diff --git a/src/axiom-website/CATS/index.html b/src/axiom-website/CATS/index.html
index b74f1c8..ce023c8 100644
--- a/src/axiom-website/CATS/index.html
+++ b/src/axiom-website/CATS/index.html
@@ -124,5 +124,39 @@ and reduced to a constant (usually 0).
   Schaums 14.646-14.677&nbsp
   <a href="schaum34.input.pamphlet">source</a>
   <a href="schaum34.input.pdf">pdf</a><br/>
+
+<hr/>
+This portion of the CATS suite involves Ordinary Differential Equations.
+This is the Kamke test suite as published by 
+<a href="http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html">
+E. S. Cheb-Terrab</a>. They have been rewritten using Axiom syntax. 
+Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.<br/><br/>
+
+  Kamke0
+  <a href="kamke0.input.pamphlet">source</a>
+  <a href="kamke0.input.pdf">pdf</a><br/>
+  Kamke1
+  <a href="kamke1.input.pamphlet">source</a>
+  <a href="kamke1.input.pdf">pdf</a><br/>
+  Kamke2
+  <a href="kamke2.input.pamphlet">source</a>
+  <a href="kamke2.input.pdf">pdf</a><br/>
+  Kamke3
+  <a href="kamke3.input.pamphlet">source</a>
+  <a href="kamke3.input.pdf">pdf</a><br/>
+  Kamke4
+  <a href="kamke4.input.pamphlet">source</a>
+  <a href="kamke4.input.pdf">pdf</a><br/>
+  Kamke5
+  <a href="kamke5.input.pamphlet">source</a>
+  <a href="kamke5.input.pdf">pdf</a><br/>
+  Kamke6
+  <a href="kamke6.input.pamphlet">source</a>
+  <a href="kamke6.input.pdf">pdf</a><br/>
+  Kamke7
+  <a href="kamke7.input.pamphlet">source</a>
+  <a href="kamke7.input.pdf">pdf</a><br/>
+
  </body>
 </html>
\ No newline at end of file
diff --git a/src/axiom-website/CATS/kamke0.input.pamphlet b/src/axiom-website/CATS/kamke0.input.pamphlet
new file mode 100644
index 0000000..d1a9d8b
--- /dev/null
+++ b/src/axiom-website/CATS/kamke0.input.pamphlet
@@ -0,0 +1,1904 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke0.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the first 50 of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+<<*>>=
+)spool kamke0.output
+)set break resume
+)set mes auto off
+)clear all
+
+--S 1 of 134
+y:=operator 'y
+--R 
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 134
+f := operator 'f
+--R
+--R   (2)  f
+--R                                                          Type: BasicOperator
+--E 2
+
+--S 3 of 134
+g := operator 'g
+--R
+--R   (3)  g
+--R                                                          Type: BasicOperator
+--E 3
+
+--S 4 of 134
+ode1 := D(y(x),x) - (a4*x**4+a3*x**3+a2*x**2+a1*x+a0)**(-1/2)
+--R 
+--R
+--R         +---------------------------------+
+--R         |    4       3       2              ,
+--R        \|a4 x  + a3 x  + a2 x  + a1 x + a0 y (x) - 1
+--R
+--R   (4)  ---------------------------------------------
+--R              +---------------------------------+
+--R              |    4       3       2
+--R             \|a4 x  + a3 x  + a2 x  + a1 x + a0
+--R                                                     Type: Expression Integer
+--E 4
+
+--S 5 of 134
+ode1a:=solve(ode1,y,x)
+--R 
+--R
+--R   (5)
+--R                   x
+--R                 ++                    1
+--I   [particular=  |   ------------------------------------- d%N ,basis= [1]]
+--R                ++    +----------------------------------+
+--R                      |  4       3       2
+--I                     \|%N a4 + %N a3 + %N a2 + %N a1 + a0
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 5
+
+--S 6 of 134
+ode2 := D(y(x),x) + a*y(x) - c*exp(b*x)
+--R 
+--R
+--R         ,          b x
+--R   (6)  y (x) - c %e    + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 6
+
+--S 7 of 134
+ode2a:=solve(ode2,y,x)
+--R 
+--R
+--R                         b x
+--R                     c %e              - a x
+--R   (7)  [particular= -------,basis= [%e     ]]
+--R                      b + a
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 7
+
+--S 8 of 134
+yx:=ode2a.particular
+--R
+--R            b x
+--R        c %e
+--R   (8)  -------
+--R         b + a
+--R                                                     Type: Expression Integer
+--E 8
+
+--S 9 of 134
+ode2expr:=D(yx,x) + a*yx -c*exp(b*x)
+--R
+--R   (9)  0
+--R                                                     Type: Expression Integer
+--E 9
+
+--S 10 of 134
+ode3 := D(y(x),x) + a*y(x) - b*sin(c*x)
+--R
+--R          ,
+--R   (10)  y (x) - b sin(c x) + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 10
+
+--S 11 of 134
+ode3a:=solve(ode3,y,x)
+--R
+--R                      a b sin(c x) - b c cos(c x)           - a x
+--R   (11)  [particular= ---------------------------,basis= [%e     ]]
+--R                                 2    2
+--R                                c  + a
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 11
+
+--S 12 of 134
+yx:=ode3a.particular
+--R
+--R         a b sin(c x) - b c cos(c x)
+--R   (12)  ---------------------------
+--R                    2    2
+--R                   c  + a
+--R                                                     Type: Expression Integer
+--E 12
+
+--S 13 of 134
+ode3expr:=D(yx,x) + a*yx - b*sin(c*x)
+--R
+--R   (13)  0
+--R                                                     Type: Expression Integer
+--E 13
+
+--S 14 of 134
+ode4 := D(y(x),x) + 2*x*y(x) - x*exp(-x**2)
+--R
+--R                        2
+--R          ,          - x
+--R   (14)  y (x) - x %e     + 2x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 14
+
+--S 15 of 134
+ode4a:=solve(ode4,y,x)
+--R
+--R                             2
+--R                       2  - x               2
+--R                      x %e               - x
+--R   (15)  [particular= --------,basis= [%e    ]]
+--R                          2
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 15
+
+--S 16 of 134
+yx:=ode4a.particular
+--R
+--R                2
+--R          2  - x
+--R         x %e
+--R   (16)  --------
+--R             2
+--R                                                     Type: Expression Integer
+--E 16
+
+--S 17 of 134
+ode4expr:=D(yx,x) + 2*x*yx - x*exp(-x**2)
+--R
+--R   (17)  0
+--R                                                     Type: Expression Integer
+--E 17
+
+--S 18 of 134
+ode5 := D(y(x),x) + y(x)*cos(x) - exp(2*x)
+--R
+--R          ,        2x
+--R   (18)  y (x) - %e   + y(x)cos(x)
+--R
+--R                                                     Type: Expression Integer
+--E 18
+
+--S 19 of 134
+ode5a:=solve(ode5,y,x)
+--R
+--I                                   x      2%H
+--R                        - sin(x) ++     %e                      - sin(x)
+--I   (19)  [particular= %e         |   ----------- d%H ,basis= [%e        ]]
+--I                                ++     - sin(%H)
+--R                                     %e
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 19
+
+--S 20 of 134
+ode6 := D(y(x),x) + y(x)*cos(x) - sin(2*x)/2
+--R
+--R           ,
+--R         2y (x) - sin(2x) + 2y(x)cos(x)
+--R
+--R   (20)  ------------------------------
+--R                        2
+--R                                                     Type: Expression Integer
+--E 20
+
+--S 21 of 134
+ode6a:=solve(ode6,y,x)
+--R
+--R                                           - sin(x)
+--R   (21)  [particular= sin(x) - 1,basis= [%e        ]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 21
+
+--S 22 of 134
+yx:=ode6a.particular
+--R
+--R   (22)  sin(x) - 1
+--R                                                     Type: Expression Integer
+--E 22
+
+--S 23 of 134
+ode6expr:=D(yx,x) + yx*cos(x) - sin(2*x)/2
+--R
+--R         - sin(2x) + 2cos(x)sin(x)
+--R   (23)  -------------------------
+--R                     2
+--R                                                     Type: Expression Integer
+--E 23
+
+--S 24 of 134
+sin2rule := rule 2*cos(x)*sin(x) == sin(2*x)
+--R
+--I   (24)  2%Y cos(x)sin(x) == %Y sin(2x)
+--R                        Type: RewriteRule(Integer,Integer,Expression Integer)
+--E 24
+
+--S 25 of 134
+sin2rule ode6expr
+--R
+--R   (25)  0
+--R                                                     Type: Expression Integer
+--E 25
+
+--S 26 of 134
+ode7 := D(y(x),x) + y(x)*cos(x) - exp(-sin(x))
+--R
+--R          ,        - sin(x)
+--R   (26)  y (x) - %e         + y(x)cos(x)
+--R
+--R                                                     Type: Expression Integer
+--E 26
+
+--S 27 of 134
+ode7a:=solve(ode7,y,x)
+--R
+--R                          - sin(x)           - sin(x)
+--R   (27)  [particular= x %e        ,basis= [%e        ]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 27
+
+--S 28 of 134
+yx:=ode7a.particular
+--R
+--R             - sin(x)
+--R   (28)  x %e
+--R                                                     Type: Expression Integer
+--E 28
+
+--S 29 of 134
+ode7expr := D(yx,x) + yx*cos(x) - exp(-sin(x))
+--R
+--R   (29)  0
+--R                                                     Type: Expression Integer
+--E 29
+
+--S 30 of 134
+ode8 := D(y(x),x) + y(x)*tan(x) - sin(2*x)
+--R
+--R          ,
+--R   (30)  y (x) + y(x)tan(x) - sin(2x)
+--R
+--R                                                     Type: Expression Integer
+--E 30
+
+--S 31 of 134
+ode8a:=solve(ode8,y,x)
+--R
+--R   (31)
+--R                                        +-------+
+--R                          2             |   1
+--R                (- 2cos(x)  + 2cos(x))  |-------
+--R                                       4|      4
+--R                                       \|cos(x)                 1
+--R   [particular= --------------------------------,basis= [--------------]]
+--R                          +-----------+                   +-----------+
+--R                          |      2                        |      2
+--R                         \|tan(x)  + 1                   \|tan(x)  + 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 31
+
+--S 32 of 134
+yx:=ode8a.particular
+--R
+--R                                 +-------+
+--R                   2             |   1
+--R         (- 2cos(x)  + 2cos(x))  |-------
+--R                                4|      4
+--R                                \|cos(x)
+--R   (32)  --------------------------------
+--R                   +-----------+
+--R                   |      2
+--R                  \|tan(x)  + 1
+--R                                                     Type: Expression Integer
+--E 32
+
+--S 33 of 134
+ode8expr:=D(yx,x) + yx*tan(x) - sin(2*x)
+--R
+--R                           +-------+3 +-----------+
+--R                 3         |   1      |      2
+--R         - cos(x) sin(2x)  |-------  \|tan(x)  + 1 + 2sin(x)
+--R                          4|      4
+--R                          \|cos(x)
+--R   (33)  ---------------------------------------------------
+--R                            +-------+3 +-----------+
+--R                         3  |   1      |      2
+--R                   cos(x)   |-------  \|tan(x)  + 1
+--R                           4|      4
+--R                           \|cos(x)
+--R                                                     Type: Expression Integer
+--E 33
+
+--S 34 of 134
+ode9 := D(y(x),x) - (sin(log(x)) + cos(log(x)) +a)*y(x)
+--R
+--R          ,
+--R   (34)  y (x) - y(x)sin(log(x)) - y(x)cos(log(x)) - a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 34
+
+--S 35 of 134
+ode9a:=solve(ode9,y,x)
+--R
+--R                                  x sin(log(x)) + a x
+--R   (35)  [particular= 0,basis= [%e                   ]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 35
+
+--S 36 of 134
+yx:=ode9a.particular
+--R
+--R   (36)  0
+--R                                                     Type: Expression Integer
+--E 36
+
+--S 37 of 134
+ode9expr:=D(yx,x) - (sin(log(x)) + cos(log(x)) +a)*yx
+--R
+--R   (37)  0
+--R                                                     Type: Expression Integer
+--E 37
+
+--S 38 of 134
+ode10 := D(y(x),x) + D(f(x),x)*y(x) - f(x)*D(f(x),x)
+--R
+--R          ,                    ,
+--R   (38)  y (x) + (y(x) - f(x))f (x)
+--R
+--R                                                     Type: Expression Integer
+--E 38
+
+--S 39 of 134
+ode10a:=solve(ode10,y,x)
+--R 
+--R 
+--R   >> Error detected within library code:
+--R   Function not supported by Risch d.e.
+--R
+--R   Continuing to read the file...
+--R
+--E 39
+
+--S 40 of 134
+ode11 := D(y(x),x)  + f(x)*y(x) - g(x)
+--R
+--R          ,
+--R   (39)  y (x) + f(x)y(x) - g(x)
+--R
+--R                                                     Type: Expression Integer
+--E 40
+
+--S 41 of 134
+ode11a:=solve(ode11,y,x)
+--R 
+--R 
+--R   >> Error detected within library code:
+--R   Function not supported by Risch d.e.
