeeeveveeeeeeecieieeene 316
32.4 Choosing which retry rule to use for host and message errorscccccoeveveuenennn. 316
32.5 Retry rules for SPECIfIC EITOIScooviiiiicieiececeeeee et 317
32.6 Retry rules for specified SENUEISooveiioiicieiieceeeeee s 318
32.7 REtry PAr@mMEIEISooviiviciieieieceeceee ettt ettt ettt ettt et r e aaennas 319
32.8 REtry rule EXamPIESocvoiiiiiieieieeeeeee ettt ettt neas 319
32.9 Timeout Of retry datacoooiieieieecee e 320
32.10 LoNG-1erm fAllUrESocvoceieeiieeeeeeee ettt ettt 320
32.11 Deliveries that work intermittentlycccoooveiiiiiiie e, 321
33. SMTP authentication ... 322
33.1 Generic options for authentiCatorsccccoieveieiciiiceeeeeeee e 323
33.2 The AUTH parameter on MAIL COMMANASc.occveeeviiiiieieiecieeeceeree e 325
33.3 Authentication 0n an EXim SEIrVEIccooviiiiiieeeeeeeee s 325
33.4 Testing server authentiCationcccocveviiiiiiciiiicceeee e 326
33.5 Authentication by an EXim client ..., 327
34. The plaintext authenticator ... 328
34.1 PlainteXt OPLIONS ...ocueiiiiiciiceee ettt neas 328
34.2 UsiNg PlainteXt iN @ SEIVETocuveieiiieceee ettt 328
34.3 The PLAIN authentication mechaniSmcccccooieieiiiiiicieeececeeeeee e, 328
34.4 The LOGIN authentication mechanismccoceveiiiiiicicieieeeeeeeeeeee e 329
34.5 Support for different kinds of authenticationcccooeveieiiiiiicce 330

viii

34.6 Using plaintext in @ CIENTcvoiiieeee e 330

35. The cram_md5 authenticatorcoooeiiiiieeeeeeeeeeeeee e 332
35.1 USINg Cram_mdS5 AS @ SEIVENoovieuieeieiiieeieeeeieete ettt eve st rs s v snennas 332
35.2 Using cram_md5 as @ ClIENTcoooviiiiieie e 332

36. The cyrus_sasl authenticatorcccooi i 334
36.1 USING CYrUS_SASI @S @ SEIVENooviiiiieieie ettt et neas 334

37. The dovecot authenticator ... 336

38. The gsasl authenticator ..o 337
38.1 gsasl auth VariAbIESooviiiiieieecceee ettt 338

39. The heimdal_gssapi authenticator ..., 339
39.1 heimdal_gssapi auth variablesccccooioiiiiiiiiiceceeeeeee e 339

40. The spa aUtRENtiCatoOrocoeiiie e 340
40.1 USING SPA @S @ SEIVEL ...ovieeieiieteeeieie ettt ettt ettt s e s reessesbesteeteessessesreessessesseessensas 340
40.2 USING SPA AS A CHIENT ...ttt 340

41. The tls @UthentiCator ... 342

42. Encrypted SMTP connections using TLS/SSL ..o, 343
42.1 Support for the “submissions” (aka “ssmtp” and “smtps”) protocol 343
42.2 OPENSSL VS GNUTLS ..ottt e 343
42.3 GnuTLS parameter CoOMPULAtioNccooveiiiiiiiicieeceeeee e 344
42.4 Requiring specific ciphers in OPenSSLcooooveieiiicieceeeeeeee e 345
42.5 Requiring specific ciphers or other parameters in GnuTLSc.ccocoveiiiiieienennn. 346
42.6 Configuring an Exim server to use TLS ... 347
42.7 Requesting and verifying client certificatesccooooveviiieiciie, 348
42.8 Revoked CErtifiCaeSc.ooiiiiiieeeee ettt 349
42.9 Configuring an Exim clientto use TLS ..o 350
42.10 Use of TLS Server Name INdicationcccoceeveieiiiiicieceeeeeeeeeeeee e 351
42.11 Multiple messages on the same encrypted TCP/IP connectioncccccocuvueee. 352
42.12 Certificates and all thatccoooiiiiiiiiceeee e 352
42.13 Certificate ChaINScocooiiiieecee e 352
42.14 Self-signed CertifiCatescoooviiiiiiiiicieeeeceeeeee e 353
4215 DANE ..ottt a e sene e ne 353

43. ACCeSS CONEIOI lISTS ... 357
43.1 TESHNG ACLS ..ottt b ettt s e aeeaeaas 357
43.2 Specifying When ACLS are USEAc.covceeuieiieiiiceeeeteeeeee e 357
43.3 The NON-SMTP ACLS ..ottt 358
43.4 The SMTP CONNECE ACLovieiieeeeeeee e 358
43.5 The EHLO/HELQO ACL ..ottt 358
43.6 THE DATA ACLS ...ttt ne e 358
43.7 The SMTP DKIM ACL ...oooiiieieeeeeete e 359
43.8 The SMTP MIME ACLooiiieeeeeeeee e 359
43.9 The SMTP PRDR ACL ..ottt 359
43.10 The QUIT ACL ..ottt s es s ne 359

43.11 The NOT-QUIT ACL ..ot 360

43.12 FINdING @N ACL 10 USE ...ocvivieieeeeeeceeeteeeeeee ettt aas 360
43.13 ACL retUrN COUESovoiiieiiieiiieieteeet ettt s s e 361
43.14 UNSEt ACL OPLIONS ...ooviiiiieceeete ettt et eae s 361
43.15 Data for MesSage ACLSovoieiiieeeeeeeee ettt 362
43.16 Data for NoN-mMesSage ACLScooiiiieeeeeeeeeeee et 362
43.17 FOrmat Of @n ACL ..c.oooeiieeieeeee et 362
4318 ACL VEIDS ..ottt eb e s s e 363
43.19 ACL VANI@DIES ..ottt 364
43.20 Condition and Modifier ProCeSSINGc.ccveeeuivieieieieeeeeeeee et 365
43.21 ACL MOIfIEIS ...ttt ss e e 366
43.22 Use of the control MOIfIErccooiiiiiieeee s 370
43.23 Summary of message fiXup CONrOlccooueviiieieiciecceeeeeee e 374
43.24 Adding header NS iN ACLScoouiiiieeeeeeeceeeeee e 374
43.25 Removing header IN€S iN ACLSccooveieieiieeeeeeeeee e 375
43.26 ACL CONAILIONSoveiiieiiieiieeeeee ettt s e 376
43.27 USING DNS SIS ..ottt et 380
43.28 Specifying the IP address for a DNS list I0OKUPcceeveieiiiiiiieceeeceee 381
43.29 DNS lists keyed on domain NAMEScceevirveieuieeieiicieeeeeeeete e 381
43.30 Multiple explicit keys for @ DNS Stccccoveiiiiiiiieiceeeeeeeeeeee e 382
43.31 Data returned by DNS lIStSccociiiiiiiiicieiecee e 383
43.32 Variables set from DNS lIStScccceirieiiieieeeeee e 383
43.33 Additional matching conditions for DNS listSccooevveieiiiiiceeeceee 383
43.34 Negated DNS matching conditionsccccoeveeieieiiiiiicieeeeeeeeeeee e 384
43.35 Handling multiple DNS records from a DNS listccccooveiiiiiieeceeeee 384
43.36 Detailed information from merged DNS listscccoooveveieiiiiieceeee 385
43.37 DNS lists @nd IPVBccooiieiiiiiieeeee et 386
43.38 Rate limiting iNCOMING MESSAQGESocvevvierieiieieieeieetere ettt ettt 386
43.39 Ratelimit options for what is being measuredcccoooeveeeeieeecieniceceeee, 387
43.40 Ratelimit Update MOUGESc.cceeieiiiecieeete ettt neas 388
43.41 Ratelimit options for handling fast clientscccooeoiiieiieiiieee, 388
43.42 Limiting the rate of different eventscccoeviicici e, 389
43.43 UsiNg rate lMItING ...c.oceeieeiiiieieee ettt ettt 389
43.44 Address VErIfICAtIONcccoviieieieieee e 390
43.45 Callout VEIFICATION ...ocveviieeiieiieeee e 391
43.46 Additional parameters for CalloUtSccooieieviiiiiiieecce e 392
43.47 Callout CAChINGocvoieeciiceeeee et 394
43.48 Sender address verification reportingcceevevveiiieieicieeeeeeeeee e 395
43.49 Redirection While VEYING ...ccoociiiiiiieieeee e 395
43.50 Client SMTP authorization (CSA)c.ov e 395
43.51 Bounce address tag validationccccooieieiiiiieiciececee e 396
43.52 Using an ACL to control relayingcc.cceeeeieieeicieieiecieeceeeee e 397
43.53 Checking a relay configurationccccooieiiiieiciciceeeceeeeeeee e 398
44. Content scanning at ACL timec.ooooiiioiieeeee e 399
44.1 SCANNING fOF VIFUSESoevitieiieeeeeteeteteeee ettt ettt et eaeaas 399
44.2 Scanning with SpamAssassin and RSpamdccccoeevveieiiiieciceeeeeeeee e 404
44.3 Calling SpamAssassin from an EXim ACLc.ccooveiiiiiiieeceeeeeeee 405
44.4 Scanning MIME PartSccooiiiiioiieeeceeee ettt 406
44.5 Scanning with regular EXPreSSIONScc.cvcieuieieiceeeeteceeeeeee e 409
45. Adding a local scan function to EXimccccoooiiiiiiicc, 410
45.1 Building Exim to use a local scan functionccocceeivieieviiicicceececeeeeene, 410
45.2 APLFOr I0CAI_SCAN() .ovicvieeieiiiieteeiete ettt ettt ettt bbb teesa b reenneneas 410
45.3 Configuration options for 10cal_SCaN()c.cceeeeveiieieieiiceeeeeeeeeee e 411
45.4 Available EXim variables ..o 413

45.5 StruCtUIre Of NEAEY TINES ..o e e e s eeeseeeeeeeenns 414

45.6 Structure of reCipient IHEMScooiiiiiieee s 414
45.7 Available EXim fUNCHONSc.ocieieiccee et 415
45.8 More about Exim’s memory handlingc.cccocveviieieieniiieeee ettt 419
46. System-wide message filteringccooooiiiiiiice s 420
46.1 Specifying @ SYStem filterc.cveiiiiieeeee e 420
46.2 Testing @ SYSIEM LI ..oeeoeeieeeeee s 420
46.3 Contents of @ SyStem filtercooiiiiieeeeeeee e 420
46.4 Additional variable for system filterscoooveviiiieiccee e, 421
46.5 Defer, freeze, and fail commands for system filters ..o, 421
46.6 Adding and removing headers in a system filter.........ccccoovevveviiiiecncee, 422
46.7 Setting an errors address in a system filter ..o 422
46.8 Per-address filtErNG ..o ittt 423
47. MESSAQE PFOCESSING ...coovivieeiiiieiieiete ettt ettt ettt e s teeteesesseeteessesbesseessessesreessensas 424
47.1 Submission mode for Non-local MESSAQEScccvevievieieieieieeeeeeeee e 424
7.2 LINE BNAINGS ..ooviiieiietiieeetetet ettt ettt ettt ettt e b e s beessessesbeereessessesreessessesseessensas 425
47.3 UNQUAlified @AArESSESoooviviciieeieiecieceeteete ettt sttt e re et re e reesaeneas 425
47.4 The UUCP From lINE ...c.ooiouiiiieeeeeeeeeeeee ettt 426
47.5 Resent- NEAUEN lINEScoooiiiieieeeeee ettt 426
47.6 The Auto-Submitted: header liNec.ccooieiiieiiiceeeeeeeeee e 427
47.7 The BCC: NEAAEI lINE ..ottt ettt neas 427
47.8 The Date: Neader NGcviiioeieieecee ettt 427
47.9 The Delivery-date: header liNEccovevioiiiiiiiicceeeeeee e 427
47.10 The Envelope-to: header lINE ...t 427
4711 The From: header liNEcooioiiiiiiceeee ettt 427
47.12 The Message-ID: header lINE ..o 428
47.13 The Received: header liNEc.oovioiieieiiiceceeceee et 428
47.14 The References: header liNE ..o 428
47.15 The Return-path: header lINE ... 428
47.16 The Sender: header lINEcc.cooiiiiiiceeeeeeee e 428
47.17 Adding and removing header lines in routers and transportscccocevevveennenne. 429
47.18 CoNnStructed adArESSEScocuiieieieieiieieetee et 430
47.19 Case Of I0CAI PAIScvcuiiiiiiieeceeeeeee ettt 431
47.20 DOtS iN [OCAI PAIS ..c.vovieieiieiicteeee ettt ettt b e et ss et ers s beeanennas 431
47.21 ReWNHING QAAIESSESceooiiiiieeeieieeteeteeete ettt ettt ettt ssebe s teess s e reesnennas 431
48. SIMTP PrOCESSINGocooviiiiiiiiiiitetee ettt ettt ettt te et sb e b e s eseeaessessesseseerens 432
48.1 Outgoing SMTP and LMTP over TCP/IPc.coiviieeieeeeeeeeeee e 432
48.2 Errors in outgoing SMTP ..o 433
48.3 Incoming SMTP messages over TCP/IP ... 434
48.4 Unrecognized SMTP COMMANScc.coveieiiiiiiiicieeeteceeee e 436
48.5 Syntax and protocol errors in SMTP commandscccccveveivieeieiceeeceeeee 436
48.6 Use of non-mail SMTP cOmMmMaNASc.ccoeieviiiiiiieicieceeeeeeeeeee e 436
48.7 The VRFY and EXPN COMMANGSccooovioiiiiieiiiicieceeeeeeteete et 436
48.8 The ETRN COMMANGc.ooiiiiiieieieeteceee ettt ettt ettt r e ennas 436
48.9 INCoMING 10CAI SMTPoviiiieee e 437
48.10 Outgoing batChed SMTPc.ooiiiieeee s 437
48.11 Incoming batChed SMTPcooioiiieeee e 438
49. Customizing bounce and warning MeSSAQesccoeveveieieieceeieieeeeeee e 439
49.1 Customizing DOUNCE MESSAQESc.cceeveuveieeiitiieeeeeeetee ettt 439
49.2 Customizing Warning MESSAUESccecveeeueerieriiieieieeteeteetee ettt st et es et sse s e esenas 440