+--R
+--R   Continuing to read the file...
+--R
+--E 41
+
+--S 42 of 134
+ode12 := D(y(x),x) + y(x)**2 - 1
+--R
+--R          ,          2
+--R   (40)  y (x) + y(x)  - 1
+--R
+--R                                                     Type: Expression Integer
+--E 42
+
+--S 43 of 134
+yx:=solve(ode12,y,x)
+--R
+--R         - log(y(x) + 1) + log(y(x) - 1) + 2x
+--R   (41)  ------------------------------------
+--R                           2
+--R                                          Type: Union(Expression Integer,...)
+--E 43
+
+--S 44 of 134
+ode12expr:=D(yx,x) + yx**2 - 1
+--R
+--R   (42)
+--R         ,           2                  2
+--R       4y (x) + (y(x)  - 1)log(y(x) + 1)
+--R
+--R     + 
+--R                2                            2
+--R       ((- 2y(x)  + 2)log(y(x) - 1) - 4x y(x)  + 4x)log(y(x) + 1)
+--R     + 
+--R          2                  2           2                        2    2     2
+--R     (y(x)  - 1)log(y(x) - 1)  + (4x y(x)  - 4x)log(y(x) - 1) + 4x y(x)  - 4x
+--R  /
+--R          2
+--R     4y(x)  - 4
+--R                                                     Type: Expression Integer
+--E 44
+
+--S 45 of 134
+ode13 := D(y(x),x) + y(x)**2 - a*x - b
+--R
+--R          ,          2
+--R   (43)  y (x) + y(x)  - a x - b
+--R
+--R                                                     Type: Expression Integer
+--E 45
+
+--S 46 of 134
+ode13a:=solve(ode13,y,x)
+--R
+--R   (44)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 46
+
+--S 47 of 134
+ode14 := D(y(x),x) + y(x)**2 + a*x**m
+--R 
+--R
+--R          ,         m       2
+--R   (45)  y (x) + a x  + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 47
+
+--S 48 of 134
+ode14a:=solve(ode14,y,x)
+--R
+--R   (46)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 48
+
+--S 49 of 134
+ode15 := D(y(x),x) + y(x)**2 - 2*x**2*y(x) + x**4 -2*x-1
+--R 
+--R
+--R          ,          2     2        4
+--R   (47)  y (x) + y(x)  - 2x y(x) + x  - 2x - 1
+--R
+--R                                                     Type: Expression Integer
+--E 49
+
+--S 50 of 134
+yx:=solve(ode15,y,x)
+--R
+--R                     2
+--R             y(x) - x  + 1
+--R   (48)  ---------------------
+--R                    2       2x
+--R         (2y(x) - 2x  - 2)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 50
+
+--S 51 of 134
+ode15expr:=D(yx,x) + yx**2 - 2*x**2*yx + x**4 -2*x-1
+--R
+--R   (49)
+--R            2x ,
+--R       - 4%e  y (x)
+--R
+--R     + 
+--R              4              2        6     4      3     2                    8
+--R           (4x  - 8x - 4)y(x)  + (- 8x  - 8x  + 16x  + 8x  + 16x + 8)y(x) + 4x
+--R         + 
+--R             6     5      3     2
+--R           8x  - 8x  - 16x  - 8x  - 8x - 4
+--R      *
+--R            2x 2
+--R         (%e  )
+--R     + 
+--R             2         2      4     2          6     4     2            2x
+--R       ((- 4x  - 4)y(x)  + (8x  + 8x )y(x) - 4x  - 4x  + 4x  + 8x + 4)%e
+--R     + 
+--R           2        2             4     2
+--R       y(x)  + (- 2x  + 2)y(x) + x  - 2x  + 1
+--R  /
+--R           2        2              4     2        2x 2
+--R     (4y(x)  + (- 8x  - 8)y(x) + 4x  + 8x  + 4)(%e  )
+--R                                                     Type: Expression Integer
+--E 51
+
+--S 52 of 134
+ode16 := D(y(x),x) + y(x)**2 +(x*y(x)-1)*f(x)
+--R
+--R          ,          2
+--R   (50)  y (x) + y(x)  + x f(x)y(x) - f(x)
+--R
+--R                                                     Type: Expression Integer
+--E 52
+
+--S 53 of 134
+ode16a:=solve(ode16,y,x)
+--R
+--R   (51)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 53
+
+--S 54 of 134
+ode17 := D(y(x),x) - y(x)**2 -3*y(x) + 4 
+--R 
+--R
+--R          ,          2
+--R   (52)  y (x) - y(x)  - 3y(x) + 4
+--R
+--R                                                     Type: Expression Integer
+--E 54
+
+--S 55 of 134
+yx:=solve(ode17,y,x)
+--R 
+--R
+--R         - log(y(x) + 4) + log(y(x) - 1) - 5x
+--R   (53)  ------------------------------------
+--R                           5
+--R                                          Type: Union(Expression Integer,...)
+--E 55
+
+--S 56 of 134
+ode17expr:=D(yx,x) - yx**2 -3*yx + 4 
+--R
+--R   (54)
+--R          ,             2                          2
+--R       25y (x) + (- y(x)  - 3y(x) + 4)log(y(x) + 4)
+--R
+--R     + 
+--R                 2                                             2
+--R           (2y(x)  + 6y(x) - 8)log(y(x) - 1) + (- 10x + 15)y(x)
+--R         + 
+--R           (- 30x + 45)y(x) + 40x - 60
+--R      *
+--R         log(y(x) + 4)
+--R     + 
+--R              2                          2
+--R       (- y(x)  - 3y(x) + 4)log(y(x) - 1)
+--R     + 
+--R                      2
+--R       ((10x - 15)y(x)  + (30x - 45)y(x) - 40x + 60)log(y(x) - 1)
+--R     + 
+--R           2                2         2                         2
+--R     (- 25x  + 75x + 75)y(x)  + (- 75x  + 225x + 225)y(x) + 100x  - 300x - 300
+--R  /
+--R           2
+--R     25y(x)  + 75y(x) - 100
+--R                                                     Type: Expression Integer
+--E 56
+
+--S 57 of 134
+ode18 := D(y(x),x) - y(x)**2 - x*y(x) - x + 1 
+--R 
+--R
+--R          ,          2
+--R   (55)  y (x) - y(x)  - x y(x) - x + 1
+--R
+--R                                                     Type: Expression Integer
+--E 57
+
+--S 58 of 134
+yx:=solve(ode18,y,x)
+--R 
+--R
+--R                          2
+--R                       - x  + 4x
+--R                       ---------   x
+--R                           2     ++          1
+--I         (- y(x) - 1)%e          |   - ------------- d%N  + 1
+--R                                ++           2
+--I                                         - %N  + 4%N
+--R                                         -----------
+--R                                              2
+--R                                       %e
+--R   (56)  ----------------------------------------------------
+--R                                        2
+--R                                     - x  + 4x
+--R                                     ---------
+--R                                         2
+--R                         (y(x) + 1)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 58
+
+--S 59 of 134
+ode18expr:=D(yx,x) - yx**2 - x*yx - x + 1 
+--R   (57)
+--R                                  2      2
+--R                               - x  + 4x
+--R                               ---------     x                     2
+--R              2                    2       ++          1
+--I       (- y(x)  - 2y(x) - 1)(%e         )  |   - ------------- d%H
+--R                                          ++           2
+--I                                                   - %H  + 4%H
+--R                                                   -----------
+--R                                                        2
+--R                                                 %e
+--R     + 
+--R                                       2      2                   2
+--R                                    - x  + 4x                  - x  + 4x
+--R                                    ---------                  ---------
+--R                 2                      2                          2
+--R         ((x y(x)  + 2x y(x) + x)(%e         )  + (2y(x) + 2)%e         )
+--R      *
+--R            x
+--R          ++          1
+--I          |   - ------------- d%H
+--R         ++           2
+--I                  - %H  + 4%H
+--R                  -----------
+--R                       2
+--R                %e
+--R     + 
+--R              2
+--R           - x  + 4x
+--R           ---------
+--R               2     ,
+--R       - %e         y (x)
+--R
+--R     + 
+--R                                                      2      2
+--R                                                   - x  + 4x
+--R                                                   ---------
+--R                     2                                 2
+--R       ((- x + 1)y(x)  + (- 2x + 2)y(x) - x + 1)(%e         )
+--R     + 
+--R                       2
+--R                    - x  + 4x
+--R                    ---------
+--R            2           2
+--R       (y(x)  - 1)%e          - 1
+--R  /
+--R                              2      2
+--R                           - x  + 4x
+--R                           ---------
+--R          2                    2
+--R     (y(x)  + 2y(x) + 1)(%e         )
+--R                                                     Type: Expression Integer
+--E 59
+
+--S 60 of 134
+ode19 := D(y(x),x) - (y(x) + x)**2
+--R 
+--R
+--R          ,          2              2
+--R   (58)  y (x) - y(x)  - 2x y(x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 60
+
+--S 61 of 134
+yx:=solve(ode19,y,x)
+--R 
+--R
+--R                             +---+
+--R                   - y(x) + \|- 1  - x
+--R   (59)  --------------------------------------
+--R                                          +---+
+--R            +---+          +---+       2x\|- 1
+--R         (2\|- 1 y(x) + 2x\|- 1  - 2)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 61
+
+--S 62 of 134
+ode19expr := D(yx,x) - (yx + x)**2
+--R
+--R   (60)
+--R               +---+
+--R            2x\|- 1  ,
+--R       - 4%e        y (x)
+--R
+--R     + 
+--R              2    2        2 +---+     3          3 +---+     4     2
+--R         (- 4x y(x)  + (- 8x \|- 1  - 8x )y(x) - 8x \|- 1  - 4x  + 4x )
+--R      *
+--R               +---+ 2
+--R            2x\|- 1
+--R         (%e        )
+--R     + 
+--R                 +---+         2        2 +---+                  3       +---+
+--R           (- 4x\|- 1  + 4)y(x)  + (- 8x \|- 1  + 8x)y(x) + (- 4x  - 4x)\|- 1
+--R         + 
+--R             2
+--R           4x
+--R      *
+--R              +---+
+--R           2x\|- 1
+--R         %e
+--R     + 
+--R           2        +---+                +---+    2
+--R       y(x)  + (- 2\|- 1  + 2x)y(x) - 2x\|- 1  + x  - 1
+--R  /
+--R                                                             +---+ 2
+--R           2      +---+                +---+     2        2x\|- 1
+--R     (4y(x)  + (8\|- 1  + 8x)y(x) + 8x\|- 1  + 4x  - 4)(%e        )
+--R                                                     Type: Expression Integer
+--E 62
+
+--S 63 of 134
+ode20 := D(y(x),x) - y(x)**2 +(x**2 + 1)*y(x) - 2*x 
+--R 
+--R
+--R          ,          2     2
+--R   (61)  y (x) - y(x)  + (x  + 1)y(x) - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 63
+
+--S 64 of 134
+yx:=solve(ode20,y,x)
+--R
+--R                               3
+--R                            - x  - 3x
+--R                            ---------   x
+--R                    2           3     ++          1
+--I         (- y(x) + x  + 1)%e          |   - ------------- d%H  + 1
+--R                                     ++           3
+--I                                              - %H  - 3%H
+--R                                              -----------
+--R                                                   3
+--R                                            %e
+--R   (62)  ---------------------------------------------------------
+--R                                             3
+--R                                          - x  - 3x
+--R                                          ---------
+--R                                  2           3
+--R                         (y(x) - x  - 1)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 64
+
+--S 65 of 134
+ode20expr:=D(yx,x) - yx**2 +(x**2 + 1)*yx - 2*x 
+--R
+--R   (63)
+--R                                                       3      2
+--R                                                    - x  - 3x
+--R                                                    ---------
+--R                2      2             4     2            3
+--R         (- y(x)  + (2x  + 2)y(x) - x  - 2x  - 1)(%e         )
+--R      *
+--R            x                     2
+--R          ++          1
+--I          |   - ------------- d%H
+--R         ++           3
+--I                  - %H  - 3%H
+--R                  -----------
+--R                       3
+--R                %e
+--R     + 
+--R                  2         2      4     2             6     4     2
+--R             ((- x  - 1)y(x)  + (2x  + 4x  + 2)y(x) - x  - 3x  - 3x  - 1)
+--R          *
+--R                   3      2
+--R                - x  - 3x
+--R                ---------
+--R                    3
+--R             (%e         )
+--R         + 
+--R                                 3
+--R                              - x  - 3x
+--R                              ---------
+--R                      2           3
+--R           (2y(x) - 2x  - 2)%e
+--R      *
+--R            x
+--R          ++          1
+--I          |   - ------------- d%H
+--R         ++           3
+--I                  - %H  - 3%H
+--R                  -----------
+--R                       3
+--R                %e
+--R     + 
+--R              3
+--R           - x  - 3x
+--R           ---------
+--R               3     ,
+--R       - %e         y (x)
+--R
+--R     + 
+--R                                                           3      2
+--R                                                        - x  - 3x
+--R                                                        ---------
+--R                 2      3               5     3             3
+--R       (- 2x y(x)  + (4x  + 4x)y(x) - 2x  - 4x  - 2x)(%e         )
+--R     + 
+--R                                       3
+--R                                    - x  - 3x
+--R                                    ---------
+--R            2    4     2                3
+--R       (y(x)  - x  - 2x  + 2x - 1)%e          - 1
+--R  /
+--R                                                   3      2
+--R                                                - x  - 3x
+--R                                                ---------
+--R          2        2             4     2            3
+--R     (y(x)  + (- 2x  - 2)y(x) + x  + 2x  + 1)(%e         )
+--R                                                     Type: Expression Integer
+--E 65
+
+--S 66 of 134
+ode21 := D(y(x),x) - y(x)**2 +y(x)*sin(x) - cos(x) 
+--R 
+--R
+--R          ,                                2
+--R   (64)  y (x) + y(x)sin(x) - cos(x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 66
+
+--S 67 of 134
+ode21a:=solve(ode21,y,x)
+--R 
+--R
+--R   (65)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 67
+
+--S 68 of 134
+ode22 := D(y(x),x) - y(x)**2 -y(x)*sin(2*x) - cos(2*x) 
+--R 
+--R
+--R          ,                                  2
+--R   (66)  y (x) - y(x)sin(2x) - cos(2x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 68
+
+--S 69 of 134
+ode22a:=solve(ode22,y,x)
+--R 
+--R
+--R   (67)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 69
+
+--S 70 of 134
+ode23 := D(y(x),x) + a*y(x)**2 - b
+--R 
+--R
+--R          ,            2
+--R   (68)  y (x) + a y(x)  - b
+--R
+--R                                                     Type: Expression Integer
+--E 70
+
+--S 71 of 134
+yx:=solve(ode23,y,x)
+--R 
+--R
+--R                    2      +---+
+--R             (a y(x)  + b)\|a b  - 2a b y(x)       +---+
+--R         log(-------------------------------) + 2x\|a b
+--R                             2
+--R                       a y(x)  - b
+--R   (69)  -----------------------------------------------
+--R                               +---+
+--R                             2\|a b
+--R                                          Type: Union(Expression Integer,...)
+--E 71
+
+--S 72 of 134
+ode23expr := D(yx,x) + a*yx**2 - b
+--R
+--R   (70)
+--R                                         2      +---+             2
+--R          ,             2         (a y(x)  + b)\|a b  - 2a b y(x)
+--R       4by (x) + (a y(x)  - b)log(-------------------------------)
+--R                                                  2
+--R                                            a y(x)  - b
+--R     + 
+--R                                           2      +---+
+--R                 2         +---+    (a y(x)  + b)\|a b  - 2a b y(x)
+--R       (4a x y(x)  - 4b x)\|a b log(-------------------------------)
+--R                                                    2
+--R                                              a y(x)  - b
+--R     + 
+--R          2   2       2            2       2 2     3     2
+--R       (4a b x  - 4a b  + 4a b)y(x)  - 4a b x  + 4b  - 4b
+--R  /
+--R              2     2
+--R     4a b y(x)  - 4b
+--R                                                     Type: Expression Integer
+--E 72
+
+--S 73 of 134
+ode24 := D(y(x),x) + a*y(x)**2 - b*x**nu
+--R 
+--R
+--R          ,         nu         2
+--R   (71)  y (x) - b x   + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 73
+
+--S 74 of 134
+ode24a:=solve(ode24,y,x)
+--R 
+--R
+--R   (72)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 74
+
+--S 75 of 134
+ode25 := D(y(x),x) + a*y(x)**2 - b*x**(2*nu) - c*x**(nu-1)
+--R 
+--R
+--R          ,         2nu      nu - 1         2
+--R   (73)  y (x) - b x    - c x       + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 75
+
+--S 76 of 134
+ode25expr:=solve(ode25,y,x)
+--R 
+--R
+--R   (74)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 76
+
+--S 77 of 134
+ode26 := D(y(x),x) - (A*y(x) - a)*(B*y(x) - b)
+--R 
+--R
+--R          ,              2
+--R   (75)  y (x) - A B y(x)  + (A b + B a)y(x) - a b
+--R
+--R                                                     Type: Expression Integer
+--E 77
+
+--S 78 of 134
+yx:=solve(ode26,y,x)
+--R 
+--R
+--R         log(B y(x) - b) - log(A y(x) - a) + (- A b + B a)x
+--R   (76)  --------------------------------------------------
+--R                              A b - B a
+--R                                          Type: Union(Expression Integer,...)
+--E 78
+
+--S 79 of 134
+ode26expr := D(yx,x) - (A*yx - a)*(B*yx - b)
+--R
+--R   (77)
+--R         2 2               2 2  ,
+--R       (A b  - 2A B a b + B a )y (x)
+--R
+--R     + 
+--R           2 2    2     2         2                                2
+--R       (- A B y(x)  + (A B b + A B a)y(x) - A B a b)log(B y(x) - b)
+--R     + 
+--R              2 2    2        2          2
+--R           (2A B y(x)  + (- 2A B b - 2A B a)y(x) + 2A B a b)log(A y(x) - a)
+--R         + 
+--R               3 2      2 3       3   2      3 2     2
+--R           ((2A B b - 2A B a)x + A B b  - A B a )y(x)
+--R         + 
+--R                 3   2       3 2      3 3    2     2      2 2     3 3
+--R           ((- 2A B b  + 2A B a )x - A b  - A B a b  + A B a b + B a )y(x)
+--R         + 
+--R              2     2       2 2       2   3    2 3
+--R           (2A B a b  - 2A B a b)x + A a b  - B a b
+--R      *
+--R         log(B y(x) - b)
+--R     + 
+--R           2 2    2     2         2                                2
+--R       (- A B y(x)  + (A B b + A B a)y(x) - A B a b)log(A y(x) - a)
+--R     + 
+--R                 3 2      2 3       3   2      3 2     2
+--R           ((- 2A B b + 2A B a)x - A B b  + A B a )y(x)
+--R         + 
+--R               3   2       3 2      3 3    2     2      2 2     3 3
+--R           ((2A B b  - 2A B a )x + A b  + A B a b  - A B a b - B a )y(x)
+--R         + 
+--R                2     2       2 2       2   3    2 3
+--R           (- 2A B a b  + 2A B a b)x - A a b  + B a b
+--R      *
+--R         log(A y(x) - a)
+--R     + 
+--R               4 2 2     3 3       2 4 2  2
+--R           (- A B b  + 2A B a b - A B a )x
+--R         + 
+--R               4   3    3 2   2    2 3 2       4 3      3     3
+--R           (- A B b  + A B a b  + A B a b - A B a )x - A B a b
+--R         + 
+--R              2 2 2    3   2         3 3     2 2         3 2
+--R           (2A B a  - A B)b  + (- A B a  + 2A B a)b - A B a
+--R      *
+--R             2
+--R         y(x)
+--R     + 
+--R             4   3    3 2   2    2 3 2       4 3  2     4 4     2 2 2 2    4 4
+--R           (A B b  - A B a b  - A B a b + A B a )x  + (A b  - 2A B a b  + B a )x
+--R         + 
+--R            3   4       2   2    3  3         2 3    2     2     3 4      2 2
+--R           A a b  + (- A B a  + A )b  + (- A B a  - A B a)b  + (B a  - A B a )b
+--R         + 
+--R            3 3
+--R           B a
+--R      *
+--R         y(x)
+--R     + 
+--R           3     3     2 2 2 2      3 3   2
+--R       (- A B a b  + 2A B a b  - A B a b)x
+--R     + 
+--R           3   4    2   2 3      2 3 2    3 4       2 2 4          3    2   3
+--R       (- A a b  + A B a b  + A B a b  - B a b)x - A a b  + (2A B a  - A a)b
+--R     + 
+--R           2 4         2  2    2 3
+--R       (- B a  + 2A B a )b  - B a b
+--R  /
+--R         3   2     2 2         3 2     2
+--R       (A B b  - 2A B a b + A B a )y(x)
+--R     + 
+--R           3 3    2     2      2 2     3 3         2   3         2 2    2 3
+--R       (- A b  + A B a b  + A B a b - B a )y(x) + A a b  - 2A B a b  + B a b
+--R                                                     Type: Expression Integer
+--E 79
+
+--S 80 of 134
+ode27 := D(y(x),x) + a*y(x)*(y(x)-x) - 1
+--R 
+--R
+--R          ,            2
+--R   (78)  y (x) + a y(x)  - a x y(x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 80
+
+--S 81 of 134
+ode27a:=solve(ode27,y,x)
+--R 
+--R
+--R                          2
+--R                       a x
+--R                       ----   x
+--R                         2  ++     a
+--I         (- y(x) + x)%e     |   ------ d%N  + 1
+--R                           ++       2
+--I                                  %N a
+--R                                  ----
+--R                                    2
+--R                                %e
+--R   (79)  --------------------------------------
+--R                                   2
+--R                                a x
+--R                                ----
+--R                                  2
+--R                    (y(x) - x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 81
+
+--S 82 of 134
+ode28 := D(y(x),x) + x*y(x)**2 -x**3*y(x) - 2*x 
+--R 
+--R
+--R          ,            2    3
+--R   (80)  y (x) + x y(x)  - x y(x) - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 82
+
+--S 83 of 134
+ode28a:=solve(ode28,y,x)
+--R 
+--R
+--R                         4
+--R                        x
+--R                        --   x
+--I                    2    4 ++    %N
+--I         (- y(x) + x )%e   |   ----- d%N  + 1
+--R                          ++       4
+--I                                 %N
+--R                                 ---
+--R                                  4
+--R                               %e
+--R   (81)  ------------------------------------
+--R                                  4
+--R                                 x
+--R                                 --
+--R                             2    4
+--R                    (y(x) - x )%e
+--R                                          Type: Union(Expression Integer,...)
+--E 83
+
+--S 84 of 134
+ode29 := D(y(x),x) - x*y(x)**2 - 3*x*y(x) 
+--R 
+--R
+--R          ,            2
+--R   (82)  y (x) - x y(x)  - 3x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 84
+
+--S 85 of 134
+yx:=solve(ode29,y,x)
+--R 
+--R
+--R                                           2
+--R         - 2log(y(x) + 3) + 2log(y(x)) - 3x
+--R   (83)  -----------------------------------
+--R                          6
+--R                                          Type: Union(Expression Integer,...)
+--E 85
+
+--S 86 of 134
+ode29expr := D(yx,x) - x*yx**2 - 3*x*yx 
+--R
+--R   (84)
+--R          ,                2                         2
+--R       36y (x) + (- 4x y(x)  - 12x y(x))log(y(x) + 3)
+--R
+--R     + 
+--R                   2                              3           2
+--R           (8x y(x)  + 24x y(x))log(y(x)) + (- 12x  + 36x)y(x)
+--R         + 
+--R                 3
+--R           (- 36x  + 108x)y(x)
+--R      *
+--R         log(y(x) + 3)
+--R     + 
+--R                 2                     2
+--R       (- 4x y(x)  - 12x y(x))log(y(x))
+--R     + 
+--R            3           2       3
+--R       ((12x  - 36x)y(x)  + (36x  - 108x)y(x))log(y(x))
+--R     + 
+--R            5      3           2         5       3
+--R       (- 9x  + 54x  - 36x)y(x)  + (- 27x  + 162x  - 108x)y(x)
+--R  /
+--R           2
+--R     36y(x)  + 108y(x)
+--R                                                     Type: Expression Integer
+--E 86
+
+--S 87 of 134
+ode30 := D(y(x),x) + x**(-a-1)*y(x)**2 - x**a
+--R 
+--R
+--R          ,       a       2 - a - 1
+--R   (85)  y (x) - x  + y(x) x
+--R
+--R                                                     Type: Expression Integer
+--E 87
+
+--S 88 of 134
+ode30a:=solve(ode30,y,x)
+--R 
+--R
+--R   (86)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 88
+
+--S 89 of 134
+ode31 := D(y(x),x) - a*x**n*(y(x)**2+1) 
+--R 
+--R
+--R          ,               2      n
+--R   (87)  y (x) + (- a y(x)  - a)x
+--R
+--R                                                     Type: Expression Integer
+--E 89
+
+--S 90 of 134
+yx:=solve(ode31,y,x)
+--R 
+--R
+--R                 n log(x)
+--R         - a x %e         + (n + 1)atan(y(x))
+--R   (88)  ------------------------------------
+--R                         n + 1
+--R                                          Type: Union(Expression Integer,...)