50. Some common configuration settingsccocooooiiiiiic, 441

50.1 Sending mail to @ SMart NOStocooiiiiieee e 441
50.2 Using Exim to handle mailing liStSccooveieviioicieececeeeeeeeee s 441
50.3 Syntax errors in Mailing SISc.cvoiiiiiiieeeeeeeeee e 441
50.4 Re-expansion of Mailing lISISccooeeiiiiiieeeee s 442
50.5 Closed Mailing lISTScovouiiiioeiieeeeeeeeeee et 442
50.6 Variable Envelope Return Paths (VERP)cooiiieieeeeeeeceeeeee s 443
50.7 Virtual dOMAINSoouiiiieieeeeee ettt sttt eee s 444
50.8 Multiple USEr MaIDOXEScovieviiiiiiceceeeeee ettt s e ennens 445
50.9 Simplified vacation ProCeSSINGcovvieiiieieieiiceeeeeeteeteetee et 446
50.10 Taking copies Of Mailc.ccieuiriiiiieieeceeeeeee ettt st 446
50.11 Intermittently connected NOSESccoeviiiieieiieeee s 446
50.12 Exim on the upstream SEerver NOStc.ooveiiiiiiciececeeeee s 446
50.13 Exim on the intermittently connected client hostccooviiieiiiniice, 447
51. Using Exim as a non-queueing clientc.ccooieviiiiicecieeeeeeeee e 448
B2, LOGTIIES ..ottt raenns 450
52.1 Where the [0gs are WIttEINcovioviiieieeeeeeeeeee ettt 450
52.2 Logging to local files that are periodically “cycled”cccooiiiiieviniiieieeeeeeen, 451
52.3 Datestamped 10Q filE€S ..o 451
52.4 LOQQING 10 SYSIOQ . evouiiiieiieiecie ettt ettt b e s reereennens 452
B52.5 LOG lINE fIAGS ..viovieeieiecteeee ettt ettt ettt sb e sreereennens 453
52.6 LogQging MESSAJE rECEPLIONooviiiciieeieiecteeteete ettt a bbb ereennens 453
52.7 LOQQING AEIIVEIIES ...c.vivieieeieiecteeeteeee ettt ettt ettt b et a b re s b e sbeereennens 454
52.8 DisCarded deIIVEIIESciviiiieeieeeee ettt 455
52.9 Deferred deIIVEIIES ..ottt 455
52.10 DElVEIY fAIUIEScviieeieeeeeceeeetee ettt b ettt b et sbesbeereennens 455
52.11 FaKE AEIVEIIESoovieeeeeee ettt 456
52.12 COMPIBLION .ottt ettt ettt a s aeeneas 456
52.13 Summary of Fields in LOg LINESccoieieiiieeeceeeeeeeeeeeee e 456
52.14 Other 10g ENIHESocvovieeeeieeeeeeeee ettt ettt a e eaeas 457
52.15 Reducing or increasing what is 10ggedccooovieieieiieieeeeeeeeeeeeeee s 457
B52.16 MESSAQE 100 ...ovieeiiiicieeteeete ettt ettt et ettt ra bt et enbesbeereennens 462
B53. EXimM UBIIHIES ..ottt 463
53.1 Finding out what Exim processes are doing (exiwhat)c.cccccceveviiieceniceeienn, 463
53.2 Selective queue listing (EXIQQIEP) ...cooeeveieieiereeteeeeeteeteeeee ettt 463
53.3 Summarizing the queue (EXIQSUMMY)c.covoiiiiiiieeeeeteeeeee et 464
53.4 Extracting specific information from the log (EXIgrep)ccccevvevieeeieveieeieieceeeens 465
53.5 Selecting messages by various criteria (eXipiCK)ccvevvevieiiiiicieeeeeeeee, 465
53.6 Cycling 10g files (EXICYCIOQ) ...cvooveieeierieiiieeeeeeteeee et 466
53.7 Mail statistics (EXIMSIALS) ..ocvieviiiiiceeee e 466
53.8 Checking access policy (exim_CheCKaCCeSS)cccvivvivieieieiciicieeeeeeeeeee s 467
53.9 Making DBM files (exim_dbmbuild)c.ccceviiiiiieiiieeecee e, 467
53.10 Finding individual retry times (EXINEXL)ccccevieieieiiciceeeeeeeee e 468
53.11 Hints database MaintenancCe ..o 468
53.12 eXiM_AUMPAD ..ottt ettt nb e reereennens 469
53,13 @XIM_tIAYAD .o 469
L T I o3 T Do | o TR 470
53.15 Mailbox maintenance (€XIM_IOCK)ccocieieviiiiicieieieceeeet et 470
54. The EXiM MONITOLccoooiiii ettt 472

Xii

54.1 RUNNING the MONITOT ..c..oceiiiiiiceeeeeee ettt ennens 472

54.2 The SIPCNAIS ..ottt a et et sbesbeereennens 472
54.3 Main aCtion DUTIONSc.oouiiiiiiiiieee et 473
54.4 THe 10g QISPIAYoooveiiirieiieiiciecteeeeee ettt ettt te bbb ssesbesbeereennens 473
54.5 The QUEUE AISPIAYcoveeeieiiiicieceeteceet ettt ettt v et sa b sbeereennens 474
54.6 THE QUEUE MENU ..ceviviiiiciieiiiiecteeeeeteete ettt ettt et sb e beeteesse b e besssessesbeeseennens 474
55. Security considerations ..o 477
55.1 Building a more “hardened” EXIM ...t 477
55.2 ROO PrIVIIEGE ..ottt ettt a bt sa b sbeereennens 477
55.3 Running EXim WithOUt PriVIIEGEcveeviiiieieee et 479
55.4 Delivering 10 [0CAl fIl€Scvioviieieiiiieeeeee ettt 480
55.5 Running 10Cal COMMANASceoviiieiieiieiecieeteieete ettt r et besbeereennens 480
55.6 Trustin configuration datacoeeeiiiiiieicce s 480
55.7 1PV4 SOUICE FOULING ..oooviceieiiiiicieceeteeeet ettt ettt ettt b et ss b e sbeereennens 481
55.8 The VRFY, EXPN, and ETRN commands in SMTPc.ooooeeeeeeeeeeeeeeeeeeeeeeeeee 481
B55.9 PrIVIIEGEA USEIS ..oeoiiiiiceieeeecteeeee ettt ettt ettt ettt b e b e ss b e sbeereennens 481
B55.10 SPOOIFIlES ..ttt ettt 481
B55.11 USE OF @rgV[0] .oeeeeeeiieiieiieteeie ettt ettt et a b be s sbesbeereennens 482
55.12 Use Of %f fOrmattingccooovioiiiiieeeeeeee e 482
55.13 Embedded EXimM Path ..ottt 482
55.14 Dynamic module AIrECIONYccoovieieiiieiceee ettt 482
55.15 USE OF SPINIF() eeevveriiieeieiece ettt b e sb e e ennens 482
55.16 Use of debug_printf() and 10g_WHEE() ...cceeveeiiiieieieieeeeeeeeeeee e, 482
55.17 Use of strcat() and StrCPY() .ooveeveerieieieicieeeeee ettt 482
56. Format of SPOOIfileScooiiiiie s 483
56.1 FOrmat of the -H filec..oeee e 483
56.2 FOrmat of the -D fil@c.eoeeieeee e 487
57. DKIM @NA SPF ...ttt sttt es e s sens 488
57.1 DKIM (DomainKeys Identified Malil)coooveviiniiiieiiiceceeeeeeeeeeeeeee e 488
57.2 Signing outgoiNg MESSAJEScveoveuieuiiiiieiieeeeteeteteee ettt ettt ea b eeaeas 488
57.3 Verifying DKIM signatures in incoming mailcccoeiiieieviinicieieeceeeeieeeeeeens 491
57.4 SPF (Sender Policy Framework)ccocvoioiiioiiieieieeeeeeeeee e 494
B8. PrOXIES ..ottt ettt ettt eneeaen 497
58.1 INDOUNG PrOXIES ..oovvieiiiiceieiete ettt ettt ettt b e et a b beessesbesbeeseennens 497
58.2 OUDOUNG PrOXIESoviuvieieeieiitiieieteete ettt ettt ettt et s b seeve s e s sneseeneas 497
B58.3 LOGGING -ttt ettt ettt ettt ettt ettt et ettt b e beereesb e b e reerae b e reersenbesbeereennans 498
59. InternationaliSation ... 499
59.1 MTA OPEIAtIONS ...ooeveeiiieceeeee ettt ettt ettt b et e te b b teessesbesbeeseennens 499
59.2 MDA OPEIALIONS ...eoiniiiiciieete ettt ettt ettt b e te b b reessesbesbeereennens 499
B0. EVENTS ..ottt ettt sttt ne et 501
61. Adding new drivers or IOOKUP tYPESccoovioieiiiiceeeeeee e 503
OPLIONS INAGX ...ttt ettt et b bt et eeae s e s e e eaeerens 504
Variables INA@Xoo ottt st 511

Concept index

Xty

1. Introduction

Exim is a mail transfer agent (MTA) for hosts that are running Unix or Unix-like operating systems. It
was designed on the assumption that it would be run on hosts that are permanently connected to the
Internet. However, it can be used on intermittently connected hosts with suitable configuration
adjustments.

Configuration files currently exist for the following operating systems: AIX, BSD/OS (aka BSDI),
Darwin (Mac OS X), DGUX, Dragonfly, FreeBSD, GNU/Hurd, GNU/Linux, HI-OSF (Hitachi), HI-
UX, HP-UX, IRIX, MIPS RISCOS, NetBSD, OpenBSD, OpenUNIX, QNX, SCO, SCO SVR4.2 (aka
UNIX-SV), Solaris (aka SunOS5), SunOS4, Tru64-Unix (formerly Digital UNIX, formerly DEC-
OSF1), Ultrix, and UnixWare. Some of these operating systems are no longer current and cannot
easily be tested, so the configuration files may no longer work in practice.

There are also configuration files for compiling Exim in the Cygwin environment that can be installed
on systems running Windows. However, this document does not contain any information about run-
ning Exim in the Cygwin environment.

The terms and conditions for the use and distribution of Exim are contained in the file NOTICE. Exim
is distributed under the terms of the GNU General Public Licence, a copy of which may be found in
the file LICENCE.

The use, supply, or promotion of Exim for the purpose of sending bulk, unsolicited electronic mail is
incompatible with the basic aims of Exim, which revolve around the free provision of a service that
enhances the quality of personal communications. The author of Exim regards indiscriminate mass-
mailing as an antisocial, irresponsible abuse of the Internet.

Exim owes a great deal to Smail 3 and its author, Ron Karr. Without the experience of running and
working on the Smail 3 code, I could never have contemplated starting to write a new MTA. Many of
the ideas and user interfaces were originally taken from Smail 3, though the actual code of Exim is
entirely new, and has developed far beyond the initial concept.

Many people, both in Cambridge and around the world, have contributed to the development and the
testing of Exim, and to porting it to various operating systems. I am grateful to them all. The
distribution now contains a file called ACKNOWLEDGMENTS, in which I have started recording the
names of contributors.

1.1 Exim documentation

This edition of the Exim specification applies to version 4.92.1 of Exim. Substantive changes from the
491 edition are marked in some renditions of this document; this paragraph is so marked if the
rendition is capable of showing a change indicator.

This document is very much a reference manual; it is not a tutorial. The reader is expected to have
some familiarity with the SMTP mail transfer protocol and with general Unix system administration.
Although there are some discussions and examples in places, the information is mostly organized in a
way that makes it easy to look up, rather than in a natural order for sequential reading. Furthermore,
this manual aims to cover every aspect of Exim in detail, including a number of rarely-used, special-
purpose features that are unlikely to be of very wide interest.

An “easier” discussion of Exim which provides more in-depth explanatory, introductory, and tutorial
material can be found in a book entitled The Exim SMTP Mail Server (second edition, 2007), pub-
lished by UIT Cambridge (https://www.uit.co.uk/exim-book/).

The book also contains a chapter that gives a general introduction to SMTP and Internet mail.
Inevitably, however, the book is unlikely to be fully up-to-date with the latest release of Exim. (Note
that the earlier book about Exim, published by O’Reilly, covers Exim 3, and many things have
changed in Exim 4.)

If you are using a Debian distribution of Exim, you will find information about Debian-specific
features in the file /usr/share/doc/exim4-base/README.Debian. The command man update-exim.conf
is another source of Debian-specific information.

1 Introduction (1)

As Exim develops, there may be features in newer versions that have not yet made it into this
document, which is updated only when the most significant digit of the fractional part of the version
number changes. Specifications of new features that are not yet in this manual are placed in the file
doc/NewStuff in the Exim distribution.

Some features may be classified as “experimental”. These may change incompatibly while they are
developing, or even be withdrawn. For this reason, they are not documented in this manual.
Information about experimental features can be found in the file doc/experimental.txt.

All changes to Exim (whether new features, bug fixes, or other kinds of change) are noted briefly in
the file called doc/ChangeLog.

This specification itself is available as an ASCII file in doc/spec.txt so that it can easily be searched
with a text editor. Other files in the doc directory are:

OptionLists.txt list of all options in alphabetical order
dbm.discuss.txt discussion about DBM libraries

exim.8 a man page of Exim’s command line options
experimental.txt documentation of experimental features
filtertxt specification of the filter language
Exim3.upgrade upgrade notes from release 2 to release 3
Exim4.upgrade upgrade notes from release 3 to release 4
openssl.txt installing a current OpenSSL release

The main specification and the specification of the filtering language are also available in other
formats (HTML, PostScript, PDF, and Texinfo). Sectionbelow tells you how to get hold of these.

1.2 FTP site and websites

The primary site for Exim source distributions is the exim.org FTP site, available over HTTPS, HTTP
and FTP. These services, and the exim.org website, are hosted at the University of Cambridge.

As well as Exim distribution tar files, the Exim website contains a number of differently formatted
versions of the documentation. A recent addition to the online information is the Exim wiki
(https://wiki.exim.org), which contains what used to be a separate FAQ, as well as various other
examples, tips, and know-how that have been contributed by Exim users. The wiki site should always
redirect to the correct place, which is currently provided by GitHub, and is open to editing by anyone
with a GitHub account.

An Exim Bugzilla exists at https://bugs.exim.org. You can use this to report bugs, and also to add
items to the wish list. Please search first to check that you are not duplicating a previous entry. Please
do not ask for configuration help in the bug-tracker.

1.3 Mailing lists

The following Exim mailing lists exist:

exim-announce @ exim.org Moderated, low volume announcements list
exim-users @exim.org General discussion list

exim-dev @ exim.org Discussion of bugs, enhancements, etc.
exim-cvs @exim.org Automated commit messages from the VCS

You can subscribe to these lists, change your existing subscriptions, and view or search the archives
via the mailing lists link on the Exim home page. If you are using a Debian distribution of Exim, you
may wish to subscribe to the Debian-specific mailing list pkg-exim4-users @lists.alioth.debian.org via
this web page:

https://alioth-lists.debian.net/cgi-bin/mailman/listinfo/pkg-exim4-users

Please ask Debian-specific questions on that list and not on the general Exim lists.

2 Introduction (1)

1.4 Bug reports

Reports of obvious bugs can be emailed to bugs@exim.org or reported via the Bugzilla
(https://bugs.exim.org). However, if you are unsure whether some behaviour is a bug or not, the best
thing to do is to post a message to the exim-dev mailing list and have it discussed.

1.5 Where to find the Exim distribution
The master distribution site for the Exim distribution is
https://downloads.exim.org/
The service is available over HTTPS, HTTP and FTP. We encourage people to migrate to HTTPS.

The content served at https://downloads.exim.org/ is identical to the content served at
https://ftp.exim.org/pub/exim and ftp://ftp.exim.org/pub/exim.

If accessing via a hostname containing ftp, then the file references that follow are relative to the exim
directories at these sites. If accessing via the hostname downloads then the subdirectories described
here are top-level directories.

There are now quite a number of independent mirror sites around the world. Those that I know about
are listed in the file called Mirrors.

Within the top exim directory there are subdirectories called exim3 (for previous Exim 3 distri-
butions), exim4 (for the latest Exim 4 distributions), and Testing for testing versions. In the exim4
subdirectory, the current release can always be found in files called

exim-n.nn.tar.xz
exim-n.nn.tar.gz
exim-n.nn.tar.bz2

where n.nn is the highest such version number in the directory. The three files contain identical data;
the only difference is the type of compression. The .xz file is usually the smallest, while the .gz file is
the most portable to old systems.

The distributions will be PGP signed by an individual key of the Release Coordinator. This key will
have a uid containing an email address in the exim.org domain and will have signatures from other
people, including other Exim maintainers. We expect that the key will be in the "strong set" of PGP
keys. There should be a trust path to that key from the Exim Maintainer’s PGP keys, a version of
which can be found in the release directory in the file Exim-Maintainers-Keyring.asc. All keys used
will be available in public keyserver pools, such as pool.sks-keyservers.net.

At the time of the last update, releases were being made by Jeremy Harris and signed with key
OxBCE58C8CE41F32DF. Other recent keys used for signing are those of Heiko Schlittermann,
0x26101B62F69376CE, and of Phil Pennock, 0x4D1E900E14C1CCO4.

The signatures for the tar bundles are in:

exim-n.nn.tar.xz7.asc
exim-n.nn.tar.gz.asc
exim-n.nn.tar.bz2.asc

For each released version, the log of changes is made available in a separate file in the directory
ChangeLogs so that it is possible to find out what has changed without having to download the entire
distribution.

The main distribution contains ASCII versions of this specification and other documentation; other
formats of the documents are available in separate files inside the exim4 directory of the FTP site:

exim-html-n.nn.tar.gz
exim-pdf-n.nn.tar.gz
exim-postscript-n.nn.tar.gz
exim-texinfo-n.nn.tar.gz

3 Introduction (1)

These tar files contain only the doc directory, not the complete distribution, and are also available in
.bz2 and .xz forms.

1.6 Limitations

* Exim is designed for use as an Internet MTA, and therefore handles addresses in RFC 2822 domain
format only. It cannot handle UUCP “bang paths”, though simple two-component bang paths can
be converted by a straightforward rewriting configuration. This restriction does not prevent Exim
from being interfaced to UUCP as a transport mechanism, provided that domain addresses are
used.

* Exim insists that every address it handles has a domain attached. For incoming local messages,
domainless addresses are automatically qualified with a configured domain value. Configuration
options specify from which remote systems unqualified addresses are acceptable. These are then
qualified on arrival.

* The only external transport mechanisms that are currently implemented are SMTP and LMTP over
a TCP/IP network (including support for IPv6). However, a pipe transport is available, and there
are facilities for writing messages to files and pipes, optionally in batched SMTP format; these
facilities can be used to send messages to other transport mechanisms such as UUCP, provided they
can handle domain-style addresses. Batched SMTP input is also catered for.

* Exim is not designed for storing mail for dial-in hosts. When the volumes of such mail are large, it
is better to get the messages “delivered” into files (that is, off Exim’s queue) and subsequently
passed on to the dial-in hosts by other means.

* Although Exim does have basic facilities for scanning incoming messages, these are not compre-
hensive enough to do full virus or spam scanning. Such operations are best carried out using
additional specialized software packages. If you compile Exim with the content-scanning exten-
sion, straightforward interfaces to a number of common scanners are provided.

1.7 Runtime configuration

Exim’s runtime configuration is held in a single text file that is divided into a number of sections. The
entries in this file consist of keywords and values, in the style of Smail 3 configuration files. A default
configuration file which is suitable for simple online installations is provided in the distribution, and
is described in chapterbelow.

1.8 Calling interface

Like many MTAs, Exim has adopted the Sendmail command line interface so that it can be a straight
replacement for /usr/lib/sendmail or /usr/sbin/sendmail when sending mail, but you do not need to
know anything about Sendmail in order to run Exim. For actions other than sending messages,
Sendmail-compatible options also exist, but those that produce output (for example, -bp, which lists
the messages in the queue) do so in Exim’s own format. There are also some additional options that
are compatible with Smail 3, and some further options that are new to Exim. Chapterdocuments all
Exim’s command line options. This information is automatically made into the man page that forms
part of the Exim distribution.

Control of messages in the queue can be done via certain privileged command line options. There is
also an optional monitor program called eximon, which displays current information in an X window,
and which contains a menu interface to Exim’s command line administration options.

1.9 Terminology

The body of a message is the actual data that the sender wants to transmit. It is the last part of a
message and is separated from the header (see below) by a blank line.

When a message cannot be delivered, it is normally returned to the sender in a delivery failure
message or a “non-delivery report” (NDR). The term bounce is commonly used for this action, and
the error reports are often called bounce messages. This is a convenient shorthand for “delivery failure

4 Introduction (1)

error report”. Such messages have an empty sender address in the message’s envelope (see below) to
ensure that they cannot themselves give rise to further bounce messages.

The term default appears frequently in this manual. It is used to qualify a value which is used in the
absence of any setting in the configuration. It may also qualify an action which is taken unless a
configuration setting specifies otherwise.

The term defer is used when the delivery of a message to a specific destination cannot immediately
take place for some reason (a remote host may be down, or a user’s local mailbox may be full). Such
deliveries are deferred until a later time.

The word domain is sometimes used to mean all but the first component of a host’s name. It is not
used in that sense here, where it normally refers to the part of an email address following the @ sign.

A message in transit has an associated envelope, as well as a header and a body. The envelope
contains a sender address (to which bounce messages should be delivered), and any number of
recipient addresses. References to the sender or the recipients of a message usually mean the
addresses in the envelope. An MTA uses these addresses for delivery, and for returning bounce
messages, not the addresses that appear in the header lines.

The header of a message is the first part of a message’s text, consisting of a number of lines, each of
which has a name such as From:, To:, Subject:, etc. Long header lines can be split over several text
lines by indenting the continuations. The header is separated from the body by a blank line.

The term local part, which is taken from RFC 2822, is used to refer to the part of an email address
that precedes the @ sign. The part that follows the @ sign is called the domain or mail domain.

The terms local delivery and remote delivery are used to distinguish delivery to a file or a pipe on the
local host from delivery by SMTP over TCP/IP to another host. As far as Exim is concerned, all hosts
other than the host it is running on are remote.

Return path is another name that is used for the sender address in a message’s envelope.

The term queue is used to refer to the set of messages awaiting delivery because this term is in
widespread use in the context of MTAs. However, in Exim’s case, the reality is more like a pool than
a queue, because there is normally no ordering of waiting messages.

The term queue runner is used to describe a process that scans the queue and attempts to deliver those
messages whose retry times have come. This term is used by other MTAs and also relates to the
command rungq, but in Exim the waiting messages are normally processed in an unpredictable order.

The term spool directory is used for a directory in which Exim keeps the messages in its queue — that
is, those that it is in the process of delivering. This should not be confused with the directory in which
local mailboxes are stored, which is called a “spool directory” by some people. In the Exim documen-
tation, “spool” is always used in the first sense.

5 Introduction (1)

2. Incorporated code

A number of pieces of external code are included in the Exim distribution.

* Regular expressions are supported in the main Exim program and in the Exim monitor using the
freely-distributable PCRE library, copyright © University of Cambridge. The source to PCRE is no
longer shipped with Exim, so you will need to use the version of PCRE shipped with your system,
or obtain and install the full version of the library from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre.

* Support for the cdb (Constant DataBase) lookup method is provided by code contributed by Nigel
Metheringham of (at the time he contributed it) Planet Online Ltd. The implementation is com-
pletely contained within the code of Exim. It does not link against an external cdb library. The code
contains the following statements:

Copyright © 1998 Nigel Metheringham, Planet Online Ltd

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version. This code implements
Dan Bernstein’s Constant DataBase (cdb) spec. Information, the spec and sample code
for cdb can be obtained from https://cr.yp.to/cdb.html. This implementation borrows
some code from Dan Bernstein’s implementation (which has no license restrictions
applied to it).

* Client support for Microsoft’s Secure Password Authentication is provided by code contributed by
Marc Prud’hommeaux. Server support was contributed by Tom Kistner. This includes code taken
from the Samba project, which is released under the Gnu GPL.

* Support for calling the Cyrus pwcheck and saslauthd daemons is provided by code taken from the
Cyrus-SASL library and adapted by Alexander S. Sabourenkov. The permission notice appears
below, in accordance with the conditions expressed therein.

Copyright © 2001 Carnegie Mellon University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

(3) The name “Carnegie Mellon University” must not be used to endorse or promote
products derived from this software without prior written permission. For per-
mission or any other legal details, please contact

Office of Technology Transfer
Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213-3890

(412) 268-4387, fax: (412) 268-7395
tech-transfer @ andrew.cmu.edu

(4) Redistributions of any form whatsoever must retain the following
acknowledgment:

“This product includes software developed by Computing Services at Carnegie
Mellon University (https://www.cmu.edu/computing/.”

CARNEGIE MELLON UNIVERSITY DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES

6 Incorporated code (2)

OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL CARNEGIE
MELLON UNIVERSITY BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

* The Exim Monitor program, which is an X-Window application, includes modified versions of the
Athena StripChart and TextPop widgets. This code is copyright by DEC and MIT, and their
permission notice appears below, in accordance with the conditions expressed therein.

Copyright 1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and
the Massachusetts Institute of Technology, Cambridge, Massachusetts.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation, and that the names of Digital or MIT not be used in
advertising or publicity pertaining to distribution of the software without specific, writ-
ten prior permission.

DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE
LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
OR PERFORMANCE OF THIS SOFTWARE.

* The DMARC implementation uses the OpenDMARC library which is Copyrighted by The Trusted
Domain Project. Portions of Exim source which use OpenDMARC derived code are indicated in
the respective source files. The full OpenDMARC license is provided in the LICENSE.opendmarc
file contained in the distributed source code.

* Many people have contributed code fragments, some large, some small, that were not covered by

any specific license requirements. It is assumed that the contributors are happy to see their code
incorporated into Exim under the GPL.

7 Incorporated code (2)

3. How Exim receives and delivers mail

3.1 Overall philosophy

Exim is designed to work efficiently on systems that are permanently connected to the Internet and
are handling a general mix of mail. In such circumstances, most messages can be delivered immedi-
ately. Consequently, Exim does not maintain independent queues of messages for specific domains or
hosts, though it does try to send several messages in a single SMTP connection after a host has been
down, and it also maintains per-host retry information.

3.2 Policy control

Policy controls are now an important feature of MTAs that are connected to the Internet. Perhaps their
most important job is to stop MTAs from being abused as “open relays” by misguided individuals
who send out vast amounts of unsolicited junk and want to disguise its source. Exim provides flexible
facilities for specifying policy controls on incoming mail:

* Exim 4 (unlike previous versions of Exim) implements policy controls on incoming mail by means
of Access Control Lists (ACLs). Each list is a series of statements that may either grant or deny
access. ACLs can be used at several places in the SMTP dialogue while receiving a message from a
remote host. However, the most common places are after each RCPT command, and at the very
end of the message. The sysadmin can specify conditions for accepting or_rejecting individual
recipients or the entire message, respectively, at these two points (see chapter . Denial of access
results in an SMTP error code.

* An ACL is also available for locally generated, non-SMTP messages. In this case, the only avail-
able actions are to accept or deny the entire message.

* When Exim is compiled with the content-scanning extension, facilities are provided in the ACL
mechanism for passing the message to external virus and/or spam scanning software. The result of
such a scan is passed back to the ACL, which can then use it to decide what to do with the
message.

* When a message has been received, either from a remote host or from the local host, but before the
final acknowledgment has been sent, a locally supplied C function called local scan() can be run to
inspect the message and decide whether to accept it or not (see chapter . If the message is
accepted, the list of recipients can be modified by the function.

» Using the local_scan() mechanism is another way of calling external scanner software. The SA-
Exim add-on package works this way. It does not require Exim to be compiled with the content-
scanning extension.

* After a message has been accepted, a further checking mechanism is available in the form of the
system filter (see chapter @ This runs at the start of every delivery process.

3.3 User filters

In a conventional Exim configuration, users are able to run private filters by setting up appropriate
Jforward files in their home directories. See chapter (about the redirect router) for the configuration
needed to support this, and the separate document entitled Exim’s interfaces to mail filtering for user
details. Two different kinds of filtering are available:

» Sieve filters are written in the standard filtering language that is defined by RFC 3028.

» Exim filters are written in a syntax that is unique to Exim, but which is more powerful than Sieve,
which it pre-dates.

User filters are run as part of the routing process, described below.

8 Receiving and delivering mail (3)

3.4 Message identification

Every message handled by Exim is given a message id which is sixteen characters long. It is divided
into three parts, separated by hyphens, for example 16vVDhn-0001bo-D3. Each part is a sequence
of letters and digits, normally encoding numbers in base 62. However, in the Darwin operating system
(Mac OS X) and when Exim is compiled to run under Cygwin, base 36 (avoiding the use of lower
case letters) is used instead, because the message id is used to construct filenames, and the names of
files in those systems are not always case-sensitive.

The detail of the contents of the message id have changed as Exim has evolved. Earlier versions relied
on the operating system not re-using a process id (pid) within one second. On modern operating
systems, this assumption can no longer be made, so the algorithm had to be changed. To retain
backward compatibility, the format of the message id was retained, which is why the following rules
are somewhat eccentric:

» The first six characters of the message id are the time at which the message started to be received,
to a granularity of one second. That is, this field contains the number of seconds since the start of
the epoch (the normal Unix way of representing the date and time of day).

» After the first hyphen, the next six characters are the id of the process that received the message.
» There are two different possibilities for the final two characters:

(1) If localhost_number is not set, this value is the fractional part of the time of reception,
normally in units of 1/2000 of a second, but for systems that must use base 36 instead of base
62 (because of case-insensitive file systems), the units are 1/1000 of a second.

(2) If localhost_number is set, it is multiplied by 200 (100) and added to the fractional part of
the time, which in this case is in units of 1/200 (1/100) of a second.

After a message has been received, Exim waits for the clock to tick at the appropriate resolution
before proceeding, so that if another message is received by the same process, or by another process
with the same (re-used) pid, it is guaranteed that the time will be different. In most cases, the clock
will already have ticked while the message was being received.

3.5 Receiving mail

The only way Exim can receive mail from another host is using SMTP over TCP/IP, in which case the
sender and recipient addresses are transferred using SMTP commands. However, from a locally
running process (such as a user’s MUA), there are several possibilities:

* If the process runs Exim with the -bm option, the message is read non-interactively (usually via a
pipe), with the recipients taken from the command line, or from the body of the message if -t is
also used.

 If the process runs Exim with the -bS option, the message is also read non-interactively, but in this
case the recipients are listed at the start of the message in a series of SMTP RCPT commands,
terminated by a DATA command. This is called “batch SMTP” format, but it isn’t really SMTP.
The SMTP commands are just another way of passing envelope addresses in a non-interactive
submission.

» If the process runs Exim with the -bs option, the message is read interactively, using the SMTP
protocol. A two-way pipe is normally used for passing data between the local process and the Exim
process. This is “real” SMTP and is handled in the same way as SMTP over TCP/IP. For example,
the ACLs for SMTP commands are used for this form of submission.

* A local process may also make a TCP/IP call to the host’s loopback address (127.0.0.1) or any
other of its IP addresses. When receiving messages, Exim does not treat the loopback address
specially. It treats all such connections in the same way as connections from other hosts.

In the three cases that do not involve TCP/IP, the sender address is constructed from the login name of
the user that called Exim and a default qualification domain (which can be set by the qualify_domain
configuration option). For local or batch SMTP, a sender address that is passed using the SMTP
MAIL command is ignored. However, the system administrator may allow certain users (“trusted

9 Receiving and delivering mail (3)

users”) to specify a different sender addresses unconditionally, or all users to specify certain forms of
different sender address. The -f option or the SMTP MAIL command is used to specify these different
addresses. See section for details of trusted users, and the untrusted_set_sender option for a way
of allowing untrusted users to change sender addresses.

Messages received by either of the non-interactive mechanisms are subject to checking by the non-
SMTP ACL if one is defined. Messages received using SMTP (either over TCP/IP or interacting with
a local process) can be checked by a number of ACLs that operate at different times during the SMTP
session. Either individual recipients or the entire message can be rejected if local policy requirements
are not met. The local_scan() function (see Chapter is run for all incoming messages.

Exim can be configured not to start a delivery process when a message is received; this can be
unconditional, or depend on the number of incoming SMTP connections or the system load. In these
situations, new messages wait on the queue until a queue runner process picks them up. However, in
standard configurations under normal conditions, delivery is started as soon as a message is received.

3.6 Handling an incoming message

When Exim accepts a message, it writes two files in its spool directory. The first contains the envelope
information, the current status of the message, and the header lines, and the second contains the body
of the message. The names of the two spool files consist of the message id, followed by —H for the file
containing the envelope and header, and —D for the data file.