+--E 90
+
+--S 91 of 134
+ode31expr := D(yx,x) - a*x**n*(yx**2+1) 
+--R
+--R   (89)
+--R         2           ,          3 2    2    3 2  n   n log(x) 2
+--R       (n  + 2n + 1)y (x) + (- a x y(x)  - a x )x (%e        )
+--R
+--R     + 
+--R               2      2       2      2      2    n
+--R           ((2a n + 2a )x y(x)  + (2a n + 2a )x)x atan(y(x))
+--R         + 
+--R                 2                2      2
+--R           (- a n  - 2a n - a)y(x)  - a n  - 2a n - a
+--R      *
+--R           n log(x)
+--R         %e
+--R     + 
+--R              2                2      2             n          2
+--R       ((- a n  - 2a n - a)y(x)  - a n  - 2a n - a)x atan(y(x))
+--R     + 
+--R              2                2      2             n
+--R       ((- a n  - 2a n - a)y(x)  - a n  - 2a n - a)x
+--R  /
+--R       2              2    2
+--R     (n  + 2n + 1)y(x)  + n  + 2n + 1
+--R                                                     Type: Expression Integer
+--E 91
+
+--S 92 of 134
+ode32 := D(y(x),x) + y(x)**2*sin(x) - 2*sin(x)/cos(x)**2
+--R 
+--R
+--R               2 ,           2      2
+--R         cos(x) y (x) + (y(x) cos(x)  - 2)sin(x)
+--R
+--R   (90)  ---------------------------------------
+--R                               2
+--R                         cos(x)
+--R                                                     Type: Expression Integer
+--E 92
+
+--S 93 of 134
+yx:=solve(ode32,y,x)
+--R 
+--R
+--R   (91)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 93
+
+--S 94 of 134
+ode33 := D(y(x),x) - y(x)**2*D(f(x),x)/g(x) + D(g(x),x)/f(x)
+--R
+--R                  ,           ,              2 ,
+--R         f(x)g(x)y (x) + g(x)g (x) - f(x)y(x) f (x)
+--R
+--R   (92)  ------------------------------------------
+--R                          f(x)g(x)
+--R                                                     Type: Expression Integer
+--E 94
+
+--S 95 of 134
+ode33a:=solve(ode33,y,x)
+--R
+--R   (93)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 95
+
+--S 96 of 134
+ode34 := D(y(x),x) + f(x)*y(x)**2 + g(x)*y(x) 
+--R
+--R          ,              2
+--R   (94)  y (x) + f(x)y(x)  + g(x)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 96
+
+--S 97 of 134
+ode34a:=solve(ode34,y,x)
+--R 
+--R 
+--R   >> Error detected within library code:
+--R   Function not supported by Risch d.e.
+--R
+--R   Continuing to read the file...
+--R
+--E 97
+
+--S 98 of 134
+ode35 := D(y(x),x) + f(x)*(y(x)**2 + 2*a*y(x) +b) 
+--R
+--R          ,              2
+--R   (95)  y (x) + f(x)y(x)  + 2a f(x)y(x) + b f(x)
+--R
+--R                                                     Type: Expression Integer
+--E 98
+
+--S 99 of 134
+yx:=solve(ode35,y,x)
+--R
+--R   (96)
+--R         +--------+   x
+--R         |       2  ++
+--I       2\|- b + a   |   f(%H)d%H
+--R                   ++
+--R     + 
+--R                                     +--------+
+--R              2                   2  |       2            2                 3
+--R         (y(x)  + 2a y(x) - b + 2a )\|- b + a   + (2b - 2a )y(x) + 2a b - 2a
+--R     log(--------------------------------------------------------------------)
+--R                                      2
+--R                                  y(x)  + 2a y(x) + b
+--R  /
+--R       +--------+
+--R       |       2
+--R     2\|- b + a
+--R                                          Type: Union(Expression Integer,...)
+--E 99
+
+--S 100 of 134
+ode35expr := D(yx,x) + f(x)*(yx**2 + 2*a*yx +b) 
+--R
+--R   (97)
+--R                  2         2             3               2     2
+--R         ((4b - 4a )f(x)y(x)  + (8a b - 8a )f(x)y(x) + (4b  - 4a b)f(x))
+--R      *
+--R          +--------+   x          2
+--R          |       2  ++
+--I         \|- b + a   |   f(%H)d%H
+--R                    ++
+--R     + 
+--R                      2         2             3               2     2
+--R             ((4b - 4a )f(x)y(x)  + (8a b - 8a )f(x)y(x) + (4b  - 4a b)f(x))
+--R          *
+--R             log
+--R                                                +--------+
+--R                         2                   2  |       2            2
+--R                    (y(x)  + 2a y(x) - b + 2a )\|- b + a   + (2b - 2a )y(x)
+--R                  + 
+--R                             3
+--R                    2a b - 2a
+--R               /
+--R                      2
+--R                  y(x)  + 2a y(x) + b
+--R         + 
+--R                           3         2       2       4
+--R                 (8a b - 8a )f(x)y(x)  + (16a b - 16a )f(x)y(x)
+--R               + 
+--R                      2     3
+--R                 (8a b  - 8a b)f(x)
+--R          *
+--R              +--------+
+--R              |       2
+--R             \|- b + a
+--R      *
+--R            x
+--R          ++
+--I          |   f(%H)d%H
+--R         ++
+--R     + 
+--R                  +--------+
+--R               2  |       2  ,
+--R       (4b - 4a )\|- b + a  y (x)
+--R
+--R     + 
+--R                                              +--------+
+--R                    2                         |       2
+--R         (- f(x)y(x)  - 2a f(x)y(x) - b f(x))\|- b + a
+--R      *
+--R           log
+--R                                              +--------+
+--R                       2                   2  |       2            2
+--R                  (y(x)  + 2a y(x) - b + 2a )\|- b + a   + (2b - 2a )y(x) + 2a b
+--R                + 
+--R                      3
+--R                  - 2a
+--R             /
+--R                    2
+--R                y(x)  + 2a y(x) + b
+--R        **
+--R           2
+--R     + 
+--R                    3         2      2      4                 2     3
+--R         ((4a b - 4a )f(x)y(x)  + (8a b - 8a )f(x)y(x) + (4a b  - 4a b)f(x))
+--R      *
+--R                                       +--------+
+--R                2                   2  |       2            2                 3
+--R           (y(x)  + 2a y(x) - b + 2a )\|- b + a   + (2b - 2a )y(x) + 2a b - 2a
+--R       log(--------------------------------------------------------------------)
+--R                                        2
+--R                                    y(x)  + 2a y(x) + b
+--R     + 
+--R              2        2           2         2
+--R           (4b  + (- 4a  + 4)b - 4a )f(x)y(x)
+--R         + 
+--R                2        3            3
+--R           (8a b  + (- 8a  + 8a)b - 8a )f(x)y(x)
+--R         + 
+--R              3        2      2     2
+--R           (4b  + (- 4a  + 4)b  - 4a b)f(x)
+--R      *
+--R          +--------+
+--R          |       2
+--R         \|- b + a
+--R  /
+--R                                                       +--------+
+--R              2     2             3          2     2   |       2
+--R     ((4b - 4a )y(x)  + (8a b - 8a )y(x) + 4b  - 4a b)\|- b + a
+--R                                                     Type: Expression Integer
+--E 100
+
+--S 101 of 134
+ode36 := D(y(x),x) + y(x)**3 + a*x*y(x)**2 
+--R 
+--R
+--R          ,          3           2
+--R   (98)  y (x) + y(x)  + a x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 101
+
+--S 102 of 134
+ode36a:=solve(ode36,y,x)
+--R 
+--R
+--R   (99)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 102
+
+--S 103 of 134
+ode37 := D(y(x),x) - y(x)**3 - a*exp(x)*y(x)**2
+--R
+--R           ,            2  x       3
+--R   (100)  y (x) - a y(x) %e  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 103
+
+--S 104 of 134
+ode37a:=solve(ode37,y,x)
+--R
+--R   (101)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 104
+
+--S 105 of 134
+ode38 := D(y(x),x) - a*y(x)**3 - b*x**(3/2)
+--R
+--R           ,          +-+         3
+--R   (102)  y (x) - b x\|x  - a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 105
+
+--S 106 of 134
+ode38a:=solve(ode38,y,x)
+--R
+--R   (103)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 106
+
+--S 107 of 134
+ode39 := D(y(x),x) - a3*y(x)**3 - a2*y(x)**2 - a1*y(x) - a0
+--R
+--R           ,             3          2
+--R   (104)  y (x) - a3 y(x)  - a2 y(x)  - a1 y(x) - a0
+--R
+--R                                                     Type: Expression Integer
+--E 107
+
+--S 108 of 134
+yx:=solve(ode39,y,x)
+--R 
+--R
+--R   (105)
+--R           ROOT
+--R                           2  2                     3             3      2  2
+--R                    (- 81a0 a3  + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2  + 3a1 a2 )
+--R                 *
+--R                         2
+--I                    %%CK0
+--R                + 
+--R                               2
+--R                  12a1 a3 - 4a2
+--R             /
+--R                    2  2                      3            3     2  2
+--R                27a0 a3  + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2  - a1 a2
+--R         + 
+--I           - %%CK0
+--R      *
+--R         log
+--R                           2     3          2  2           2         4   2
+--R                      162a0 a1 a3  + (- 54a0 a2  - 108a0 a1 a2 + 24a1 )a3
+--R                    + 
+--R                                 3       3  2            5      2  4
+--R                      (60a0 a1 a2  - 14a1 a2 )a3 - 8a0 a2  + 2a1 a2
+--R                 *
+--I                    %%CK0
+--R                + 
+--R                      2  3                       3   2           3      2  2
+--R                  81a0 a3  + (- 54a0 a1 a2 + 12a1 )a3  + (12a0 a2  - 3a1 a2 )a3
+--R             *
+--R                ROOT
+--R                                 2  2                     3             3
+--R                           - 81a0 a3  + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2
+--R                         + 
+--R                              2  2
+--R                           3a1 a2
+--R                      *
+--R                              2
+--I                         %%CK0
+--R                     + 
+--R                                    2
+--R                       12a1 a3 - 4a2
+--R                  /
+--R                         2  2                      3            3     2  2
+--R                     27a0 a3  + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2  - a1 a2
+--R            + 
+--R                       2     3          2  2           2         4   2
+--R                  162a0 a1 a3  + (- 54a0 a2  - 108a0 a1 a2 + 24a1 )a3
+--R                + 
+--R                             3       3  2            5      2  4
+--R                  (60a0 a1 a2  - 14a1 a2 )a3 - 8a0 a2  + 2a1 a2
+--R             *
+--R                     2
+--I                %%CK0
+--R            + 
+--R                          2  3                     3   2
+--R                    - 81a0 a3  + (54a0 a1 a2 - 12a1 )a3
+--R                  + 
+--R                              3      2  2
+--R                    (- 12a0 a2  + 3a1 a2 )a3
+--R             *
+--I                %%CK0
+--R            + 
+--R                      3             2      3                         2   2
+--R              (54a0 a3  - 18a1 a2 a3  + 4a2 a3)y(x) + (18a0 a2 - 12a1 )a3
+--R            + 
+--R                    2
+--R              2a1 a2 a3
+--R     + 
+--R           -
+--R              ROOT
+--R                                 2  2                     3             3
+--R                           - 81a0 a3  + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2
+--R                         + 
+--R                              2  2
+--R                           3a1 a2
+--R                    *
+--R                            2
+--I                       %%CK0
+--R                   + 
+--R                                  2
+--R                     12a1 a3 - 4a2
+--R                /
+--R                       2  2                      3            3     2  2
+--R                   27a0 a3  + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2  - a1 a2
+--R         + 
+--I           - %%CK0
+--R      *
+--R         log
+--R                             2     3        2  2           2         4   2
+--R                      - 162a0 a1 a3  + (54a0 a2  + 108a0 a1 a2 - 24a1 )a3
+--R                    + 
+--R                                   3       3  2            5      2  4
+--R                      (- 60a0 a1 a2  + 14a1 a2 )a3 + 8a0 a2  - 2a1 a2
+--R                 *
+--I                    %%CK0
+--R                + 
+--R                      2  3                     3   2             3      2  2
+--R                - 81a0 a3  + (54a0 a1 a2 - 12a1 )a3  + (- 12a0 a2  + 3a1 a2 )a3
+--R             *
+--R                ROOT
+--R                                 2  2                     3             3
+--R                           - 81a0 a3  + (54a0 a1 a2 - 12a1 )a3 - 12a0 a2
+--R                         + 
+--R                              2  2
+--R                           3a1 a2
+--R                      *
+--R                              2
+--I                         %%CK0
+--R                     + 
+--R                                    2
+--R                       12a1 a3 - 4a2
+--R                  /
+--R                         2  2                      3            3     2  2
+--R                     27a0 a3  + (- 18a0 a1 a2 + 4a1 )a3 + 4a0 a2  - a1 a2
+--R            + 
+--R                       2     3          2  2           2         4   2
+--R                  162a0 a1 a3  + (- 54a0 a2  - 108a0 a1 a2 + 24a1 )a3
+--R                + 
+--R                             3       3  2            5      2  4
+--R                  (60a0 a1 a2  - 14a1 a2 )a3 - 8a0 a2  + 2a1 a2
+--R             *
+--R                     2
+--I                %%CK0
+--R            + 
+--R                          2  3                     3   2
+--R                    - 81a0 a3  + (54a0 a1 a2 - 12a1 )a3
+--R                  + 
+--R                              3      2  2
+--R                    (- 12a0 a2  + 3a1 a2 )a3
+--R             *
+--I                %%CK0
+--R            + 
+--R                      3             2      3                         2   2
+--R              (54a0 a3  - 18a1 a2 a3  + 4a2 a3)y(x) + (18a0 a2 - 12a1 )a3
+--R            + 
+--R                    2
+--R              2a1 a2 a3
+--R     + 
+--I         2%%CK0
+--R      *
+--R         log
+--R                         2     3        2  2           2         4   2
+--R                  - 162a0 a1 a3  + (54a0 a2  + 108a0 a1 a2 - 24a1 )a3
+--R                + 
+--R                               3       3  2            5      2  4
+--R                  (- 60a0 a1 a2  + 14a1 a2 )a3 + 8a0 a2  - 2a1 a2
+--R             *
+--R                     2
+--I                %%CK0
+--R            + 
+--R                     2  3                       3   2           3      2  2
+--R                (81a0 a3  + (- 54a0 a1 a2 + 12a1 )a3  + (12a0 a2  - 3a1 a2 )a3)
+--R             *
+--I                %%CK0
+--R            + 
+--R                      3            2      3                        2   2
+--R              (27a0 a3  - 9a1 a2 a3  + 2a2 a3)y(x) + (9a0 a2 + 12a1 )a3
+--R            + 
+--R                       2        4
+--R              - 11a1 a2 a3 + 2a2
+--R     + 
+--R       - 2x
+--R  /
+--R     2
+--R                                          Type: Union(Expression Integer,...)