By default, all these message files are held in a single directory called input inside the general Exim
spool directory. Some operating systems do not perform very well if the number of files in a directory
gets large; to improve performance in such cases, the split_spool_directory option can be used. This
causes Exim to split up the input files into 62 sub-directories whose names are single letters or digits.
When this is done, the queue is processed one sub-directory at a time instead of all at once, which can
improve overall performance even when there are not enough files in each directory to affect file
system performance.

The envelope information consists of the address of the message’s sender and the addresses of the
recipients. This information is entirely separate from any addresses contained in the header lines. The
status of the message includes a list of recipients who have already received the message. The format
of the first spool file is described in chapter]EI

Address rewriting that is specified in the rewrite section of the configuration (see chapter is done
once and for all on incoming addresses, both in the header lines and the envelope, at the time the
message is accepted. If during the course of delivery additional addresses are generated (for example,
via aliasing), these new addresses are rewritten as soon as they are generated. At the time a message is
actually delivered (transported) further rewriting can take place; because this is a transport option, it
can be different for different forms of delivery. It is also possible to specify the addition or removal of
certain header lines at the time the message is delivered (see chapters and.

3.7 Life of a message

A message remains in the spool directory until it is completely delivered to its recipients or to an error
address, or until it is deleted by an administrator or by the user who originally created it. In cases
when delivery cannot proceed — for example when a message can neither be delivered to its recipients
nor returned to its sender, the message is marked “frozen” on the spool, and no more deliveries are
attempted.

An administrator can “thaw” such messages when the problem has been corrected, and can also
freeze individual messages by hand if necessary. In addition, an administrator can force a delivery
error, causing a bounce message to be sent.

There are options called ignore_bounce_errors_after and timeout_frozen_after, which discard
frozen messages after a certain time. The first applies only to frozen bounces, the second to all frozen
messages.

While Exim is working on a message, it writes information about each delivery attempt to its main
log file. This includes successful, unsuccessful, and delayed deliveries for each recipient (see chapter

10 Receiving and delivering mail (3)

52). The log lines are also written to a separate message log file for each message. These logs are
solely for the benefit of the administrator and are normally deleted along with the spool files when
processing of a message is complete. The use of individual message logs can be disabled by setting
no_message_logs; this might give an improvement in performance on very busy systems.

All the information Exim itself needs to set up a delivery is kept in the first spool file, along with the
header lines. When a successful delivery occurs, the address is immediately written at the end of a
journal file, whose name is the message id followed by —J. At the end of a delivery run, if there are
some addresses left to be tried again later, the first spool file (the —H file) is updated to indicate which
these are, and the journal file is then deleted. Updating the spool file is done by writing a new file and
renaming it, to minimize the possibility of data loss.

Should the system or Exim crash after a successful delivery but before the spool file has been
updated, the journal is left lying around. The next time Exim attempts to deliver the message, it reads
the journal file and updates the spool file before proceeding. This minimizes the chances of double
deliveries caused by crashes.

3.8 Processing an address for delivery

The main delivery processing elements of Exim are called routers and transports, and collectively
these are known as drivers. Code for a number of them is provided in the source distribution, and
compile-time options specify which ones are included in the binary. Runtime options specify which
ones are actually used for delivering messages.

Each driver that is specified in the runtime configuration is an instance of that particular driver type.
Multiple instances are allowed; for example, you can set up several different smitp transports, each
with different option values that might specify different ports or different timeouts. Each instance has
its own identifying name. In what follows we will normally use the instance name when discussing
one particular instance (that is, one specific configuration of the driver), and the generic driver name
when discussing the driver’s features in general.

A router is a driver that operates on an address, either determining how its delivery should happen, by
assigning it to a specific transport, or converting the address into one or more new addresses (for
example, via an alias file). A router may also explicitly choose to fail an address, causing it to be
bounced.

A transport is a driver that transmits a copy of the message from Exim’s spool to some destination.
There are two kinds of transport: for a local transport, the destination is a file or a pipe on the local
host, whereas for a remote transport the destination is some other host. A message is passed to a
specific transport as a result of successful routing. If a message has several recipients, it may be
passed to a number of different transports.

An address is processed by passing it to each configured router instance in turn, subject to certain
preconditions, until a router accepts the address or specifies that it should be bounced. We will
describe this process in more detail shortly. First, as a simple example, we consider how each recipi-
ent address in a message is processed in a small configuration of three routers.

To make this a more concrete example, it is described in terms of some actual routers, but remember,
this is only an example. You can configure Exim’s routers in many different ways, and there may be
any number of routers in a configuration.

The first router that is specified in a configuration is often one that handles addresses in domains that
are not recognized specifically by the local host. Typically these are addresses for arbitrary domains
on the Internet. A precondition is set up which looks for the special domains known to the host (for
example, its own domain name), and the router is run for addresses that do not match. Typically, this
is a router that looks up domains in the DNS in order to find the hosts to which this address routes. If
it succeeds, the address is assigned to a suitable SMTP transport; if it does not succeed, the router is
configured to fail the address.

The second router is reached only when the domain is recognized as one that “belongs” to the local
host. This router does redirection — also known as aliasing and forwarding. When it generates one or
more new addresses from the original, each of them is routed independently from the start. Otherwise,

11 Receiving and delivering mail (3)

the router may cause an address to fail, or it may simply decline to handle the address, in which case
the address is passed to the next router.

The final router in many configurations is one that checks to see if the address belongs to a local
mailbox. The precondition may involve a check to see if the local part is the name of a login account,
or it may look up the local part in a file or a database. If its preconditions are not met, or if the router
declines, we have reached the end of the routers. When this happens, the address is bounced.

3.9 Processing an address for verification

As well as being used to decide how to deliver to an address, Exim’s routers are also used for address
verification. Verification can be requested as one of the checks to be performed in an ACL for
incoming messages, on both sender and recipient addresses, and it can be tested using the -bv and
-bvs command line options.

When an address is being verified, the routers are run in “verify mode”. This does not affect the way
the routers work, but it is a state that can be detected. By this means, a router can be skipped or made
to behave differently when verifying. A common example is a configuration in which the first router
sends all messages to a message-scanning program unless they have been previously scanned. Thus,
the first router accepts all addresses without any checking, making it useless for verifying. Normally,
the no_verify option would be set for such a router, causing it to be skipped in verify mode.

3.10 Running an individual router

As explained in the example above, a number of preconditions are checked before running a router. If
any are not met, the router is skipped, and the address is passed to the next router. When all the
preconditions on a router are met, the router is run. What happens next depends on the outcome,
which is one of the following:

* accept: The router accepts the address, and either assigns it to a transport or generates one or more
“child” addresses. Processing the original address ceases unless the unseen option is set on the
router. This option can be used to set up multiple deliveries with different routing (for example, for
keeping archive copies of messages). When unseen is set, the address is passed to the next router.
Normally, however, an accept return marks the end of routing.

Any child addresses generated by the router are processed independently, starting with the first
router by default. It is possible to change this by setting the redirect_router option to specify
which router to start at for child addresses. Unlike pass_router (see below) the router specified by
redirect_router may be anywhere in the router configuration.

* pass: The router recognizes the address, but cannot handle it itself. It requests that the address be
passed to another router. By default, the address is passed to the next router, but this can be
changed by setting the pass_router option. However, (unlike redirect_router) the named router
must be below the current router (to avoid loops).

* decline: The router declines to accept the address because it does not recognize it at all. By default,
the address is passed to the next router, but this can be prevented by setting the no_more option.
When no_more is set, all the remaining routers are skipped. In effect, no_more converts decline
into fail.

* fail: The router determines that the address should fail, and queues it for the generation of a bounce
message. There is no further processing of the original address unless unseen is set on the router.

* defer: The router cannot handle the address at the present time. (A database may be offline, or a
DNS lookup may have timed out.) No further processing of the address happens in this delivery
attempt. It is tried again next time the message is considered for delivery.

» error: There is some error in the router (for example, a syntax error in its configuration). The action
is as for defer.

If an address reaches the end of the routers without having been accepted by any of them, it is
bounced as unrouteable. The default error message in this situation is “unrouteable address”, but you

12 Receiving and delivering mail (3)

can set your own message by making use of the cannot_route_message option. This can be set for
any router; the value from the last router that “saw’ the address is used.

Sometimes while routing you want to fail a delivery when some conditions are met but others are not,
instead of passing the address on for further routing. You can do this by having a second router that
explicitly fails the delivery when the relevant conditions are met. The redirect router has a “fail”
facility for this purpose.

3.11 Duplicate addresses

Once routing is complete, Exim scans the addresses that are assigned to local and remote transports
and discards any duplicates that it finds. During this check, local parts are treated case-sensitively.
This happens only when actually delivering a message; when testing routers with -bt, all the routed
addresses are shown.

3.12 Router preconditions

The preconditions that are tested for each router are listed below, in the order in which they are tested.
The individual configuration options are described in more detail in chapter

* The local_part_prefix and local_part_suffix options can specify that the local parts handled by
the router may or must have certain prefixes and/or suffixes. If a mandatory affix (prefix or suffix)
is not present, the router is skipped. These conditions are tested first. When an affix is present, it
is removed from the local part before further processing, including the evaluation of any other
conditions.

* Routers can be designated for use only when not verifying an address, that is, only when routing it
for delivery (or testing its delivery routing). If the verify option is set false, the router is skipped
when Exim is verifying an address. Setting the verify option actually sets two options, verify_
sender and verify_recipient, which independently control the use of the router for sender and
recipient verification. You can set these options directly if you want a router to be used for only one
type of verification. Note that cutthrough delivery is classed as a recipient verification for this
purpose.

» If the address_test option is set false, the router is skipped when Exim is run with the -bt option to
test an address routing. This can be helpful when the first router sends all new messages to a
scanner of some sort; it makes it possible to use -bt to test subsequent delivery routing without
having to simulate the effect of the scanner.

* Routers can be designated for use only when verifying an address, as opposed to routing it for
delivery. The verify_only option controls this. Again, cutthrough delivery counts as a verification.

* Individual routers can be explicitly skipped when running the routers to check an address given in
the SMTP EXPN command (see the expn option).

 If the domains option is set, the domain of the address must be in the set of domains that it defines.

 If the local_parts option is set, the local part of the address must be in the set of local parts that it
defines. If local_part_prefix or local_part_suffix is in use, the prefix or suffix is removed from the
local part before this check. If you want to do precondition tests on local parts that include affixes,
you can do so by using a condition option (see below) that uses the variables $local_part, $local_
part_prefix, and $local_part_suffix as necessary.

» If the check_local_user option is set, the local part must be the name of an account on the local
host. If this check succeeds, the uid and gid of the local user are placed in $local_user_uid and
Slocal_user_gid and the user’s home directory is placed in $home; these values can be used in the
remaining preconditions.

» If the router_home_directory option is set, it is expanded at this point, because it overrides the
value of $home. If this expansion were left till later, the value of $home as set by check_local_user
would be used in subsequent tests. Having two different values of $home in the same router could
lead to confusion.

13 Receiving and delivering mail (3)

If the senders option is set, the envelope sender address must be in the set of addresses that it
defines.

If the require_files option is set, the existence or non-existence of specified files is tested.

If the condition option is set, it is evaluated and tested. This option uses an expanded string to
allow you to set up your own custom preconditions. Expanded strings are described in chapter

Note that require_files comes near the end of the list, so you cannot use it to check for the existence
of a file in which to lookup up a domain, local part, or sender. However, as these options are all
expanded, you can use the exists expansion condition to make such tests within each condition. The
require_files option is intended for checking files that the router may be going to use internally, or
which are needed by a specific transport (for example, .procmailrc).

3.13 Delivery in detail

When a message is to be delivered, the sequence of events is as follows:

If a system-wide filter file is specified, the message is passed to it. The filter may add recipients to
the message, replace the recipients, discard the message, cause a new message to be generated, or
cause the message delivery to fail. The format of the system filter file is the same as for Exim user
filter files, described in the separate document entitled Exim’s interfaces to mail filtering. (Note:
Sieve cannot be used for system filter files.)

Some additional features are available in system filters — see chapter @ for details. Note that a
message is passed to the system filter only once per delivery attempt, however many recipients it
has. However, if there are several delivery attempts because one or more addresses could not be
immediately delivered, the system filter is run each time. The filter condition first_delivery can be
used to detect the first run of the system filter.

Each recipient address is offered to each configured router, in turn, subject to its preconditions,
until one is able to handle it. If no router can handle the address, that is, if they all decline, the
address is failed. Because routers can be targeted at particular domains, several locally handled
domains can be processed entirely independently of each other.

A router that accepts an address may assign it to a local or a remote transport. However, the
transport is not run at this time. Instead, the address is placed on a list for the particular transport,
which will be run later. Alternatively, the router may generate one or more new addresses (typically
from alias, forward, or filter files). New addresses are fed back into this process from the top, but in
order to avoid loops, a router ignores any address which has an identically-named ancestor that was
processed by itself.

When all the routing has been done, addresses that have been successfully handled are passed to
their assigned transports. When local transports are doing real local deliveries, they handle only
one address at a time, but if a local transport is being used as a pseudo-remote transport (for
example, to collect batched SMTP messages for transmission by some other means) multiple
addresses can be handled. Remote transports can always handle more than one address at a time,
but can be configured not to do so, or to restrict multiple addresses to the same domain.

Each local delivery to a file or a pipe runs in a separate process under a non-privileged uid, and
these deliveries are run one at a time. Remote deliveries also run in separate processes, normally
under a uid that is private to Exim (“the Exim user”), but in this case, several remote deliveries can
be run in parallel. The maximum number of simultaneous remote deliveries for any one message is
set by the remote_max_parallel option. The order in which deliveries are done is not defined,
except that all local deliveries happen before any remote deliveries.

When it encounters a local delivery during a queue run, Exim checks its retry database to see if
there has been a previous temporary delivery failure for the address before running the local
transport. If there was a previous failure, Exim does not attempt a new delivery until the retry time
for the address is reached. However, this happens only for delivery attempts that are part of a queue
run. Local deliveries are always attempted when delivery immediately follows message reception,
even if retry times are set for them. This makes for better behaviour if one particular message is
causing problems (for example, causing quota overflow, or provoking an error in a filter file).

14 Receiving and delivering mail (3)

* Remote transports do their own retry handling, since an address may be deliverable to one of a
number of hosts, each of which may have a different retry time. If there have been previous
temporary failures and no host has reached its retry time, no delivery is attempted, whether in a
queue run or not. See chapter for details of retry strategies.

» If there were any permanent errors, a bounce message is returned to an appropriate address (the
sender in the common case), with details of the error for each failing address. Exim can be
configured to send copies of bounce messages to other addresses.

* If one or more addresses suffered a temporary failure, the message is left on the queue, to be tried
again later. Delivery of these addresses is said to be deferred.

* When all the recipient addresses have either been delivered or bounced, handling of the message is
complete. The spool files and message log are deleted, though the message log can optionally be
preserved if required.

3.14 Retry mechanism

Exim’s mechanism for retrying messages that fail to get delivered at the first attempt is the queue
runner process. You must either run an Exim daemon that uses the -q option with a time interval to
start queue runners at regular intervals or use some other means (such as cron) to start them. If you do
not arrange for queue runners to be run, messages that fail temporarily at the first attempt will remain
in your queue forever. A queue runner process works its way through the queue, one message at a
time, trying each delivery that has passed its retry time. You can run several queue runners at once.

Exim uses a set of configured rules to determine when next to retry the failing address (see chapter
. These rules also specify when Exim should give up trying to deliver to the address, at which
point it generates a bounce message. If no retry rules are set for a particular host, address, and error
combination, no retries are attempted, and temporary errors are treated as permanent.

3.15 Temporary delivery failure

There are many reasons why a message may not be immediately deliverable to a particular address.
Failure to connect to a remote machine (because it, or the connection to it, is down) is one of the most
common. Temporary failures may be detected during routing as well as during the transport stage of
delivery. Local deliveries may be delayed if NFS files are unavailable, or if a mailbox is on a file
system where the user is over quota. Exim can be configured to impose its own quotas on local
mailboxes; where system quotas are set they will also apply.