+--E 108
+
+--S 109 of 134
+ode40 := D(y(x),x) + 3*a*y(x)**3 + 6*a*x*y(x)**2
+--R
+--R           ,             3            2
+--R   (106)  y (x) + 3a y(x)  + 6a x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 109
+
+--S 110 of 134
+ode40a:=solve(ode40,y,x)
+--R
+--R   (107)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 110
+
+--S 111 of 134
+ode41 := D(y(x),x) + a*x*y(x)**3 + b*y(x)**2
+--R
+--R           ,              3         2
+--R   (108)  y (x) + a x y(x)  + b y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 111
+
+--S 112 of 134
+ode41a:=solve(ode41,y,x)
+--R
+--R   (109)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 112
+
+--S 113 of 134
+ode42 := D(y(x),x) - x*(x+2)*y(x)**3 - (x+3)*y(x)**2
+--R
+--R           ,          2          3                2
+--R   (110)  y (x) + (- x  - 2x)y(x)  + (- x - 3)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 113
+
+--S 114 of 134
+ode42a:=solve(ode42,y,x)
+--R
+--R   (111)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 114
+
+--S 115 of 134
+ode43 := D(y(x),x) + (3*a*x**2 + 4*a**2*x + b)*y(x)**3 + 3*x*y(x)**2
+--R
+--R           ,           2     2          3          2
+--R   (112)  y (x) + (3a x  + 4a x + b)y(x)  + 3x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 115
+
+--S 116 of 134
+ode43a:=solve(ode43,y,x)
+--R
+--R   (113)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 116
+
+--S 117 of 134
+ode44 := D(y(x),x) + 2*a*x**3*y(x)**3 + 2*x*y(x)
+--R
+--R           ,          3    3
+--R   (114)  y (x) + 2a x y(x)  + 2x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 117
+
+--S 118 of 134
+yx:=solve(ode44,y,x)
+--R
+--R               2         2
+--R          (2a x  + a)y(x)  + 2
+--R   (115)  --------------------
+--R                         2
+--R                    2  2x
+--R               2y(x) %e
+--R                                          Type: Union(Expression Integer,...)
+--E 118
+
+--S 119 of 134
+ode44expr := D(yx,x) + 2*a*x**3*yx**3 + 2*x*yx
+--R
+--R   (116)
+--R                    2 2                                               2 2
+--R              3   2x    ,              3            6          4    2x
+--R       - 8y(x) (%e   ) y (x) + ((- 8a x  + 4a x)y(x)  - 8x y(x) )(%e   )
+--R
+--R     + 
+--R          4 9      4 7     4 5    4 3     6       3 7      3 5     3 3     4
+--R       (8a x  + 12a x  + 6a x  + a x )y(x)  + (24a x  + 24a x  + 6a x )y(x)
+--R     + 
+--R           2 5      2 3     2       3
+--R       (24a x  + 12a x )y(x)  + 8a x
+--R  /
+--R                2 3
+--R          6   2x
+--R     4y(x) (%e   )
+--R                                                     Type: Expression Integer
+--E 119
+
+--S 120 of 134
+ode45 := D(y(x),x) + 2*(a**2*x**3 - b**2*x)*y(x)**3 + 3*b*y(x)**2
+--R
+--R           ,         2 3     2      3          2
+--R   (117)  y (x) + (2a x  - 2b x)y(x)  + 3b y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 120
+
+--S 121 of 134
+ode45a:=solve(ode45,y,x)
+--R
+--R   (118)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 121
+
+--S 122 of 134
+ode46 := D(y(x),x) - x**a*y(x)**3 + 3*y(x)**2 - x**(-a)*y(x) _
+              -x**(-2*a) + a*x**(-a-1)
+--R
+--R           ,          3 a        - a      - a - 1    - 2a        2
+--R   (119)  y (x) - y(x) x  - y(x)x    + a x        - x     + 3y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 122
+
+--S 123 of 134
+ode46a:=solve(ode46,y,x)
+--R
+--R   (120)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 123
+
+--S 124 of 134
+ode47 := D(y(x),x) - a*(x**n - x)*y(x)**3 - y(x)**2
+--R
+--R           ,            3 n           3       2
+--R   (121)  y (x) - a y(x) x  + a x y(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 124
+
+--S 125 of 134
+ode47a:=solve(ode47,y,x)
+--R
+--R   (122)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 125
+
+--S 126 of 134
+ode48 := D(y(x),x) - (a*x**n + b*x)*y(x)**3 - c*y(x)**2
+--R
+--R           ,            3 n           3         2
+--R   (123)  y (x) - a y(x) x  - b x y(x)  - c y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 126
+
+--S 127 of 134
+ode48a:=solve(ode48,y,x)
+--R
+--R   (124)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 127
+
+--S 128 of 134
+ode49 := D(y(x),x) + a*diff(phi(x),x)*y(x)**3 + 6*a*phi(x)*y(x)**2 + _
+          (2*a+1)*y(x)*diff(phi(x),x,x)/diff(phi(x),x) +2*(a+1)
+--R 
+--R   There are no library operations named phi 
+--R      Use HyperDoc Browse or issue
+--R                                )what op phi
+--R      to learn if there is any operation containing " phi " in its 
+--R      name.
+--R 
+--R   Cannot find a definition or applicable library operation named phi 
+--R      with argument type(s) 
+--R                                 Variable x
+--R      
+--R      Perhaps you should use "@" to indicate the required return type, 
+--R      or "$" to specify which version of the function you need.
+--E 128
+
+--S 129 of 134
+f1 := operator 'f1
+--R
+--R   (125)  f1
+--R                                                          Type: BasicOperator
+--E 129
+
+--S 130 of 134
+f2 := operator 'f2
+--R
+--R   (126)  f2
+--R                                                          Type: BasicOperator
+--E 130
+
+--S 131 of 134
+f3 := operator 'f3
+--R
+--R   (127)  f3
+--R                                                          Type: BasicOperator
+--E 131
+
+--S 132 of 134
+f0 := operator 'f0
+--R
+--R   (128)  f0
+--R                                                          Type: BasicOperator
+--E 132
+
+--S 133 of 134
+ode50 := D(y(x),x) - f3(x)*y(x)**3 - f2(x)*y(x)**2 - f1(x)*y(x) - f0(x)
+--R
+--R           ,               3            2
+--R   (129)  y (x) - f3(x)y(x)  - f2(x)y(x)  - f1(x)y(x) - f0(x)
+--R
+--R                                                     Type: Expression Integer
+--E 133
+
+--S 134 of 134
+ode50a:=solve(ode50,y,x)
+--R
+--R   (130)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 134
+
+)spool
+)lisp (bye)
+ 
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/kamke0.input.pdf b/src/axiom-website/CATS/kamke0.input.pdf
new file mode 100644
index 0000000..fab2930
Binary files /dev/null and b/src/axiom-website/CATS/kamke0.input.pdf differ
diff --git a/src/axiom-website/CATS/kamke1.input.pamphlet b/src/axiom-website/CATS/kamke1.input.pamphlet
new file mode 100644
index 0000000..c60b4e0
--- /dev/null
+++ b/src/axiom-website/CATS/kamke1.input.pamphlet
@@ -0,0 +1,2060 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke1.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the next 50 of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+<<*>>=
+)spool kamke1.output
+)set break resume
+)set mes auto off
+)clear all
+
+--S 1 of 120
+y:=operator 'y
+--R 
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 120
+f := operator 'f
+--R
+--R   (2)  f
+--R                                                          Type: BasicOperator
+--E 2
+
+--S 3 of 120
+g := operator 'g
+--R
+--R   (3)  g
+--R                                                          Type: BasicOperator
+--E 3
+
+--S 4 of 120
+h := operator 'h
+--R
+--R   (4)  h
+--R                                                          Type: BasicOperator
+--E 4
+
+--S 5 of 120
+ode51 := D(y(x),x) - (y(x)-f(x))*(y(x)-g(x))*(y(x)-(a*f(x)+b*g(x))/(a+b))*h(x)_
+           - D(f(x),x)*(y(x)-g(x))/(f(x)-g(x)) _
+           - D(g(x),x)*(y(x)-f(x))/(g(x)-f(x))
+--R
+--R   (5)
+--R                                     ,                                    ,
+--R       ((b + a)g(x) + (- b - a)f(x))y (x) + ((- b - a)y(x) + (b + a)f(x))g (x)
+--R
+--R     + 
+--R                                     ,
+--R       ((b + a)y(x) + (- b - a)g(x))f (x)
+--R
+--R     + 
+--R                                            3
+--R       ((- b - a)g(x) + (b + a)f(x))h(x)y(x)
+--R     + 
+--R                    2                                     2         2
+--R       ((2b + a)g(x)  + (- b + a)f(x)g(x) + (- b - 2a)f(x) )h(x)y(x)
+--R     + 
+--R                3                     2               2             3
+--R       (- b g(x)  + (- b - 2a)f(x)g(x)  + (2b + a)f(x) g(x) + a f(x) )h(x)y(x)
+--R     + 
+--R                  3                2    2         3
+--R       (b f(x)g(x)  + (- b + a)f(x) g(x)  - a f(x) g(x))h(x)
+--R  /
+--R     (b + a)g(x) + (- b - a)f(x)
+--R                                                     Type: Expression Integer
+--E 5
+
+--S 6 of 120
+ode51a:=solve(ode51,y,x)
+--R
+--R   (6)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 6
+
+--S 7 of 120
+ode52 := D(y(x),x) - a*y(x)**n - b*x**(n/(1-n))
+--R
+--R                                 n
+--R                             - -----
+--R         ,            n        n - 1
+--R   (7)  y (x) - a y(x)  - b x
+--R
+--R                                                     Type: Expression Integer
+--E 7
+
+--S 8 of 120
+ode52a:=solve(ode52,y,x)
+--R
+--R   (8)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 8
+
+--S 9 of 120
+ode53 := D(y(x),x) - f(x)**(1-n)*D(g(x),x)*y(x)**n/(a*g(x)+b)**n _
+           - D(f(x),x)*y(x)/f(x) - f(x)*D(g(x),x)
+--R
+--R   (9)
+--R                       n ,
+--R       f(x)(a g(x) + b) y (x)
+--R
+--R     + 
+--R                - n + 1    n       2            n  ,                      n ,
+--R     (- f(x)f(x)       y(x)  - f(x) (a g(x) + b) )g (x) - y(x)(a g(x) + b) f (x)
+--R
+--R  /
+--R                     n
+--R     f(x)(a g(x) + b)
+--R                                                     Type: Expression Integer
+--E 9
+
+--S 10 of 120
+ode53a:=solve(ode53,y,x)
+--R
+--R   (10)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 10
+
+--S 11 of 120
+ode54 := D(y(x),x) - a**n*f(x)**(1-n)*D(g(x),x)*y(x)**n - _
+          D(f(x),x)*y(x)/f(x) - f(x)*D(g(x),x)
+--R
+--R              ,              n    - n + 1    n       2  ,           ,
+--R         f(x)y (x) + (- f(x)a f(x)       y(x)  - f(x) )g (x) - y(x)f (x)
+--R
+--R   (11)  ---------------------------------------------------------------
+--R                                       f(x)
+--R                                                     Type: Expression Integer
+--E 11
+
+--S 12 of 120
+ode54a:=solve(ode54,y,x)
+--R
+--R   (12)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 12
+
+--S 13 of 120
+ode55 := D(y(x),x) - f(x)*y(x)**n - g(x)*y(x) - h(x)
+--R
+--R          ,              n
+--R   (13)  y (x) - f(x)y(x)  - g(x)y(x) - h(x)
+--R
+--R                                                     Type: Expression Integer
+--E 13
+
+--S 14 of 120
+ode55a:=solve(ode55,y,x)
+--R
+--R   (14)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 14
+
+--S 15 of 120
+ode56 := D(y(x),x) - f(x)*y(x)**a - g(x)*y(x)**b
+--R
+--R          ,              b           a
+--R   (15)  y (x) - g(x)y(x)  - f(x)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 15
+
+--S 16 of 120
+ode5a:=solve(ode56,y,x)
+--R
+--R   (16)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 16
+
+--S 17 of 120
+ode57 := D(y(x),x) - sqrt(abs(y(x)))
+--R
+--R            +---------+    ,
+--R   (17)  - \|abs(y(x))  + y (x)
+--R
+--R                                                     Type: Expression Integer
+--E 17
+
+--S 18 of 120
+yx:=solve(ode57,y,x)
+--R
+--R             +---------+
+--R         - x\|abs(y(x))  + 2y(x)
+--R   (18)  -----------------------
+--R                  +----+
+--R                 \|y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 18
+
+--S 19 of 120
+ode57expr := D(yx,x) - sqrt(abs(yx))
+--R
+--R   (19)
+--R                             +--------------------------+
+--R                             |      +---------+
+--R          +----+ +---------+ |    x\|abs(y(x))  - 2y(x)      ,    +---------+
+--R       - \|y(x) \|abs(y(x))  |abs(---------------------)  + y (x)\|abs(y(x))
+--R                             |            +----+
+--R                            \|           \|y(x)
+--R     + 
+--R       - abs(y(x))
+--R  /
+--R      +----+ +---------+
+--R     \|y(x) \|abs(y(x))
+--R                                                     Type: Expression Integer
+--E 19
+
+--S 20 of 120
+ode58 := D(y(x),x) - a*sqrt(y(x)) - b*x
+--R
+--R          ,        +----+
+--R   (20)  y (x) - a\|y(x)  - b x
+--R
+--R                                                     Type: Expression Integer
+--E 20
+
+--S 21 of 120
+ode58a:=solve(ode58,y,x)
+--R
+--R   (21)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 21
+
+--  this never finishes
+--  ode59 := D(y(x),x) - a*sqrt(y(x)**2+1) - b
+--
+
+--S 22 of 120
+ode60 := D(y(x),x) - sqrt(y(x)**2-1)/sqrt(x**2-1)
+--R
+--R          +------+         +---------+
+--R          | 2      ,       |    2
+--R         \|x  - 1 y (x) - \|y(x)  - 1
+--R
+--R   (22)  -----------------------------
+--R                    +------+
+--R                    | 2
+--R                   \|x  - 1
+--R                                                     Type: Expression Integer
+--E 22
+
+--S 23 of 120
+ode60a:=solve(ode60,y,x)
+--R
+--R   (23)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 23
+
+--S 24 of 120
+ode61 := D(y(x),x) - sqrt(x**2-1)/sqrt(y(x)**2-1)
+--R
+--R          +---------+         +------+
+--R          |    2      ,       | 2
+--R         \|y(x)  - 1 y (x) - \|x  - 1
+--R
+--R   (24)  -----------------------------
+--R                   +---------+
+--R                   |    2
+--R                  \|y(x)  - 1
+--R                                                     Type: Expression Integer
+--E 24
+
+--S 25 of 120
+yx:=solve(ode61,y,x)
+--R
+--R   (25)
+--R                    +------+                    +---------+
+--R                    | 2             2           |    2
+--R           (4x y(x)\|x  - 1  + (- 4x  + 2)y(x))\|y(x)  - 1
+--R         + 
+--R                             +------+
+--R                     2       | 2           2         2     2
+--R           (- 4x y(x)  + 2x)\|x  - 1  + (4x  - 2)y(x)  - 2x  + 1
+--R      *
+--R              +---------+
+--R              |    2
+--R         log(\|y(x)  - 1  - y(x))
+--R     + 
+--R                      +------+                      +------+
+--R                      | 2           2               | 2
+--R           (- 4x y(x)\|x  - 1  + (4x  - 2)y(x))log(\|x  - 1  - x)
+--R         + 
+--R                                  +------+
+--R                     3     3      | 2           2         3
+--R           (- 4x y(x)  + 4x y(x))\|x  - 1  + (4x  - 2)y(x)
+--R         + 
+--R                4     2
+--R           (- 4x  + 2x  + 1)y(x)
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  - 1
+--R     + 
+--R                        +------+                                   +------+
+--R                2       | 2             2         2     2          | 2
+--R       ((4x y(x)  - 2x)\|x  - 1  + (- 4x  + 2)y(x)  + 2x  - 1)log(\|x  - 1  - x)
+--R     + 
+--R                                                +------+
+--R               4        3          2     3      | 2             2         4
+--R       (4x y(x)  + (- 4x  - 2x)y(x)  + 2x  - x)\|x  - 1  + (- 4x  + 2)y(x)
+--R     + 
+--R          4         2     4     2
+--R       (4x  - 2)y(x)  - 2x  + 2x
+--R  /
+--R                +------+                    +---------+
+--R                | 2             2           |    2
+--R       (8x y(x)\|x  - 1  + (- 8x  + 4)y(x))\|y(x)  - 1
+--R     + 
+--R                         +------+
+--R                 2       | 2           2         2     2
+--R       (- 8x y(x)  + 4x)\|x  - 1  + (8x  - 4)y(x)  - 4x  + 2
+--R                                          Type: Union(Expression Integer,...)
+--E 25
+
+--S 26 of 120
+ode61expr := D(yx,x) - sqrt(x**2-1)/sqrt(yx**2-1)
+--R
+--R   (26)
+--R                             4      2         5       4      2          3
+--R                       (- 64x  + 64x  - 8)y(x)  + (96x  - 96x  + 12)y(x)
+--R                     + 
+--R                             4      2
+--R                       (- 32x  + 32x  - 4)y(x)
+--R                  *
+--R                      +------+
+--R                      | 2
+--R                     \|x  - 1
+--R                 + 
+--R                       5      3           5         5       3           3
+--R                   (64x  - 96x  + 32x)y(x)  + (- 96x  + 144x  - 48x)y(x)
+--R                 + 
+--R                       5      3
+--R                   (32x  - 48x  + 16x)y(x)
+--R              *
+--R                  +---------+
+--R                  |    2
+--R                 \|y(x)  - 1
+--R             + 
+--R                       4      2         6          4       2          4
+--R                   (64x  - 64x  + 8)y(x)  + (- 128x  + 128x  - 16)y(x)
+--R                 + 
+--R                       4      2         2     4     2
+--R                   (72x  - 72x  + 9)y(x)  - 8x  + 8x  - 1
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  - 1
+--R             + 
+--R                     5      3           6        5       3           4
+--R               (- 64x  + 96x  - 32x)y(x)  + (128x  - 192x  + 64x)y(x)
+--R             + 
+--R                     5       3           2     5      3
+--R               (- 72x  + 108x  - 36x)y(x)  + 8x  - 12x  + 4x
+--R          *
+--R              ,
+--R             y (x)
+--R
+--R         + 
+--R                       5      3           4         5      3           2     5
+--R                   (64x  - 96x  + 32x)y(x)  + (- 64x  + 96x  - 32x)y(x)  + 8x
+--R                 + 
+--R                        3
+--R                   - 12x  + 4x
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  - 1
+--R             + 
+--R                     6       4      2         4       6       4      2         2
+--R               (- 64x  + 128x  - 72x  + 8)y(x)  + (64x  - 128x  + 72x  - 8)y(x)
+--R             + 
+--R                   6      4     2
+--R               - 8x  + 16x  - 9x  + 1
+--R          *
+--R              +---------+
+--R              |    2
+--R             \|y(x)  - 1
+--R         + 
+--R                     5      3           5       5       3           3
+--R               (- 64x  + 96x  - 32x)y(x)  + (96x  - 144x  + 48x)y(x)
+--R             + 
+--R                     5      3
+--R               (- 32x  + 48x  - 16x)y(x)
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  - 1
+--R         + 
+--R               6       4      2         5         6       4       2          3
+--R           (64x  - 128x  + 72x  - 8)y(x)  + (- 96x  + 192x  - 108x  + 12)y(x)
+--R         + 
+--R               6      4      2
+--R           (32x  - 64x  + 36x  - 4)y(x)
+--R      *
+--R         ROOT
+--R                                                                 +------+
+--R                             3           3         3             | 2
+--R                        ((64x  - 32x)y(x)  + (- 32x  + 16x)y(x))\|x  - 1
+--R                      + 
+--R                              4      2         3       4      2
+--R                        (- 64x  + 64x  - 8)y(x)  + (32x  - 32x  + 4)y(x)
+--R                   *
+--R                       +---------+
+--R                       |    2
+--R                      \|y(x)  - 1
+--R                  + 
+--R                             3           4       3           2     3
+--R                      ((- 64x  + 32x)y(x)  + (64x  - 32x)y(x)  - 8x  + 4x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                        4      2         4         4      2         2     4
+--R                    (64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x
+--R                  + 
+--R                        2
+--R                    - 8x  + 1
+--R               *
+--R                       +---------+        2
+--R                       |    2
+--R                  log(\|y(x)  - 1  - y(x))
+--R              + 
+--R                                                                      +------+
+--R                                    3           3       3             | 2
+--R                            ((- 128x  + 64x)y(x)  + (64x  - 32x)y(x))\|x  - 1
+--R                          + 
+--R                                 4       2          3         4      2
+--R                            (128x  - 128x  + 16)y(x)  + (- 64x  + 64x  - 8)y(x)
+--R                       *
+--R                               +------+
+--R                               | 2
+--R                          log(\|x  - 1  - x)
+--R                      + 
+--R                                   3           5        5           3
+--R                            (- 128x  + 64x)y(x)  + (128x  - 48x)y(x)
+--R                          + 
+--R                                  5      3
+--R                            (- 64x  + 48x )y(x)
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  - 1
+--R                      + 
+--R                             4       2          5
+--R                        (128x  - 128x  + 16)y(x)
+--R                      + 
+--R                               6      4      2          3
+--R                        (- 128x  + 64x  + 64x  - 16)y(x)
+--R                      + 
+--R                            6      4      2
+--R                        (64x  - 80x  + 16x  + 2)y(x)
+--R                   *
+--R                       +---------+
+--R                       |    2
+--R                      \|y(x)  - 1
+--R                  + 
+--R                                   3           4          3           2      3
+--R                              (128x  - 64x)y(x)  + (- 128x  + 64x)y(x)  + 16x
+--R                            + 
+--R                              - 8x
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  - 1
+--R                      + 
+--R                               4       2          4        4       2          2
+--R                        (- 128x  + 128x  - 16)y(x)  + (128x  - 128x  + 16)y(x)
+--R                      + 
+--R                             4      2
+--R                        - 16x  + 16x  - 2
+--R                   *
+--R                           +------+
+--R                           | 2
+--R                      log(\|x  - 1  - x)
+--R                  + 
+--R                             3           6          5      3           4
+--R                        (128x  - 64x)y(x)  + (- 128x  - 64x  + 80x)y(x)
+--R                      + 
+--R                             5      3           2      5      3
+--R                        (128x  - 64x  - 16x)y(x)  - 16x  + 16x  - 2x
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                           4       2          6        6       2          4
+--R                    (- 128x  + 128x  - 16)y(x)  + (128x  - 128x  + 24)y(x)
+--R                  + 
+--R                           6       4         2      6      4     2
+--R                    (- 128x  + 128x  - 8)y(x)  + 16x  - 24x  + 8x
+--R               *
+--R                       +---------+
+--R                       |    2
+--R                  log(\|y(x)  - 1  - y(x))
+--R              + 
+--R                                                                 +------+
+--R                             3           3         3             | 2
+--R                        ((64x  - 32x)y(x)  + (- 32x  + 16x)y(x))\|x  - 1
+--R                      + 
+--R                              4      2         3       4      2
+--R                        (- 64x  + 64x  - 8)y(x)  + (32x  - 32x  + 4)y(x)
+--R                   *
+--R                           +------+     2
+--R                           | 2
+--R                      log(\|x  - 1  - x)
+--R                  + 
+--R                                 3           5          5           3
+--R                            (128x  - 64x)y(x)  + (- 128x  + 48x)y(x)
+--R                          + 
+--R                                5      3
+--R                            (64x  - 48x )y(x)
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  - 1
+--R                      + 
+--R                               4       2          5
+--R                        (- 128x  + 128x  - 16)y(x)
+--R                      + 
+--R                             6      4      2          3
+--R                        (128x  - 64x  - 64x  + 16)y(x)
+--R                      + 
+--R                              6      4      2
+--R                        (- 64x  + 80x  - 16x  - 2)y(x)
+--R                   *
+--R                           +------+
+--R                           | 2
+--R                      log(\|x  - 1  - x)
+--R                  + 
+--R                            3           7          5      3           5
+--R                        (64x  - 32x)y(x)  + (- 128x  + 32x  + 32x)y(x)
+--R                      + 
+--R                            7      5       3            3
+--R                        (64x  + 32x  - 320x  + 128x)y(x)
+--R                      + 
+--R                              7      5       3
+--R                        (- 32x  + 32x  + 128x  - 66x)y(x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                          4      2         7        6      4      2          5
+--R                    (- 64x  + 64x  - 8)y(x)  + (128x  - 96x  - 32x  + 12)y(x)
+--R                  + 
+--R                          8       4       2          3
+--R                    (- 64x  + 344x  - 280x  + 28)y(x)
+--R                  + 
+--R                        8      6       4       2
+--R                    (32x  - 48x  - 116x  + 132x  - 16)y(x)
+--R               *
+--R                   +---------+
+--R                   |    2
+--R                  \|y(x)  - 1
+--R              + 
+--R                             3           4       3           2     3
+--R                      ((- 64x  + 32x)y(x)  + (64x  - 32x)y(x)  - 8x  + 4x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                        4      2         4         4      2         2     4
+--R                    (64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x
+--R                  + 
+--R                        2
+--R                    - 8x  + 1
+--R               *
+--R                       +------+     2
+--R                       | 2
+--R                  log(\|x  - 1  - x)
+--R              + 
+--R                               3           6        5      3           4
+--R                        (- 128x  + 64x)y(x)  + (128x  + 64x  - 80x)y(x)
+--R                      + 
+--R                               5      3           2      5      3
+--R                        (- 128x  + 64x  + 16x)y(x)  + 16x  - 16x  + 2x
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                         4       2          6          6       2          4
+--R                    (128x  - 128x  + 16)y(x)  + (- 128x  + 128x  - 24)y(x)
+--R                  + 
+--R                         6       4         2      6      4     2