If a host is unreachable for a period of time, a number of messages may be waiting for it by the time it
recovers, and sending them in a single SMTP connection is clearly beneficial. Whenever a delivery to
a remote host is deferred, Exim makes a note in its hints database, and whenever a successful SMTP
delivery has happened, it looks to see if any other messages are waiting for the same host. If any are
found, they are sent over the same SMTP connection, subject to a configuration limit as to the
maximum number in any one connection.

3.16 Permanent delivery failure

When a message cannot be delivered to some or all of its intended recipients, a bounce message is
generated. Temporary delivery failures turn into permanent errors when their timeout expires. All the
addresses that fail in a given delivery attempt are listed in a single message. If the original message
has many recipients, it is possible for some addresses to fail in one delivery attempt and others to fail
subsequently, giving rise to more than one bounce message. The wording of bounce messages can be
customized by the administrator. See chapter@lfor details.

Bounce messages contain an X-Failed-Recipients: header line that lists the failed addresses, for the
benefit of programs that try to analyse such messages automatically.

A bounce message is normally sent to the sender of the original message, as obtained from the
message’s envelope. For incoming SMTP messages, this is the address given in the MAIL command.
However, when an address is expanded via a forward or alias file, an alternative address can be

15 Receiving and delivering mail (3)

specified for delivery failures of the generated addresses. For a mailing list expansion (see section
i it is common to direct bounce messages to the manager of the list.

3.17 Failures to deliver bounce messages

If a bounce message (either locally generated or received from a remote host) itself suffers a perma-
nent delivery failure, the message is left in the queue, but it is frozen, awaiting the attention of an
administrator. There are options that can be used to make Exim discard such failed messages, or to
keep them for only a short time (see timeout_frozen_after and ignore_bounce_errors_after).

16 Receiving and delivering mail (3)

4. Building and installing Exim

4.1 Unpacking

Exim is distributed as a gzipped or bzipped tar file which, when unpacked, creates a directory with the
name of the current release (for example, exim-4.92.1) into which the following files are placed:

ACKNOWLEDGMENTS contains some acknowledgments

CHANGES contains a reference to where changes are documented
LICENCE the GNU General Public Licence

Makefile top-level make file

NOTICE conditions for the use of Exim

README list of files, directories and simple build instructions

Other files whose names begin with README may also be present. The following subdirectories are
created:

Local an empty directory for local configuration files
(0N OS-specific files

doc documentation files

exim_monitor source files for the Exim monitor

scripts scripts used in the build process

src remaining source files

util independent utilities

The main utility programs are contained in the src directory and are built with the Exim binary. The
util directory contains a few optional scripts that may be useful to some sites.

4.2 Multiple machine architectures and operating systems

The building process for Exim is arranged to make it easy to build binaries for a number of different
architectures and operating systems from the same set of source files. Compilation does not take place
in the src directory. Instead, a build directory is created for each architecture and operating system.
Symbolic links to the sources are installed in this directory, which is where the actual building takes
place. In most cases, Exim can discover the machine architecture and operating system for itself, but
the defaults can be overridden if necessary. A C99-capable compiler will be required for the build.

4.3 PCRE library

Exim no longer has an embedded PCRE library as the vast majority of modern systems include PCRE
as a system library, although you may need to install the PCRE package or the PCRE development
package for your operating system. If your system has a normal PCRE installation the Exim build
process will need no further configuration. If the library or the headers are in an unusual location
you will need to either set the PCRE_LIBS and INCLUDE directives appropriately, or set PCRE_
CONFIG=yes to use the installed pcre-config command. If your operating system has no PCRE
support then you will need to obtain and build the current PCRE from
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/. More information on PCRE is available
at https://www.pcre.org/.

4.4 DBM libraries

Even if you do not use any DBM files in your configuration, Exim still needs a DBM library in order
to operate, because it uses indexed files for its hints databases. Unfortunately, there are a number of
DBM libraries in existence, and different operating systems often have different ones installed.

If you are using Solaris, IRIX, one of the modern BSD systems, or a modern Linux distribution, the
DBM configuration should happen automatically, and you may be able to ignore this section.
Otherwise, you may have to learn more than you would like about DBM libraries from what follows.

Licensed versions of Unix normally contain a library of DBM functions operating via the ndbm
interface, and this is what Exim expects by default. Free versions of Unix seem to vary in what they

17 Building and installing Exim (4)

contain as standard. In particular, some early versions of Linux have no default DBM library, and
different distributors have chosen to bundle different libraries with their packaged versions. However,
the more recent releases seem to have standardized on the Berkeley DB library.

Different DBM libraries have different conventions for naming the files they use. When a program
opens a file called dbmfile, there are several possibilities:

(1) A traditional ndbm implementation, such as that supplied as part of Solaris, operates on two files
called dbmfile.dir and dbmfile.pag.

(2) The GNU library, gdbm, operates on a single file. If used via its ndbm compatibility interface it
makes two different hard links to it with names dbmfile.dir and dbmfile.pag, but if used via its
native interface, the filename is used unmodified.

(3) The Berkeley DB package, if called via its ndbm compatibility interface, operates on a single file
called dbmfile.db, but otherwise looks to the programmer exactly the same as the traditional
ndbm implementation.

(4) If the Berkeley package is used in its native mode, it operates on a single file called dbmfile; the
programmer’s interface is somewhat different to the traditional ndbm interface.

(5) To complicate things further, there are several very different versions of the Berkeley DB pack-
age. Version 1.85 was stable for a very long time, releases 2.x and 3.x were current for a while,
but the latest versions when Exim last revamped support were numbered 4.x. Maintenance of
some of the earlier releases has ceased. All versions of Berkeley DB could be obtained from
http://www.sleepycat.com/, which is now a redirect to their new owner’s page with far newer
versions listed. It is probably wise to plan to move your storage configurations away from
Berkeley DB format, as today there are smaller and simpler alternatives more suited to Exim’s
usage model.

(6) Yet another DBM library, called tdb, is available from
https://sourceforge.net/projects/tdb/files/. It has its own interface, and also operates on a
single file.

Exim and its utilities can be compiled to use any of these interfaces. In order to use any version of the
Berkeley DB package in native mode, you must set USE_DB in an appropriate configuration file
(typically Local/Makefile). For example:

USE_DB=yes

Similarly, for gdbm you set USE_GDBM, and for tdb you set USE_TDB. An error is diagnosed if
you set more than one of these.

At the lowest level, the build-time configuration sets none of these options, thereby assuming an
interface of type (1). However, some operating system configuration files (for example, those for the
BSD operating systems and Linux) assume type (4) by setting USE_DB as their default, and the
configuration files for Cygwin set USE_GDBM. Anything you set in Local/Makefile, however, over-
rides these system defaults.

As well as setting USE_DB, USE_GDBM, or USE_TDB, it may also be necessary to set DBMLIB,
to cause inclusion of the appropriate library, as in one of these lines:

DBMLIB = -1db
DBMLIB = -1tdb

Settings like that will work if the DBM library is installed in the standard place. Sometimes it is not,
and the library’s header file may also not be in the default path. You may need to set INCLUDE to
specify where the header file is, and to specify the path to the library more fully in DBMLIB, as in
this example:

INCLUDE=-I/usr/local/include/db-4.1
DBMLIB=/usr/local/lib/db-4.1/1libdb.a

There is further detailed discussion about the various DBM libraries in the file doc/dbm.discuss.txt in
the Exim distribution.

18 Building and installing Exim (4)

4.5 Pre-building configuration

Before building Exim, a local configuration file that specifies options independent of any operating
system has to be created with the name Local/Makefile. A template for this file is supplied as the file
sre/EDITME, and it contains full descriptions of all the option settings therein. These descriptions are
therefore not repeated here. If you are building Exim for the first time, the simplest thing to do is to
copy src/EDITME to Local/Makefile, then read it and edit it appropriately.

There are three settings that you must supply, because Exim will not build without them. They are the
location of the runtime configuration file (CONFIGURE_FILE), the directory in which Exim binaries
will be installed (BIN_DIRECTORY), and the identity of the Exim user (EXIM_USER and maybe
EXIM_GROUP as well). The value of CONFIGURE_FILE can in fact be a colon-separated list of
filenames; Exim uses the first of them that exists.

There are a few other parameters that can be specified either at build time or at runtime, to enable the
same binary to be used on a number of different machines. However, if the locations of Exim’s spool
directory and log file directory (if not within the spool directory) are fixed, it is recommended that
you specify them in Local/Makefile instead of at runtime, so that errors detected early in Exim’s
execution (such as a malformed configuration file) can be logged.

Exim’s interfaces for calling virus and spam scanning software directly from access control lists are
not compiled by default. If you want to include these facilities, you need to set

WITH_CONTENT_SCAN=yes
in your Local/Makefile. For details of the facilities themselves, see chapter

If you are going to build the Exim monitor, a similar configuration process is required. The file
exim_monitor/EDITME must be edited appropriately for your installation and saved under the name
Local/eximon.conf. If you are happy with the default settings described in exim_monitor/EDITME,
Local/eximon.conf can be empty, but it must exist.

This is all the configuration that is needed in straightforward cases for known operating systems.
However, the building process is set up so that it is easy to override options that are set by default
or by operating-system-specific configuration files, for example, to change the C compiler, which
defaults to gee. See sectionbelow for details of how to do this.

4.6 Support for iconv()

The contents of header lines in messages may be encoded according to the rules described RFC 2047.
This makes it possible to transmit characters that are not in the ASCII character set, and to label them
as being in a particular character set. When Exim is inspecting header lines by means of the $h_
mechanism, it decodes them, and translates them into a specified character set (default is set at build
time). The translation is possible only if the operating system supports the iconv() function.

However, some of the operating systems that supply iconv() do not support very many conversions.
The GNU libiconv library (available from https://www.gnu.org/software/libiconv/) can be installed
on such systems to remedy this deficiency, as well as on systems that do not supply iconv() at all.
After installing libiconv, you should add

HAVE_TICONV=yes
to your Local/Makefile and rebuild Exim.

4.7 Including TLS/SSL encryption support

Exim can be built to support encrypted SMTP connections, using the STARTTLS command as per
RFC 2487. It can also support legacy clients that expect to start a TLS session immediately on
connection to a non-standard port (see the tls_on_connect_ports runtime option and the -tls-on-
connect command line option).

If you want to build Exim with TLS support, you must first install either the OpenSSL or GnuTLS
library. There is no cryptographic code in Exim itself for implementing SSL.

19 Building and installing Exim (4)

If OpenSSL is installed, you should set

SUPPORT_TLS=yes
TLS_LIBS=-1ssl —-lcrypto

in Local/Makefile. You may also need to specify the locations of the OpenSSL library and include
files. For example:

SUPPORT_TLS=yes
TLS_LIBS=-L/usr/local/openssl/lib -1lssl -lcrypto
TLS_INCLUDE=-I/usr/local/openssl/include/

If you have pkg-config available, then instead you can just use:

SUPPORT_TLS=yes
USE_OPENSSL_PC=openssl

If GnuTLS is installed, you should set

SUPPORT_TLS=yes
USE_GNUTLS=yes
TLS_LIBS=-1lgnutls —-ltasnl -lgcrypt

in Local/Makefile, and again you may need to specify the locations of the library and include files. For
example:

SUPPORT_TLS=yes

USE_GNUTLS=yes

TLS_LIBS=-L/usr/gnu/lib -lgnutls -ltasnl -lgcrypt
TLS_INCLUDE=-I/usr/gnu/include

If you have pkg-config available, then instead you can just use:

SUPPORT_TLS=yes
USE_GNUTLS=yes
USE_GNUTLS_PC=gnutls

You do not need to set TLS_INCLUDE if the relevant directory is already specified in INCLUDE.
Details of how to configure Exim to make use of TLS are given in chapter @I

4.8 Use of tcpwrappers

Exim can be linked with the tcpwrappers library in order to check incoming SMTP calls using the
tcpwrappers control files. This may be a convenient alternative to Exim’s own checking facilities for
installations that are already making use of tcpwrappers for other purposes. To do this, you should set
USE_TCP_WRAPPERS in Local/Makefile, arrange for the file tcpd.h to be available at compile time,
and also ensure that the library libwrap.a is available at link time, typically by including -lwrap in
EXTRALIBS_EXIM. For example, if fcpwrappers is installed in /usr/local, you might have

USE_TCP_WRAPPERS=yes
CFLAGS=-0 -I/usr/local/include
EXTRALIBS_EXIM=-L/usr/local/lib —-lwrap

in Local/Makefile. The daemon name to use in the tcpwrappers control files is “exim”. For example,
the line

exim : LOCAL 192.168.1. .friendly.domain.example

in your /etc/hosts.allow file allows connections from the local host, from the subnet 192.168.1.0/24,
and from all hosts in friendly.domain.example. All other connections are denied. The daemon name
used by fcpwrappers can be changed at build time by setting TCP_WRAPPERS_DAEMON_NAME
in Local/Makefile, or by setting tcp_wrappers_daemon_name in the configure file. Consult the
tcpwrappers documentation for further details.

20 Building and installing Exim (4)

4.9 Including support for IPv6

Exim contains code for use on systems that have IPv6 support. Setting HAVE_IPV6=YES in
Local/Makefile causes the IPv6 code to be included; it may also be necessary to set [IPV6_INCLUDE
and IPV6_LIBS on systems where the IPv6 support is not fully integrated into the normal include and
library files.

Two different types of DNS record for handling IPv6 addresses have been defined. AAAA records
(analogous to A records for IPv4) are in use, and are currently seen as the mainstream. Another record
type called A6 was proposed as better than AAAA because it had more flexibility. However, it was
felt to be over-complex, and its status was reduced to “experimental”. Exim used to have a compile
option for including A6 record support but this has now been withdrawn.

4.10 Dynamically loaded lookup module support

On some platforms, Exim supports not compiling all lookup types directly into the main binary,
instead putting some into external modules which can be loaded on demand. This permits packagers
to build Exim with support for lookups with extensive library dependencies without requiring all
users to install all of those dependencies. Most, but not all, lookup types can be built this way.

Set LOOKUP_MODULE_DIR to the directory into which the modules will be installed; Exim will only
load modules from that directory, as a security measure. You will need to set CFLAGS_DYNAMIC if
not already defined for your OS; see OS/Makefile-Linux for an example. Some other requirements for
adjusting EXTRALIBS may also be necessary, see sre/EDITME for details.

Then, for each module to be loaded dynamically, define the relevant LOOKUP_ <lookup_type> flags to
have the value "2" instead of "yes". For example, this will build in Isearch but load sqlite and mysql
support on demand:

LOOKUP_LSEARCH=yes
LOOKUP_SQLITE=2
LOOKUP_MYSQL=2

4.11 The building process

Once Local/Makefile (and Local/eximon.conf, if required) have been created, run make at the top
level. It determines the architecture and operating system types, and creates a build directory if one
does not exist. For example, on a Sun system running Solaris 8, the directory build-SunOS5-5.8-sparc
is created. Symbolic links to relevant source files are installed in the build directory.

If this is the first time make has been run, it calls a script that builds a make file inside the build
directory, using the configuration files from the Local directory. The new make file is then passed to
another instance of make. This does the real work, building a number of utility scripts, and then
compiling and linking the binaries for the Exim monitor (if configured), a number of utility programs,
and finally Exim itself. The command make makefile can be used to force a rebuild of the make
file in the build directory, should this ever be necessary.

If you have problems building Exim, check for any comments there may be in the README file
concerning your operating system, and also take a look at the FAQ, where some common problems
are covered.

4.12 Output from “make”

The output produced by the make process for compile lines is often very unreadable, because these
lines can be very long. For this reason, the normal output is suppressed by default, and instead output
similar to that which appears when compiling the 2.6 Linux kernel is generated: just a short line for
each module that is being compiled or linked. However, it is still possible to get the full output, by
calling make like this:

FULLECHO="'"' make -e

21 Building and installing Exim (4)

The value of FULLECHO defaults to “@”, the flag character that suppresses command reflection in
make. When you ask for the full output, it is given in addition to the short output.

4.13 Overriding build-time options for Exim

The main make file that is created at the beginning of the building process consists of the concat-
enation of a number of files which set configuration values, followed by a fixed set of make instruc-
tions. If a value is set more than once, the last setting overrides any previous ones. This provides a
convenient way of overriding defaults. The files that are concatenated are, in order:

OS/Makefile-Default
OS/Makefile-<ostype>
Local/Makefile
Local/Makefile-<ostype>
Local/Makefile-<archtype>
Local/Makefile-<ostype>-<archtype>
OS/Makefile-Base

where <ostype> is the operating system type and <archtype> is the architecture type. Local/Makefile
is required to exist, and the building process fails if it is absent. The other three Local files are
optional, and are often not needed.

The values used for <ostype> and <archtype> are obtained from scripts called scripts/os-type and
scripts/arch-type respectively. If either of the environment variables EXIM_OSTYPE or EXIM_
ARCHTYPE is set, their values are used, thereby providing a means of forcing particular settings.
Otherwise, the scripts try to get values from the uname command. If this fails, the shell variables
OSTYPE and ARCHTYPE are inspected. A number of ad hoc transformations are then applied, to
produce the standard names that Exim expects. You can run these scripts directly from the shell in
order to find out what values are being used on your system.

OS/Makefile-Default contains comments about the variables that are set therein. Some (but not all) are
mentioned below. If there is something that needs changing, review the contents of this file and the
contents of the make file for your operating system (OS/Makefile-<ostype>) to see what the default
values are.

If you need to change any of the values that are set in OS/Makefile-Default or in OS/Makefile-
<ostype>, or to add any new definitions, you do not need to change the original files. Instead, you
should make the changes by putting the new values in an appropriate Local file. For example, when
building Exim in many releases of the Tru64-Unix (formerly Digital UNIX, formerly DEC-OSF1)
operating system, it is necessary to specify that the C compiler is called cc rather than gcc. Also, the
compiler must be called with the option -std1, to make it recognize some of the features of Standard
C that Exim uses. (Most other compilers recognize Standard C by default.) To do this, you should
create a file called Local/Makefile-OSF I containing the lines

CC=cc
CFLAGS=-stdl

If you are compiling for just one operating system, it may be easier to put these lines directly into
Local/Makefile.

Keeping all your local configuration settings separate from the distributed files makes it easy to
transfer them to new versions of Exim simply by copying the contents of the Local directory.

Exim contains support for doing LDAP, NIS, NIS+, and other kinds of file lookup, but not all systems
have these components installed, so the default is not to include the relevant code in the binary. All
the different kinds of file and database lookup that Exim supports are implemented as separate code
modules which are included only if the relevant compile-time options are set. In the case of LDAP,
NIS, and NIS+, the settings for Local/Makefile are:

LOOKUP_L1DAP=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes

22 Building and installing Exim (4)

and similar settings apply to the other lookup types. They are all listed in src/EDITME. In many cases
the relevant include files and interface libraries need to be installed before compiling Exim. However,
there are some optional lookup types (such as cdb) for which the code is entirely contained within
Exim, and no external include files or libraries are required. When a lookup type is not included in the
binary, attempts to configure Exim to use it cause runtime configuration errors.

Many systems now use a tool called pkg-config to encapsulate information about how to compile
against a library; Exim has some initial support for being able to use pkg-config for lookups and
authenticators. For any given makefile variable which starts LOOKUP_ or AUTH_, you can add a new
variable with the _PC suffix in the name and assign as the value the name of the package to be
queried. The results of querying via the pkg-config command will be added to the appropriate
Makefile variables with += directives, so your version of make will need to support that syntax. For
1nstance:

LOOKUP_SQLITE=yes
LOOKUP_SQLITE_PC=sqglite3
AUTH_GSASL=yes

AUTH_GSASL_PC=libgsasl
AUTH_HEIMDAL_GSSAPI=yes
AUTH_HEIMDAL_GSSAPI_PC=heimdal-gssapi

Exim can be linked with an embedded Perl interpreter, allowing Perl subroutines to be called during
string expansion. To enable this facility,

EXIM PERL=perl.o
must be defined in Local/Makefile. Details of this facility are given in chapter

The location of the X11 libraries is something that varies a lot between operating systems, and there
may be different versions of X11 to cope with. Exim itself makes no use of X11, but if you are
compiling the Exim monitor, the X11 libraries must be available. The following three variables are set
in OS/Makefile-Default:

X11l=/usr/X11R6
XINCLUDE=-IS$(X11l)/include
XLFLAGS=-L$ (X11) /1lib

These are overridden in some of the operating-system configuration files. For example, in
OS/Makefile-SunOS5 there is

X1l=/usr/openwin
XINCLUDE=-IS$(X11l)/include
XLFLAGS=-L$(X11) /1lib -R$(X11)/1lib

If you need to override the default setting for your operating system, place a definition of all three of
these variables into your Local/Makefile- <ostype> file.

If you need to add any extra libraries to the link steps, these can be put in a variable called
EXTRALIBS, which appears in all the link commands, but by default is not defined. In contrast,
EXTRALIBS_EXIM is used only on the command for linking the main Exim binary, and not for any
associated utilities.

There is also DBMLIB, which appears in the link commands for binaries that use DBM functions
(see also section . Finally, there is EXTRALIBS_EXIMON, which appears only in the link step
for the Exim monitor binary, and which can be used, for example, to include additional X11 libraries.

The make file copes with rebuilding Exim correctly if any of the configuration files are edited.
However, if an optional configuration file is deleted, it is necessary to touch the associated non-
optional file (that is, Local/Makefile or Local/eximon.conf) before rebuilding.

4.14 OS-specific header files

The OS directory contains a number of files with names of the form os.h-<ostype>. These are
system-specific C header files that should not normally need to be changed. There is a list of macro

23 Building and installing Exim (4)

settings that are recognized in the file OS/os.configuring, which should be consulted if you are porting
Exim to a new operating system.

4.15 Overriding build-time options for the monitor

A similar process is used for overriding things when building the Exim monitor, where the files that
are involved are

OS/eximon.conf-Default
OS/eximon.conf-<ostype>
Local/eximon.conf
Local/eximon.conf-<ostype>
Local/eximon.conf-<archtype>
Local/eximon.conf-<ostype>-<archtype>

As with Exim itself, the final three files need not exist, and in this case the OS/eximon.conf-<ostype>
file is also optional. The default values in OS/eximon.conf-Default can be overridden dynamically by
setting environment variables of the same name, preceded by EXIMON_. For example, setting
EXIMON_LOG_DEPTH in the environment overrides the value of LOG_DEPTH at runtime.

4.16 Installing Exim binaries and scripts

The command make install runs the exim_install script with no arguments. The script copies
binaries and utility scripts into the directory whose name is specified by the BIN_DIRECTORY
setting in Local/Makefile. The install script copies files only if they are newer than the files they are
going to replace. The Exim binary is required to be owned by root and have the setuid bit set, for
normal configurations. Therefore, you must run make install as root so that it can set up the
Exim binary in this way. However, in some special situations (for example, if a host is doing no local
deliveries) it may be possible to run Exim without making the binary setuid root (see chapter |55| for
details).

Exim’s runtime configuration file is named by the CONFIGURE_FILE setting in Local/Makefile. If
this names a single file, and the file does not exist, the default configuration file src/configure.default
is copied there by the installation script. If a runtime configuration file already exists, it is left alone. If
CONFIGURE_FILE is a colon-separated list, naming several alternative files, no default is installed.

One change is made to the default configuration file when it is installed: the default configuration
contains a router that references a system aliases file. The path to this file is set to the value specified
by SYSTEM_ALIASES_FILE in Local/Makefile (/etc/aliases by default). If the system aliases file
does not exist, the installation script creates it, and outputs a comment to the user.

The created file contains no aliases, but it does contain comments about the aliases a site should
normally have. Mail aliases have traditionally been kept in /etc/aliases. However, some operating
systems are now using /etc/mail/aliases. You should check if yours is one of these, and change Exim’s
configuration if necessary.

The default configuration uses the local host’s name as the only local domain, and is set up to do local
deliveries into the shared directory /var/mail, running as the local user. System aliases and .forward
files in users’ home directories are supported, but no NIS or NIS+ support is configured. Domains
other than the name of the local host are routed using the DNS, with delivery over SMTP.

It is possible to install Exim for special purposes (such as building a binary distribution) in a private
part of the file system. You can do this by a command such as

make DESTDIR=/some/directory/ install

This has the effect of pre-pending the specified directory to all the file paths, except the name of the
system aliases file that appears in the default configuration. (If a default alias file is created, its name
is modified.) For backwards compatibility, ROOT is used if DESTDIR is not set, but this usage is
deprecated.

Running make install does not copy the Exim 4 conversion script convert4dr4. You will probably run
this only once if you are upgrading from Exim 3. None of the documentation files in the doc directory

24 Building and installing Exim (4)

are copied, except for the info files when you have set INFO_DIRECTORY, as described in section
below.

For the utility programs, old versions are renamed by adding the suffix .O to their names. The Exim
binary itself, however, is handled differently. It is installed under a name that includes the version
number and the compile number, for example, exim-4.92.1-1. The script then arranges for a symbolic
link called exim to point to the binary. If you are updating a previous version of Exim, the script takes
care to ensure that the name exim is never absent from the directory (as seen by other processes).

If you want to see what the make install will do before running it for real, you can pass the -n option
to the installation script by this command:

make INSTALL_ARG=-n install

The contents of the variable INSTALL_ARG are passed to the installation script. You do not need to
be root to run this test. Alternatively, you can run the installation script directly, but this must be
from within the build directory. For example, from the top-level Exim directory you could use this
command:

(cd build-Sun0S5-5.5.1-sparc; ../scripts/exim_install -n)
There are two other options that can be supplied to the installation script.

* -no_chown bypasses the call to change the owner of the installed binary to root, and the call to
make it a setuid binary.

» -no_symlink bypasses the setting up of the symbolic link exim to the installed binary.
INSTALL_ARG can be used to pass these options to the script. For example:
make INSTALL_ARG=-no_symlink install

The installation script can also be given arguments specifying which files are to be copied. For
example, to install just the Exim binary, and nothing else, without creating the symbolic link, you
could use:

make INSTALL_ARG='-no_symlink exim' install

4.17 Installing info documentation

Not all systems use the GNU info system for documentation, and for this reason, the Texinfo source
of Exim’s documentation is not included in the main distribution. Instead it is available separately
from the FTP site (see section|1.5).

If you have defined INFO_DIRECTORY in Local/Makefile and the Texinfo source of the documen-
tation is found in the source tree, running make install automatically builds the info files and
installs them.

4.18 Setting up the spool directory

When it starts up, Exim tries to create its spool directory if it does not exist. The Exim uid and gid are
used for the owner and group of the spool directory. Sub-directories are automatically created in the
spool directory as necessary.

4.19 Testing

Having installed Exim, you can check that the runtime configuration file is syntactically valid by
running the following command, which assumes that the Exim binary directory is within your PATH
environment variable:

exim -bVv
If there are any errors in the configuration file, Exim outputs error messages. Otherwise it outputs the
version number and build date, the DBM library that is being used, and information about which

25 Building and installing Exim (4)

drivers and other optional code modules are included in the binary. Some simple routing tests can be
done by using the address testing option. For example,

exim -bt <local username>
should verify that it recognizes a local mailbox, and
exim -bt <remote address>

a remote one. Then try getting it to deliver mail, both locally and remotely. This can be done by
passing messages directly to Exim, without going through a user agent. For example:

exim -v postmaster@your.domain.example
From: user(@your.domain.example

To: postmaster@your.domain.example
Subject: Testing Exim

This is a test message.
~“D

The -v option causes Exim to output some verification of what it is doing. In this case you should see
copies of three log lines, one for the message’s arrival, one for its delivery, and one containing
“Completed”.

If you encounter problems, look at Exim’s log files (mainlog and paniclog) to see if there is any
relevant information there. Another source of information is running Exim with debugging turned on,
by specifying the -d option. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form

exim —-d -M <exim-message-id>

You must be root or an “admin user” in order to do this. The -d option produces rather a lot of output,
but you can cut this down to specific areas. For example, if you use -d-all+route only the debugging
information relevant to routing is included. (See the -d option in chapterfor more details.)

One specific problem that has shown up on some sites is the inability to do local deliveries into a
shared mailbox directory, because it does not have the “sticky bit” set on it. By default, Exim tries to
create a lock file before writing to a mailbox file, and if it cannot create the lock file, the delivery is
deferred. You can get round this either by setting the “sticky bit” on the directory, or by setting a
specific group for local deliveries and allowing that group to create files in the directory (see the
comments above the local_delivery transport in the default configuration file). Another approach is to
configure Exim not to use lock files, but just to rely on fentl() locking instead. However, you should
do this only if all user agents also use fcntl() locking. For further discussion of locking issues, see
chapter

One thing that cannot be tested on a system that is already running an MTA is the receipt of incoming
SMTP mail on the standard SMTP port. However, the -0X option can be used to run an Exim daemon
that listens on some other port, or inetd can be used to do this. The -bh option and the
exim_checkaccess utility can be used to check out policy controls on incoming SMTP mail.

Testing a new version on a system that is already running Exim can most easily be done by building a
binary with a different CONFIGURE_FILE setting. From within the runtime configuration, all other
file and directory names that Exim uses can be altered, in order to keep it entirely clear of the
production version.

4.20 Replacing another MTA with Exim

Building and installing Exim for the first time does not of itself put it in general use. The name by
which the system’s MTA is called by mail user agents is either /usr/sbin/sendmail, or
/ust/lib/sendmail (depending on the operating system), and it is necessary to make this name point to
the exim binary in order to get the user agents to pass messages to Exim. This is normally done by
renaming any existing file and making /usr/sbin/sendmail or /usr/lib/sendmail a symbolic link to the
exim binary. It is a good idea to remove any setuid privilege and executable status from the old MTA.
It is then necessary to stop and restart the mailer daemon, if one is running.

26 Building and installing Exim (4)

Some operating systems have introduced alternative ways of switching MTAs. For example, if you are
running FreeBSD, you need to edit the file /etc/mail/mailer.conf instead of setting up a symbolic link
as just described. A typical example of the contents of this file for running Exim is as follows:

sendmail /usr/exim/bin/exim
send-mail /usr/exim/bin/exim
mailg /usr/exim/bin/exim -bp
newaliases /usr/bin/true

Once you have set up the symbolic link, or edited /etc/mail/mailer.conf, your Exim installation is
“live”. Check it by sending a message from your favourite user agent.

You should consider what to tell your users about the change of MTA. Exim may have different
capabilities to what was previously running, and there are various operational differences such as the
text of messages produced by command line options and in bounce messages. If you allow your users
to make use of Exim’s filtering capabilities, you should make the document entitled Exim’s interface
to mail filtering available to them.

4.21 Upgrading Exim
If you are already running Exim on your host, building and installing a new version automatically
makes it available to MUAs, or any other programs that call the MTA directly. However, if you are
running an Exim daemon, you do need to send it a HUP signal, to make it re-execute itself, and
thereby pick up the new binary. You do not need to stop processing mail in order to install a new
version of Exim. The install script does not modify an existing runtime configuration file.
4.22 Stopping the Exim daemon on Solaris
The standard command for stopping the mailer daemon on Solaris is

/etc/init.d/sendmail stop
If /usr/lib/sendmail has been turned into a symbolic link, this script fails to stop Exim because it uses
the command ps -e and greps the output for the text “sendmail’’; this is not present because the actual
program name (that is, “exim”) is given by the ps command with these options. A solution is to
replace the line that finds the process id with something like

pid="cat /var/spool/exim/exim—daemon.pid’

to obtain the daemon’s pid directly from the file that Exim saves it in.