+--R                    (128x  - 128x  + 8)y(x)  - 16x  + 24x  - 8x
+--R               *
+--R                       +------+
+--R                       | 2
+--R                  log(\|x  - 1  - x)
+--R              + 
+--R                          3           8        5           6
+--R                    (- 64x  + 32x)y(x)  + (128x  - 48x)y(x)
+--R                  + 
+--R                          7      5       3            4
+--R                    (- 64x  - 96x  + 344x  - 116x)y(x)
+--R                  + 
+--R                        7      5       3            2     7      5      3
+--R                    (64x  - 32x  - 280x  + 132x)y(x)  - 8x  + 12x  + 28x  - 16x
+--R               *
+--R                   +------+
+--R                   | 2
+--R                  \|x  - 1
+--R              + 
+--R                    4      2         8          6      4      2          6
+--R                (64x  - 64x  + 8)y(x)  + (- 128x  + 64x  + 64x  - 16)y(x)
+--R              + 
+--R                    8      6       4       2          4
+--R                (64x  + 64x  - 400x  + 272x  - 23)y(x)
+--R              + 
+--R                      8      6       4       2          2     8      6      4
+--R                (- 64x  + 64x  + 272x  - 272x  + 31)y(x)  + 8x  - 16x  - 23x
+--R              + 
+--R                   2
+--R                31x  - 4
+--R           /
+--R                                                                +------+
+--R                          3            3          3             | 2
+--R                    ((256x  - 128x)y(x)  + (- 128x  + 64x)y(x))\|x  - 1
+--R                  + 
+--R                           4       2          3        4       2
+--R                    (- 256x  + 256x  - 32)y(x)  + (128x  - 128x  + 16)y(x)
+--R               *
+--R                   +---------+
+--R                   |    2
+--R                  \|y(x)  - 1
+--R              + 
+--R                          3            4        3            2      3
+--R                  ((- 256x  + 128x)y(x)  + (256x  - 128x)y(x)  - 32x  + 16x)
+--R               *
+--R                   +------+
+--R                   | 2
+--R                  \|x  - 1
+--R              + 
+--R                     4       2          4          4       2          2      4
+--R                (256x  - 256x  + 32)y(x)  + (- 256x  + 256x  - 32)y(x)  + 32x
+--R              + 
+--R                     2
+--R                - 32x  + 4
+--R     + 
+--R                   5      3           4         5      3           2     5
+--R               (64x  - 96x  + 32x)y(x)  + (- 64x  + 96x  - 32x)y(x)  + 8x
+--R             + 
+--R                    3
+--R               - 12x  + 4x
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  - 1
+--R         + 
+--R                 6       4      2         4       6       4      2         2
+--R           (- 64x  + 128x  - 72x  + 8)y(x)  + (64x  - 128x  + 72x  - 8)y(x)
+--R         + 
+--R               6      4     2
+--R           - 8x  + 16x  - 9x  + 1
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  - 1
+--R     + 
+--R                 5      3           5       5       3           3
+--R           (- 64x  + 96x  - 32x)y(x)  + (96x  - 144x  + 48x)y(x)
+--R         + 
+--R                 5      3
+--R           (- 32x  + 48x  - 16x)y(x)
+--R      *
+--R          +------+
+--R          | 2
+--R         \|x  - 1
+--R     + 
+--R           6       4      2         5         6       4       2          3
+--R       (64x  - 128x  + 72x  - 8)y(x)  + (- 96x  + 192x  - 108x  + 12)y(x)
+--R     + 
+--R           6      4      2
+--R       (32x  - 64x  + 36x  - 4)y(x)
+--R  /
+--R                       4      2         4         4      2         2     4     2
+--R                   (64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x  - 8x
+--R                 + 
+--R                   1
+--R            *
+--R                +------+
+--R                | 2
+--R               \|x  - 1
+--R           + 
+--R                   5      3           4       5      3           2     5      3
+--R             (- 64x  + 96x  - 32x)y(x)  + (64x  - 96x  + 32x)y(x)  - 8x  + 12x
+--R           + 
+--R             - 4x
+--R        *
+--R            +---------+
+--R            |    2
+--R           \|y(x)  - 1
+--R       + 
+--R                   4      2         5       4      2          3
+--R             (- 64x  + 64x  - 8)y(x)  + (96x  - 96x  + 12)y(x)
+--R           + 
+--R                   4      2
+--R             (- 32x  + 32x  - 4)y(x)
+--R        *
+--R            +------+
+--R            | 2
+--R           \|x  - 1
+--R       + 
+--R             5      3           5         5       3           3
+--R         (64x  - 96x  + 32x)y(x)  + (- 96x  + 144x  - 48x)y(x)
+--R       + 
+--R             5      3
+--R         (32x  - 48x  + 16x)y(x)
+--R    *
+--R       ROOT
+--R                                                               +------+
+--R                           3           3         3             | 2
+--R                      ((64x  - 32x)y(x)  + (- 32x  + 16x)y(x))\|x  - 1
+--R                    + 
+--R                            4      2         3       4      2
+--R                      (- 64x  + 64x  - 8)y(x)  + (32x  - 32x  + 4)y(x)
+--R                 *
+--R                     +---------+
+--R                     |    2
+--R                    \|y(x)  - 1
+--R                + 
+--R                                                                       +------+
+--R                         3           4       3           2     3       | 2
+--R                  ((- 64x  + 32x)y(x)  + (64x  - 32x)y(x)  - 8x  + 4x)\|x  - 1
+--R                + 
+--R                      4      2         4         4      2         2     4     2
+--R                  (64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x  - 8x
+--R                + 
+--R                  1
+--R             *
+--R                     +---------+        2
+--R                     |    2
+--R                log(\|y(x)  - 1  - y(x))
+--R            + 
+--R                                                                    +------+
+--R                                  3           3       3             | 2
+--R                          ((- 128x  + 64x)y(x)  + (64x  - 32x)y(x))\|x  - 1
+--R                        + 
+--R                               4       2          3         4      2
+--R                          (128x  - 128x  + 16)y(x)  + (- 64x  + 64x  - 8)y(x)
+--R                     *
+--R                             +------+
+--R                             | 2
+--R                        log(\|x  - 1  - x)
+--R                    + 
+--R                                 3           5        5           3
+--R                          (- 128x  + 64x)y(x)  + (128x  - 48x)y(x)
+--R                        + 
+--R                                5      3
+--R                          (- 64x  + 48x )y(x)
+--R                     *
+--R                         +------+
+--R                         | 2
+--R                        \|x  - 1
+--R                    + 
+--R                           4       2          5
+--R                      (128x  - 128x  + 16)y(x)
+--R                    + 
+--R                             6      4      2          3
+--R                      (- 128x  + 64x  + 64x  - 16)y(x)
+--R                    + 
+--R                          6      4      2
+--R                      (64x  - 80x  + 16x  + 2)y(x)
+--R                 *
+--R                     +---------+
+--R                     |    2
+--R                    \|y(x)  - 1
+--R                + 
+--R                              3           4          3           2      3
+--R                        ((128x  - 64x)y(x)  + (- 128x  + 64x)y(x)  + 16x  - 8x)
+--R                     *
+--R                         +------+
+--R                         | 2
+--R                        \|x  - 1
+--R                    + 
+--R                             4       2          4        4       2          2
+--R                      (- 128x  + 128x  - 16)y(x)  + (128x  - 128x  + 16)y(x)
+--R                    + 
+--R                           4      2
+--R                      - 16x  + 16x  - 2
+--R                 *
+--R                         +------+
+--R                         | 2
+--R                    log(\|x  - 1  - x)
+--R                + 
+--R                           3           6          5      3           4
+--R                      (128x  - 64x)y(x)  + (- 128x  - 64x  + 80x)y(x)
+--R                    + 
+--R                           5      3           2      5      3
+--R                      (128x  - 64x  - 16x)y(x)  - 16x  + 16x  - 2x
+--R                 *
+--R                     +------+
+--R                     | 2
+--R                    \|x  - 1
+--R                + 
+--R                         4       2          6        6       2          4
+--R                  (- 128x  + 128x  - 16)y(x)  + (128x  - 128x  + 24)y(x)
+--R                + 
+--R                         6       4         2      6      4     2
+--R                  (- 128x  + 128x  - 8)y(x)  + 16x  - 24x  + 8x
+--R             *
+--R                     +---------+
+--R                     |    2
+--R                log(\|y(x)  - 1  - y(x))
+--R            + 
+--R                                                               +------+
+--R                           3           3         3             | 2
+--R                      ((64x  - 32x)y(x)  + (- 32x  + 16x)y(x))\|x  - 1
+--R                    + 
+--R                            4      2         3       4      2
+--R                      (- 64x  + 64x  - 8)y(x)  + (32x  - 32x  + 4)y(x)
+--R                 *
+--R                         +------+     2
+--R                         | 2
+--R                    log(\|x  - 1  - x)
+--R                + 
+--R                               3           5          5           3
+--R                          (128x  - 64x)y(x)  + (- 128x  + 48x)y(x)
+--R                        + 
+--R                              5      3
+--R                          (64x  - 48x )y(x)
+--R                     *
+--R                         +------+
+--R                         | 2
+--R                        \|x  - 1
+--R                    + 
+--R                             4       2          5
+--R                      (- 128x  + 128x  - 16)y(x)
+--R                    + 
+--R                           6      4      2          3
+--R                      (128x  - 64x  - 64x  + 16)y(x)
+--R                    + 
+--R                            6      4      2
+--R                      (- 64x  + 80x  - 16x  - 2)y(x)
+--R                 *
+--R                         +------+
+--R                         | 2
+--R                    log(\|x  - 1  - x)
+--R                + 
+--R                          3           7          5      3           5
+--R                      (64x  - 32x)y(x)  + (- 128x  + 32x  + 32x)y(x)
+--R                    + 
+--R                          7      5       3            3
+--R                      (64x  + 32x  - 320x  + 128x)y(x)
+--R                    + 
+--R                            7      5       3
+--R                      (- 32x  + 32x  + 128x  - 66x)y(x)
+--R                 *
+--R                     +------+
+--R                     | 2
+--R                    \|x  - 1
+--R                + 
+--R                        4      2         7        6      4      2          5
+--R                  (- 64x  + 64x  - 8)y(x)  + (128x  - 96x  - 32x  + 12)y(x)
+--R                + 
+--R                        8       4       2          3
+--R                  (- 64x  + 344x  - 280x  + 28)y(x)
+--R                + 
+--R                      8      6       4       2
+--R                  (32x  - 48x  - 116x  + 132x  - 16)y(x)
+--R             *
+--R                 +---------+
+--R                 |    2
+--R                \|y(x)  - 1
+--R            + 
+--R                                                                       +------+
+--R                         3           4       3           2     3       | 2
+--R                  ((- 64x  + 32x)y(x)  + (64x  - 32x)y(x)  - 8x  + 4x)\|x  - 1
+--R                + 
+--R                      4      2         4         4      2         2     4     2
+--R                  (64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x  - 8x
+--R                + 
+--R                  1
+--R             *
+--R                     +------+     2
+--R                     | 2
+--R                log(\|x  - 1  - x)
+--R            + 
+--R                             3           6        5      3           4
+--R                      (- 128x  + 64x)y(x)  + (128x  + 64x  - 80x)y(x)
+--R                    + 
+--R                             5      3           2      5      3
+--R                      (- 128x  + 64x  + 16x)y(x)  + 16x  - 16x  + 2x
+--R                 *
+--R                     +------+
+--R                     | 2
+--R                    \|x  - 1
+--R                + 
+--R                       4       2          6          6       2          4
+--R                  (128x  - 128x  + 16)y(x)  + (- 128x  + 128x  - 24)y(x)
+--R                + 
+--R                       6       4         2      6      4     2
+--R                  (128x  - 128x  + 8)y(x)  - 16x  + 24x  - 8x