Note, however, that stopping the daemon does not “stop Exim”. Messages can still be received from
local processes, and if automatic delivery is configured (the normal case), deliveries will still occur.

27 Building and installing Exim (4)

5. The Exim command line

Exim’s command line takes the standard Unix form of a sequence of options, each starting with a
hyphen character, followed by a number of arguments. The options are compatible with the main
options of Sendmail, and there are also some additional options, some of which are compatible with
Smail 3. Certain combinations of options do not make sense, and provoke an error if used. The form
of the arguments depends on which options are set.

5.1 Setting options by program name

If Exim is called under the name mailg, it behaves as if the option -bp were present before any other
options. The -bp option requests a listing of the contents of the mail queue on the standard output.
This feature is for compatibility with some systems that contain a command of that name in one of the
standard libraries, symbolically linked to /us#/sbin/sendmail or /us/lib/sendmail.

If Exim is called under the name rsmtp it behaves as if the option -bS were present before any other
options, for compatibility with Smail. The -bS option is used for reading in a number of messages in
batched SMTP format.

If Exim is called under the name rmail it behaves as if the -i and -oee options were present before any
other options, for compatibility with Smail. The name rmail is used as an interface by some UUCP
systems.

If Exim is called under the name rung it behaves as if the option -q were present before any other
options, for compatibility with Smail. The -q option causes a single queue runner process to be
started.

If Exim is called under the name newaliases it behaves as if the option -bi were present before any
other options, for compatibility with Sendmail. This option is used for rebuilding Sendmail’s alias
file. Exim does not have the concept of a single alias file, but can be configured to run a given
command if called with the -bi option.

5.2 Trusted and admin users

Some Exim options are available only to trusted users and others are available only to admin users. In
the description below, the phrases “Exim user” and “Exim group” mean the user and group defined
by EXIM_USER and EXIM_GROUP in Local/Makefile or set by the exim_user and exim_group
options. These do not necessarily have to use the name “exim”.

» The trusted users are root, the Exim user, any user listed in the trusted_users configuration option,
and any user whose current group or any supplementary group is one of those listed in the trusted_
groups configuration option. Note that the Exim group is not automatically trusted.

Trusted users are always permitted to use the -f option or a leading “From ” line to specify the
envelope sender of a message that is passed to Exim through the local interface (see the -bm and -f
options below). See the untrusted_set_sender option for a way of permitting non-trusted users to
set envelope senders.

For a trusted user, there is never any check on the contents of the From: header line, and a Sender:
line is never added. Furthermore, any existing Sender: line in incoming local (non-TCP/IP) mess-
ages is not removed.

Trusted users may also specify a host name, host address, interface address, protocol name, ident
value, and authentication data when submitting a message locally. Thus, they are able to insert
messages into Exim’s queue locally that have the characteristics of messages received from a
remote host. Untrusted users may in some circumstances use -f, but can never set the other values
that are available to trusted users.

* The admin users are root, the Exim user, and any user that is a member of the Exim group or of any
group listed in the admin_groups configuration option. The current group does not have to be one
of these groups.

28 The Exim command line (5)

Admin users are permitted to list the queue, and to carry out certain operations on messages, for
example, to force delivery failures. It is also necessary to be an admin user in order to see the full
information provided by the Exim monitor, and full debugging output.

By default, the use of the -M, -q, -R, and -S options to cause Exim to attempt delivery of messages
on its queue is restricted to admin users. However, this restriction can be relaxed by setting the
prod_requires_admin option false (that is, specifying no_prod_requires_admin).

Similarly, the use of the -bp option to list all the messages in the queue is restricted to admin users
unless queue_list_requires_admin is set false.

Warning: If you configure your system so that admin users are able to edit Exim’s configuration file,
you are giving those users an easy way of getting root. There is further discussion of this issue at the
start of chapter

5.3 Command line options

Exim’s command line options are described in alphabetical order below. If none of the options that
specifies a specific action (such as starting the daemon or a queue runner, or testing an address, or
receiving a message in a specific format, or listing the queue) are present, and there is at least one
argument on the command line, -bm (accept a local message on the standard input, with the argu-
ments specifying the recipients) is assumed. Otherwise, Exim outputs a brief message about itself and
exits.

This is a pseudo-option whose only purpose is to terminate the options and therefore to cause
subsequent command line items to be treated as arguments rather than options, even if they begin
with hyphens.

--help
This option causes Exim to output a few sentences stating what it is. The same output is generated
if the Exim binary is called with no options and no arguments.

--version
This option is an alias for -bV and causes version information to be displayed.

-Ac
-Am
These options are used by Sendmail for selecting configuration files and are ignored by Exim.

-B<type>
This is a Sendmail option for selecting 7 or 8 bit processing. Exim is 8-bit clean; it ignores this
option.

-bd
This option runs Exim as a daemon, awaiting incoming SMTP connections. Usually the -bd option
is combined with the -q<time> option, to specify that the daemon should also initiate periodic
queue runs.

The -bd option can be used only by an admin user. If either of the -d (debugging) or -v (verifying)
options are set, the daemon does not disconnect from the controlling terminal. When running this
way, it can be stopped by pressing ctrl-C.

By default, Exim listens for incoming connections to the standard SMTP port on all the host’s
running interfaces. However, it is possible to listen on other ports, on multiple ports, and only on
specific interfaces. Chapter contains a description of the options that control this.

When a listening daemon is started without the use of -0X (that is, without overriding the normal
configuration), it writes its process id to a file called exim-daemon.pid in Exim’s spool directory.
This location can be overridden by setting PID_FILE_PATH in Local/Makefile. The file is written
while Exim is still running as root.

29 The Exim command line (5)

When -0X is used on the command line to start a listening daemon, the process id is not written to
the normal pid file path. However, -oP can be used to specify a path on the command line if a pid
file is required.

The SIGHUP signal can be used to cause the daemon to re-execute itself. This should be done
whenever Exim’s configuration file, or any file that is incorporated into it by means of the .include
facility, is changed, and also whenever a new version of Exim is installed. It is not necessary to do
this when other files that are referenced from the configuration (for example, alias files) are
changed, because these are reread each time they are used.

-bdf
This option has the same effect as -bd except that it never disconnects from the controlling
terminal, even when no debugging is specified.

-be
Run Exim in expansion testing mode. Exim discards its root privilege, to prevent ordinary users
from using this mode to read otherwise inaccessible files. If no arguments are given, Exim runs
interactively, prompting for lines of data. Otherwise, it processes each argument in turn.

If Exim was built with USE_READLINE=yes in Local/Makefile, it tries to load the libreadline
library dynamically whenever the -be option is used without command line arguments. If success-
ful, it uses the readline() function, which provides extensive line-editing facilities, for reading the
test data. A line history is supported.

Long expansion expressions can be split over several lines by using backslash continuations. As in
Exim’s runtime configuration, white space at the start of continuation lines is ignored. Each
argument or data line is passed through the string expansion mechanism, and the result is output.
Variable values from the configuration file (for example, $qualify_domain) are available, but no
message-specific values (such as $message_exim_id) are set, because no message is being pro-
cessed (but see -bem and -Mset).

Note: If you use this mechanism to test lookups, and you change the data files or databases you are
using, you must exit and restart Exim before trying the same lookup again. Otherwise, because
each Exim process caches the results of lookups, you will just get the same result as before.

Macro processing is done on lines before string-expansion: new macros can be defined and macros
will be expanded. Because macros in the config file are often used for secrets, those are only
available to admin users.

-bem <filename>
This option operates like -be except that it must be followed by the name of a file. For example:

exim -bem /tmp/testmessage

The file is read as a message (as if receiving a locally-submitted non-SMTP message) before any
of the test expansions are done. Thus, message-specific variables such as $message_size and
Sheader_from: are available. However, no Received: header is added to the message. If the -t
option is set, recipients are read from the headers in the normal way, and are shown in the
Srecipients variable. Note that recipients cannot be given on the command line, because further
arguments are taken as strings to expand (just like -be).

-bF <filename>
This option is the same as -bf except that it assumes that the filter being tested is a system filter.
The additional commands that are available only in system filters are recognized.

-bf <filename>
This option runs Exim in user filter testing mode; the file is the filter file to be tested, and a test
message must be supplied on the standard input. If there are no message-dependent tests in the
filter, an empty file can be supplied.

If you want to test a system filter file, use -bF instead of -bf. You can use both -bF and -bf on the
same command, in order to test a system filter and a user filter in the same run. For example:

exim -bF /system/filter -bf /user/filter </test/message

30 The Exim command line (5)

This is helpful when the system filter adds header lines or sets filter variables that are used by the
user filter.

If the test filter file does not begin with one of the special lines

Exim filter
Sieve filter

it is taken to be a normal .forward file, and is tested for validity under that interpretation. See
sections to |22.6 for a description of the possible contents of non-filter redirection lists.

The result of an Exim command that uses -bf, provided no errors are detected, is a list of the
actions that Exim would try to take if presented with the message for real. More details of filter
testing are given in the separate document entitled Exim’s interfaces to mail filtering.

When testing a filter file, the envelope sender can be set by the -f option, or by a “From ” line at
the start of the test message. Various parameters that would normally be taken from the envelope
recipient address of the message can be set by means of additional command line options (see the
next four options).

-bfd <domain>
This sets the domain of the recipient address when a filter file is being tested by means of the -bf
option. The default is the value of $qualify_domain.

-bfl <local part>
This sets the local part of the recipient address when a filter file is being tested by means of the -bf
option. The default is the username of the process that calls Exim. A local part should be specified
with any prefix or suffix stripped, because that is how it appears to the filter when a message is
actually being delivered.

-bfp <prefix>
This sets the prefix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty prefix.

-bfs <suffix>
This sets the suffix of the local part of the recipient address when a filter file is being tested by
means of the -bf option. The default is an empty suffix.

-bh <[P address>
This option runs a fake SMTP session as if from the given IP address, using the standard input and
output. The IP address may include a port number at the end, after a full stop. For example:

exim -bh 10.9.8.7.1234
exim -bh fe80::a00:20ff:fe86:a061.5678

When an IPv6 address is given, it is converted into canonical form. In the case of the second
example above, the value of $sender_host_address after conversion to the canonical form is
fe80:0000:0000:0a00:20ff:£fe86:2061.5678.

Comments as to what is going on are written to the standard error file. These include lines
beginning with “LOG” for anything that would have been logged. This facility is provided for
testing configuration options for incoming messages, to make sure they implement the required
policy. For example, you can test your relay controls using -bh.

Warning 1: You can test features of the configuration that rely on ident (RFC 1413) information
by using the -oMt option. However, Exim cannot actually perform an ident callout when testing
using -bh because there is no incoming SMTP connection.

Warning 2: Address verification callouts (see section » are also skipped when testing using
-bh. If you want these callouts to occur, use -bhc instead.

Messages supplied during the testing session are discarded, and nothing is written to any of the
real log files. There may be pauses when DNS (and other) lookups are taking place, and of course
these may time out. The -oMi option can be used to specify a specific IP interface and port if this
is important, and -oMaa and -oMai can be used to set parameters as if the SMTP session were
authenticated.

31 The Exim command line (5)

The exim_checkaccess utility is a “packaged” version of -bh whose output just states whether a
given recipient address from a given host is acceptable or not. See section |53 81

Features such as authentication and encryption, where the client input is not plain text, cannot
easily be tested with -bh. Instead, you should use a specialized SMTP test program such as swaks
(https://www.jetmore.org/john/code/swaks/).

-bhe <IP address>
This option operates in the same way as -bh, except that address verification callouts are per-
formed if required. This includes consulting and updating the callout cache database.

-bi
Sendmail interprets the -bi option as a request to rebuild its alias file. Exim does not have the
concept of a single alias file, and so it cannot mimic this behaviour. However, calls to
/ust/lib/sendmail with the -bi option tend to appear in various scripts such as NIS make files, so
the option must be recognized.

If -bi is encountered, the command specified by the bi_command configuration option is run,
under the uid and gid of the caller of Exim. If the -0A option is used, its value is passed to the
command as an argument. The command set by bi_command may not contain arguments. The
command can use the exim_dbmbuild utility, or some other means, to rebuild alias files if this is
required. If the bi_command option is not set, calling Exim with -bi is a no-op.

-bI:help
We shall provide various options starting —bI: for querying Exim for information. The output of
many of these will be intended for machine consumption. This one is not. The -bI:help option
asks Exim for a synopsis of supported options beginning —bI :. Use of any of these options shall
cause Exim to exit after producing the requested output.

-bI:dscp
This option causes Exim to emit an alphabetically sorted list of all recognised DSCP names.

-bI:sieve
This option causes Exim to emit an alphabetically sorted list of all supported Sieve protocol
extensions on stdout, one per line. This is anticipated to be useful for ManageSieve (RFC 5804)
implementations, in providing that protocol’s STEVE capability response line. As the precise list
may depend upon compile-time build options, which this option will adapt to, this is the only way
to guarantee a correct response.

-bm
This option runs an Exim receiving process that accepts an incoming, locally-generated message
on the standard input. The recipients are given as the command arguments (except when -t is also
present — see below). Each argument can be a comma-separated list of RFC 2822 addresses. This
is the default option for selecting the overall action of an Exim call; it is assumed if no other
conflicting option is present.

If any addresses in the message are unqualified (have no domain), they are qualified by the values
of the qualify_domain or qualify_recipient options, as appropriate. The -bnq option (see below)
provides a way of suppressing this for special cases.

Policy checks on the contents of local messages can be enforced by means of the non-SMTP ACL.
See chapter for details.

The return code is zero if the message is successfully accepted. Otherwise, the action is controlled
by the -oex option setting — see below.

The format of the message must be as defined in RFC 2822, except that, for compatibility with
Sendmail and Smail, a line in one of the forms

From sender Fri Jan 5 12:55 GMT 1997
From sender Fri, 5 Jan 97 12:55:01

(with the weekday optional, and possibly with additional text after the date) is permitted to appear
at the start of the message. There appears to be no authoritative specification of the format of this

32 The Exim command line (5)

line. Exim recognizes it by matching against the regular expression defined by the uucp_from_
pattern option, which can be changed if necessary.

The specified sender is treated as if it were given as the argument to the -f option, but if a -f option
is also present, its argument is used in preference to the address taken from the message. The caller
of Exim must be a trusted user for the sender of a message to be set in this way.

-bmalware <filename>
This debugging option causes Exim to scan the given file or directory (depending on the used
scanner interface), using the malware scanning framework. The option of av_scanner influences
this option, so if av_scanner’s value is dependent upon an expansion then the expansion should
have defaults which apply to this invocation. ACLs are not invoked, so if av_scanner references
an ACL variable then that variable will never be populated and -bmalware will fail.

Exim will have changed working directory before resolving the filename, so using fully qualified
pathnames is advisable. Exim will be running as the Exim user when it tries to open the file, rather
than as the invoking user. This option requires admin privileges.

The -bmalware option will not be extended to be more generally useful, there are better tools
for file-scanning. This option exists to help administrators verify their Exim and AV scanner
configuration.

-bnq
By default, Exim automatically qualifies unqualified addresses (those without domains) that
appear in messages that are submitted locally (that is, not over TCP/IP). This qualification applies
both to addresses in envelopes, and addresses in header lines. Sender addresses are qualified using
qualify_domain, and recipient addresses using qualify_recipient (which defaults to the value of
qualify_domain).

Sometimes, qualification is not wanted. For example, if -bS (batch SMTP) is being used to re-
submit messages that originally came from remote hosts after content scanning, you probably do
not want to qualify unqualified addresses in header lines. (Such lines will be present only if you
have not enabled a header syntax check in the appropriate ACL.)

The -bnq option suppresses all qualification of unqualified addresses in messages that originate on
the local host. When this is used, unqualified addresses in the envelope provoke errors (causing
message rejection) and unqualified addresses in header lines are left alone.

-bP
If this option is given with no arguments, it causes the values of all Exim’s main configuration
options to be written to the standard output. The values of one or more specific options can be
requested by giving their names as arguments, for example:

exim -bP qualify_domain hold_domains

However, any option setting that is preceded by the word ‘“hide” in the configuration file is not
shown in full, except to an admin user. For other users, the output is as in this example:

mysgl_servers = <value not displayable>

If config is given as an argument, the config is output, as it was parsed, any include file resolved,
any comment removed.

If config_file is given as an argument, the name of the runtime configuration file is output.
(configure_file works too, for backward compatibility.) If a list of configuration files was supplied,
the value that is output here is the name of the file that was actually used.

If the -n flag is given, then for most modes of -bP operation the name will not be output.

If log_file_path or pid_file_path are given, the names of the directories where log files and
daemon pid files are written are output, respectively. If these values are unset, log files are written
in a sub-directory of the spool directory called log, and the pid file is written directly into the spool
directory.

If -bP is followed by a name preceded by +, for example,

33 The Exim command line (5)

exim —-bP +local_domains

it searches for a matching named list of any type (domain, host, address, or local part) and outputs
what it finds.

If one of the words router, transport, or authenticator is given, followed by the name of an
appropriate driver instance, the option settings for that driver are output. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private options. A list of the
names of drivers of a particular type can be obtained by using one of the words router_list,
transport_list, or authenticator_list, and a complete list of all drivers with their option settings
can be obtained by using routers, transports, or authenticators.

If environment is given as an argument, the set of environment variables is output, line by line.
Using the -n flag suppresses the value of the variables.

If invoked by an admin user, then macro, macro_list and macros are available, similarly to the
drivers. Because macros are sometimes used for storing passwords, this option is restricted. The
output format is one item per line. For the "-bP macro <name>" form, if no such macro is found
the exit status will be nonzero.

-bp
This option requests a listing of the contents of the mail queue on the standard output. If the -bp
option is followed by a list of message ids, just those messages are listed. By default, this option
can be used only by an admin user. However, the queue_list_requires_admin option can be set
false to allow any user to see the queue.

Each message in the queue is displayed as in the following example:

25m 2.9K 0t5C6£f-0000c8-00 <alice@wonderland.fict.example>
red.king@looking—glass.fict.example
<other addresses>

The first line contains the length of time the message has been in the queue (in this case 25
minutes), the size of the message (2.9K), the unique local identifier for the message, and the
message sender, as contained in the envelope. For bounce messages, the sender address is empty,
and appears as “<>”. If the message was submitted locally by an untrusted user who overrode the
default sender address, the user’s login name is shown in parentheses before the sender address.

If the message is frozen (attempts to deliver it are suspended) then the text “*** frozen *** is
displayed at the end of this line.

The recipients of the message (taken from the envelope, not the headers) are displayed on subse-
quent lines. Those addresses to which the message has already been delivered are marked with the
letter D. If an original address gets expanded into several addresses via an alias or forward file, the
original is displayed with a D only when deliveries for all of its child addresses are complete.

-bpa
This option operates like -bp, but in addition it shows delivered addresses that were generated
from the original top level address(es) in each message by alias or forwarding operations. These
addresses are flagged with “+D” instead of just “D”.

-bpc
This option counts the number of messages in the queue, and writes the total to the standard
output. It is restricted to admin users, unless queue_list_requires_admin is set false.

-bpr
This option operates like -bp, but the output is not sorted into chronological order of message

arrival. This can speed it up when there are lots of messages in the queue, and is particularly useful
if the output is going to be post-processed in a way that doesn’t need the sorting.

-bpra
This option is a combination of -bpr and -bpa.

34 The Exim command line (5)

-bpru
This option is a combination of -bpr and -bpu.

-bpu
This option operates like -bp but shows only undelivered top-level addresses for each message
displayed. Addresses generated by aliasing or forwarding are not shown, unless the message was
deferred after processing by a router with the one_time option set.

-brt
This option is for testing retry rules, and it must be followed by up to three arguments. It causes
Exim to look for a retry rule that matches the values and to write it to the standard output. For
example:

exim -brt bach.comp.mus.example
Retry rule: *.comp.mus.example F,2h,15m; F,4d,30m;

See chapter for a description of Exim’s retry rules. The first argument, which is required, can be
a complete address in the form local_part@domain, or it can be just a domain name. If the second
argument contains a dot, it is interpreted as an optional second domain name; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behaviour when looking
for retry rules for remote hosts — if no rule is found that matches the host, one that matches the
mail domain is sought. Finally, an argument that is the name of a specific delivery error, as used in
setting up retry rules, can be given. For example:

exim -brt haydn.comp.mus.example quota_3d
Retry rule: *Q@haydn.comp.mus.example quota_3d F,1h,15m

-brw
This option is for testing address rewriting rules, and it must be followed by a single argument,
consisting of either a local part without a domain, or a complete address with a fully qualified
domain. Exim outputs how this address would be rewritten for each possible place it might appear.
See chapter for further details.

-bS
This option is used for batched SMTP input, which is an alternative interface for non-interactive
local message submission. A number of messages can be submitted in a single run. However,
despite its name, this is not really SMTP input. Exim reads each message’s envelope from SMTP
commands on the standard input, but generates no responses. If the caller is trusted, or untrusted_
set_sender is set, the senders in the SMTP MAIL commands are believed; otherwise the sender is
always the caller of Exim.

The message itself is read from the standard input, in SMTP format (leading dots doubled),
terminated by a line containing just a single dot. An error is provoked if the terminating dot is
missing. A further message may then follow.

As for other local message submissions, the contents of incoming batch SMTP messages can be
checked using the non-SMTP ACL (see chapter . Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

Some other SMTP commands are recognized in the input. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, and HELP act as NOOP; QUIT quits, ignoring the rest of the standard input.

If any error is encountered, reports are written to the standard output and error streams, and Exim
gives up immediately. The return code is O if no error was detected; it is 1 if one or more messages
were accepted before the error was detected; otherwise it is 2.

More details of input using batched SMTP are given in section

This option causes Exim to accept one or more messages by reading SMTP commands on the
standard input, and producing SMTP replies on the standard output. SMTP policy controls, as
defined in ACLs (see chapter are applied. Some user agents use this interface as a way of
passing locally-generated messages to the MTA.

35 The Exim command line (5)

In this usage, if the caller of Exim is trusted, or untrusted_set_sender is set, the senders of
messages are taken from the SMTP MAIL commands. Otherwise the content of these commands
is ignored and the sender is set up as the calling user. Unqualified addresses are automatically
qualified using qualify_domain and qualify_recipient, as appropriate, unless the -bnq option is
used.

The -bs option is also used to run Exim from inetd, as an alternative to using a listening daemon.
Exim can distinguish the two cases by checking whether the standard input is a TCP/IP socket.
When Exim is called from inetd, the source of the mail is assumed to be remote, and the comments
above concerning senders and qualification do not apply. In this situation, Exim behaves in exactly
the same way as it does when receiving a message via the listening daemon.

This option runs Exim in address testing mode, in which each argument is taken as a recipient
address to be tested for deliverability. The results are written to the standard output. If a test fails,
and the caller is not an admin user, no details of the failure are output, because these might contain
sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be tested.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as root and there are security issues.

Each address is handled as if it were the recipient address of a message (compare the -bv option).
It is passed to the routers and the result is written to the standard output. However, any router that
has no_address_test set is bypassed. This can make -bt easier to use for genuine routing tests if
your first router passes everything to a scanner program.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code O is given only when all addresses
succeed.

Note: When actually delivering a message, Exim removes duplicate recipient addresses after
routing is complete, so that only one delivery takes place. This does not happen when testing with
-bt; the full results of routing are always shown.

Warning: -bt can only do relatively simple testing. If any of the routers in the configuration makes
any tests on the sender address of a message, you can use the -f option to set an appropriate sender
when running -bt tests. Without it, the sender is assumed to be the calling user at the default
qualifying domain. However, if you have set up (for example) routers whose behaviour depends on
the contents of an incoming message, you cannot test those conditions using -bt. The -N option
provides a possible way of doing such tests.

-bV
This option causes Exim to write the current version number, compilation number, and compi-
lation date of the exim binary to the standard output. It also lists the DBM library that is being
used, the optional modules (such as specific lookup types), the drivers that are included in the
binary, and the name of the runtime configuration file that is in use.

As part of its operation, -bV causes Exim to read and syntax check its configuration file. However,
this is a static check only. It cannot check values that are to be expanded. For example, although a
misspelt ACL verb is detected, an error in the verb’s arguments is not. You cannot rely on -bV
alone to discover (for example) all the typos in the configuration; some realistic testing is needed.
The -bh and -N options provide more dynamic testing facilities.

-bv
This option runs Exim in address verification mode, in which each argument is taken as a recipient
address to be verified by the routers. (This does not involve any verification callouts). During
normal operation, verification happens mostly as a consequence processing a verify condition in
an ACL (see chapter . If you want to test an entire ACL, possibly including callouts, see the
-bh and -bhc options.

36 The Exim command line (5)

If verification fails, and the caller is not an admin user, no details of the failure are output, because
these might contain sensitive information such as usernames and passwords for database lookups.

If no arguments are given, Exim runs in an interactive manner, prompting with a right angle
bracket for addresses to be verified.

Unlike the -be test option, you cannot arrange for Exim to use the readline() function, because it is
running as exim and there are security issues.

Verification differs from address testing (the -bt option) in that routers that have no_verify set are
skipped, and if the address is accepted by a router that has fail_verify set, verification fails. The
address is verified as a recipient if -bv is used; to test verification for a sender address, -bvs should
be used.

If the -v option is not set, the output consists of a single line for each address, stating whether it
was verified or not, and giving a reason in the latter case. Without -v, generating more than one
address by redirection causes verification to end successfully, without considering the generated
addresses. However, if just one address is generated, processing continues, and the generated
address must verify successfully for the overall verification to succeed.

When -v is set, more details are given of how the address has been handled, and in the case of
address redirection, all the generated addresses are also considered. Verification may succeed for
some and fail for others.

The return code is 2 if any address failed outright; it is 1 if no address failed outright but at least
one could not be resolved for some reason. Return code 0 is given only when all addresses
succeed.

If any of the routers in the configuration makes any tests on the sender address of a message, you
should use the -f option to set an appropriate sender when running -bv tests. Without it, the sender
is assumed to be the calling user at the default qualifying domain.

-bvs
This option acts like -bv, but verifies the address as a sender rather than a recipient address. This
affects any rewriting and qualification that might happen.

-bw
This option runs Exim as a daemon, awaiting incoming SMTP connections, similarly to the -bd
option. All port specifications on the command-line and in the configuration file are ignored.
Queue-running may not be specified.

In this mode, Exim expects to be passed a socket as fd 0 (stdin) which is listening for connections.
This permits the system to start up and have inetd (or equivalent) listen on the SMTP ports,
starting an Exim daemon for each port only when the first connection is received.

If the option is given as -bw<time> then the time is a timeout, after which the daemon will exit,
which should cause inetd to listen once more.

-C <filelist>
This option causes Exim to find the runtime configuration file from the given list instead of from
the list specified by the CONFIGURE_FILE compile-time setting. Usually, the list will consist of
just a single filename, but it can be a colon-separated list of names. In this case, the first file that
exists is used. Failure to open an existing file stops Exim from proceeding any further along the
list, and an error is generated.

When this option is used by a caller other than root, and the list is different from the compiled-in
list, Exim gives up its root privilege immediately, and runs with the real and effective uid and gid
set to those of the caller. However, if a TRUSTED CONFIG_LIST file is defined in
Local/Makefile, that file contains a list of full pathnames, one per line, for configuration files which
are trusted. Root privilege is retained for any configuration file so listed, as long as the caller is the
Exim user (or the user specified in the CONFIGURE_OWNER option, if any), and as long as the
configuration file is not writeable by inappropriate users or groups.

Leaving TRUSTED_CONFIG_LIST unset precludes the possibility of testing a configuration
using -C right through message reception and delivery, even if the caller is root. The reception

37 The Exim command line (5)

works, but by that time, Exim is running as the Exim user, so when it re-executes to regain
privilege for the delivery, the use of -C causes privilege to be lost. However, root can test reception
and delivery using two separate commands (one to put a message in the queue, using -odq, and
another to do the delivery, using -M).

If ALT_CONFIG_PREFIX is defined in Local/Makefile, it specifies a prefix string with which any
file named in a -C command line option must start. In addition, the filename must not contain the
sequence / . . /. However, if the value of the -C option is identical to the value of CONFIGURE_
FILE in Local/Makefile, Exim ignores -C and proceeds as usual. There is no default setting for
ALT_CONFIG_PREFIX; when it is unset, any filename can be used with -C.

ALT_CONFIG_PREFIX can be used to confine alternative configuration files to a directory to
which only root has access. This prevents someone who has broken into the Exim account from
running a privileged Exim with an arbitrary configuration file.

The -C facility is useful for ensuring that configuration files are syntactically correct, but cannot be
used for test deliveries, unless the caller is privileged, or unless it is an exotic configuration that
does not require privilege. No check is made on the owner or group of the files specified by this
option.

-D<macro>=<value>
This option can be used to override macro definitions in the configuration file (see section .
However, like -C, if it is used by an unprivileged caller, it causes Exim to give up its root privilege.
If DISABLE_D_OPTION is defined in Local/Makefile, the use of -D is completely disabled, and
its use causes an immediate error exit.

If WHITELIST_D_MACROS is defined in Local/Makefile then it should be a colon-separated list
of macros which are considered safe and, if -D only supplies macros from this list, and the values
are acceptable, then Exim will not give up root privilege if the caller is root, the Exim run-time
user, or the CONFIGURE_OWNER, if set. This is a transition mechanism and is expected to be
removed in the future. Acceptable values for the macros satisfy the regexp: ~ [A-Za-z0-9_/ .-

1*$

The entire option (including equals sign if present) must all be within one command line item. -D
can be used to set the value of a macro to the empty string, in which case the equals sign is
optional. These two commands are synonymous:

exim —-DABC
exim —-DABC=

To include spaces in a macro definition item, quotes must be used. If you use quotes, spaces are
permitted around the macro name and the equals sign. For example:

exim '-D ABC = something'

-D may be repeated up to 10 times on a command line. Only macro names up to 22 letters long can
be set.

-d<debug options>
This option causes debugging information to be written to the standard error stream. It is restricted
to admin users because debugging output may show database queries that contain password infor-
mation. Also, the details of users’ filter files should be protected. If a non-admin user uses -d,
Exim writes an error message to the standard error stream and exits with a non-zero return code.

When -d is used, -v is assumed. If -d is given on its own, a lot of standard debugging data is
output. This can be reduced, or increased to include some more rarely needed information, by
directly following -d with a string made up of names preceded by plus or minus characters. These
add or remove sets of debugging data, respectively. For example, -d+filter adds filter debugging,
whereas -d-all+filter selects only filter debugging. Note that no spaces are allowed in the debug
setting. The available debugging categories are:

acl ACL interpretation
auth authenticators
deliver general delivery logic

38 The Exim command line (5)

dns DNS lookups (see also resolver)

dnsbl DNS black list (aka RBL) code

exec arguments for execv() calls

expand detailed debugging for string expansions
filter filter handling

hints_lookup hints data lookups

host_lookup all types of name-to-IP address handling
ident ident lookup

interface lists of local interfaces

lists matching things in lists

load system load checks

local_scan can be used by local_scan() (see chapter
lookup general lookup code and all lookups
memory memory handling

noutf8 modifier: avoid UTF-8 line-drawing

pid modifier: add pid to debug output lines
process_info setting info for the process log

queue_run queue runs

receive general message reception logic

resolver t