+--R             *
+--R                     +------+
+--R                     | 2
+--R                log(\|x  - 1  - x)
+--R            + 
+--R                        3           8        5           6
+--R                  (- 64x  + 32x)y(x)  + (128x  - 48x)y(x)
+--R                + 
+--R                        7      5       3            4
+--R                  (- 64x  - 96x  + 344x  - 116x)y(x)
+--R                + 
+--R                      7      5       3            2     7      5      3
+--R                  (64x  - 32x  - 280x  + 132x)y(x)  - 8x  + 12x  + 28x  - 16x
+--R             *
+--R                 +------+
+--R                 | 2
+--R                \|x  - 1
+--R            + 
+--R                  4      2         8          6      4      2          6
+--R              (64x  - 64x  + 8)y(x)  + (- 128x  + 64x  + 64x  - 16)y(x)
+--R            + 
+--R                  8      6       4       2          4
+--R              (64x  + 64x  - 400x  + 272x  - 23)y(x)
+--R            + 
+--R                    8      6       4       2          2     8      6      4
+--R              (- 64x  + 64x  + 272x  - 272x  + 31)y(x)  + 8x  - 16x  - 23x
+--R            + 
+--R                 2
+--R              31x  - 4
+--R         /
+--R                                                              +------+
+--R                        3            3          3             | 2
+--R                  ((256x  - 128x)y(x)  + (- 128x  + 64x)y(x))\|x  - 1
+--R                + 
+--R                         4       2          3        4       2
+--R                  (- 256x  + 256x  - 32)y(x)  + (128x  - 128x  + 16)y(x)
+--R             *
+--R                 +---------+
+--R                 |    2
+--R                \|y(x)  - 1
+--R            + 
+--R                        3            4        3            2      3
+--R                ((- 256x  + 128x)y(x)  + (256x  - 128x)y(x)  - 32x  + 16x)
+--R             *
+--R                 +------+
+--R                 | 2
+--R                \|x  - 1
+--R            + 
+--R                   4       2          4          4       2          2      4
+--R              (256x  - 256x  + 32)y(x)  + (- 256x  + 256x  - 32)y(x)  + 32x
+--R            + 
+--R                   2
+--R              - 32x  + 4
+--R                                                     Type: Expression Integer
+--E 26
+
+--S 27 of 120
+ode62 := D(y(x),x) - (y(x)-x**2*sqrt(x**2-y(x)**2))/_
+                      (x*y(x)*sqrt(x**2-y(x)**2)+x)
+--R
+--R                 +------------+                +------------+
+--R                 |      2    2       ,       2 |      2    2
+--R         (x y(x)\|- y(x)  + x   + x)y (x) + x \|- y(x)  + x   - y(x)
+--R
+--R   (27)  -----------------------------------------------------------
+--R                                 +------------+
+--R                                 |      2    2
+--R                          x y(x)\|- y(x)  + x   + x
+--R                                                     Type: Expression Integer
+--E 27
+
+--S 28 of 120
+ode62a:=solve(ode62,y,x)
+--R
+--R   (28)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 28
+
+--S 29 of 120
+ode63 := D(y(x),x) - (1+ y(x)**2)/(abs(y(x)+sqrt(1+y(x)))*sqrt(1+x)**3)
+--R
+--R                 +-----+ ,        +--------+               2
+--R         (x + 1)\|x + 1 y (x)abs(\|y(x) + 1  + y(x)) - y(x)  - 1
+--R
+--R   (29)  -------------------------------------------------------
+--R                          +-----+     +--------+
+--R                  (x + 1)\|x + 1 abs(\|y(x) + 1  + y(x))
+--R                                                     Type: Expression Integer
+--E 29
+
+--S 30 of 120
+ode63a:=solve(ode63,y,x)
+--R
+--R   (30)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 30
+
+--S 31 of 120
+ode64 := D(y(x),x) - sqrt((a*y(x)**2+b*y(x)+c)/(a*x**2+b*x+c))
+--R
+--R                  +--------------------+
+--R                  |      2
+--R          ,       |a y(x)  + b y(x) + c
+--R   (31)  y (x) -  |--------------------
+--R                  |      2
+--R                 \|   a x  + b x + c
+--R                                                     Type: Expression Integer
+--E 31
+
+--S 32 of 120
+yx:=solve(ode64,y,x)
+--R
+--R   (32)
+--R       log
+--R                                                +--------------------+
+--R                                                |      2
+--R                       2 2                  +-+ |a y(x)  + b y(x) + c
+--R                    (2a x  + 2a b x + 2a c)\|a  |--------------------
+--R                                                |      2
+--R                                               \|   a x  + b x + c
+--R                 *
+--R                     +--------------------+
+--R                     |      2
+--R                    \|a y(x)  + b y(x) + c
+--R                + 
+--R                       3 3     2   2     2        2
+--R                  (- 2a x  - 2a b x  - 2a c x)y(x)
+--R                + 
+--R                       2   3       2 2                     2   3           2
+--R                  (- 2a b x  - 2a b x  - 2a b c x)y(x) - 2a c x  - 2a b c x
+--R                + 
+--R                        2
+--R                  - 2a c x
+--R             *
+--R                 +-------------------------+
+--R                 |        2               2
+--R                \|a c y(x)  + b c y(x) + c
+--R            + 
+--R                      3 4    2   3     2   2                2    3     2
+--R                  (- a x  - a b x  - 2a c x  - a b c x - a c  - a )y(x)
+--R                + 
+--R                      2   4      2 3           2    2         2    2
+--R                  (- a b x  - a b x  - 2a b c x  - b c x - b c  - a b)y(x)
+--R                + 
+--R                     2   4          3       2 2      2     3    2
+--R                  - a c x  - a b c x  - 2a c x  - b c x - c  - a c
+--R             *
+--R                     +--------------------+
+--R                 +-+ |      2
+--R                \|a \|a y(x)  + b y(x) + c
+--R            + 
+--R                     4 3     3   2     3        2
+--R                  (2a x  + 2a b x  + 2a c x)y(x)
+--R                + 
+--R                     3   3     2 2 2     2               3   3     2     2
+--R                  (2a b x  + 2a b x  + 2a b c x)y(x) + 2a c x  + 2a b c x
+--R                + 
+--R                    2 2
+--R                  2a c x
+--R             *
+--R                 +--------------------+
+--R                 |      2
+--R                 |a y(x)  + b y(x) + c
+--R                 |--------------------
+--R                 |      2
+--R                \|   a x  + b x + c
+--R         /
+--R                                        +--------------------+
+--R                                        |      2
+--R                   2 2                  |a y(x)  + b y(x) + c
+--R                (2a x  + 2a b x + 2a c) |--------------------
+--R                                        |      2
+--R                                       \|   a x  + b x + c
+--R             *
+--R                 +-------------------------+
+--R                 |        2               2
+--R                \|a c y(x)  + b c y(x) + c
+--R            + 
+--R                3 4    2   3                2    3     2
+--R              (a x  + a b x  - a b c x - a c  - a )y(x)
+--R            + 
+--R                2   4      2 3    2         2    2          2   4          3
+--R              (a b x  + a b x  - b c x - b c  - a b)y(x) + a c x  + a b c x
+--R            + 
+--R                   2     3    2
+--R              - b c x - c  - a c
+--R     + 
+--R       log
+--R                                    +--------------------+
+--R                 +-+ +-+            |      2                         +-+
+--R              (2\|a \|c  - 2a y(x))\|a y(x)  + b y(x) + c  + 2a y(x)\|c
+--R            + 
+--R                        2                +-+
+--R              (- 2a y(x)  - b y(x) - 2c)\|a
+--R         /
+--R                  +--------------------+
+--R              +-+ |      2
+--R            2\|c \|a y(x)  + b y(x) + c  - b y(x) - 2c
+--R  /
+--R      +-+
+--R     \|a
+--R                                          Type: Union(Expression Integer,...)
+--E 32
+
+@
+The results of this substitution are too long to include.
+It should be zero but Axiom cannot simplify it.
+<<*>>=
+--S 33 of 120
+ode64expr := D(yx,x) - sqrt((a*yx**2+b*yx+c)/(a*x**2+b*x+c));
+--E 33
+
+--S 34 of 120
+ode65 := D(y(x),x) - sqrt((y(x)**3+1)/(x**3+1))
+--R
+--R                  +---------+
+--R                  |    3
+--R          ,       |y(x)  + 1
+--R   (34)  y (x) -  |---------
+--R                  |   3
+--R                 \|  x  + 1
+--R                                                     Type: Expression Integer
+--E 34
+
+--S 35 of 120
+ode65a:=solve(ode65,y,x)
+--R
+--R                 +---------+
+--R                 |    3
+--R                 |y(x)  + 1
+--R                 |---------
+--R            x    |   3                 y(x)
+--I          ++    \| %P  + 1           ++          1
+--I   (35)   |   - ------------ d%P  +  |      ---------- d%P
+--R         ++      +---------+        ++       +-------+
+--R                 |    3                      |  3
+--I                \|y(x)  + 1                 \|%P  + 1
+--R                                          Type: Union(Expression Integer,...)
+--E 35
+
+--S 36 of 120
+ode66 := D(y(x),x) - sqrt(abs(y(x)*(1-y(x))*(1-a*y(x))))/_
+               sqrt(abs(x*(1-x)*(1-a*x)))
+--R
+--R   (36)
+--R          +------------------------------------+
+--R          |          3                2
+--R       - \|abs(a y(x)  + (- a - 1)y(x)  + y(x))
+--R     + 
+--R        +---------------------------+
+--R        |       3             2       ,
+--R       \|abs(a x  + (- a - 1)x  + x) y (x)
+--R
+--R  /
+--R      +---------------------------+
+--R      |       3             2
+--R     \|abs(a x  + (- a - 1)x  + x)
+--R                                                     Type: Expression Integer
+--E 36
+
+--S 37 of 120
+ode66a:=solve(ode66,y,x)
+--R
+--R   (37)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 37
+
+--S 38 of 120
+ode67 := D(y(x),x) - sqrt(1-y(x)**4)/sqrt(1-x**4)
+--R
+--R          +--------+         +-----------+
+--R          |   4      ,       |      4
+--R         \|- x  + 1 y (x) - \|- y(x)  + 1
+--R
+--R   (38)  ---------------------------------
+--R                     +--------+
+--R                     |   4
+--R                    \|- x  + 1
+--R                                                     Type: Expression Integer
+--E 38
+
+--S 39 of 120
+ode67a:=solve(ode67,y,x)
+--R
+--R   (39)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 39
+
+--S 40 of 120
+ode68 := D(y(x),x) - sqrt((a*y(x)**4+b*y(x)**2+1)/(a*x**4+b*x**2+1))
+--R
+--R                  +---------------------+
+--R                  |      4         2
+--R          ,       |a y(x)  + b y(x)  + 1
+--R   (40)  y (x) -  |---------------------
+--R                  |      4      2
+--R                 \|   a x  + b x  + 1
+--R                                                     Type: Expression Integer
+--E 40
+
+--S 41 of 120
+ode68a:=solve(ode68,y,x)
+--R 
+--R
+--R   (41)
+--R           +---------------------+
+--R           |      4         2
+--R           |a y(x)  + b y(x)  + 1
+--R           |---------------------
+--R      x    |     2      4                    y(x)
+--I    ++    \|   %N b + %N a + 1             ++              1
+--I    |   - ------------------------ d%N  +  |      ------------------ d%N
+--R   ++      +---------------------+        ++       +---------------+
+--R           |      4         2                      |  2      4
+--I          \|a y(x)  + b y(x)  + 1                 \|%N b + %N a + 1
+--R                                          Type: Union(Expression Integer,...)
+--E 41
+
+--S 42 of 120
+ode69 := D(y(x),x) - sqrt((b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0)*_
+                           (a4*x**4+a3*x**3+a2*x**2+a1*x+a0))
+--R 
+--R
+--R   (42)
+--R      ,
+--R     y (x)
+--R
+--R   + 
+--R     -
+--R        ROOT
+--R                     4          3          2                       4
+--R             (a4 b4 x  + a3 b4 x  + a2 b4 x  + a1 b4 x + a0 b4)y(x)
+--R           + 
+--R                     4          3          2                       3
+--R             (a4 b3 x  + a3 b3 x  + a2 b3 x  + a1 b3 x + a0 b3)y(x)
+--R           + 
+--R                     4          3          2                       2
+--R             (a4 b2 x  + a3 b2 x  + a2 b2 x  + a1 b2 x + a0 b2)y(x)
+--R           + 
+--R                     4          3          2                                 4
+--R             (a4 b1 x  + a3 b1 x  + a2 b1 x  + a1 b1 x + a0 b1)y(x) + a4 b0 x
+--R           + 
+--R                    3          2
+--R             a3 b0 x  + a2 b0 x  + a1 b0 x + a0 b0
+--R                                                     Type: Expression Integer
+--E 42
+
+--S 43 of 120
+ode69a:=solve(ode69,y,x)
+--R 
+--R 
+--R   >> Error detected within library code:
+--R   PFO::possibleOrder: more than 1 algebraic constant
+--R
+--R   Continuing to read the file...
+--R
+--E 43
+
+--S 44 of 120
+ode70 := D(y(x),x) - sqrt((a4*x**4+a3*x**3+a2*x**2+a1*x+a0)/_
+                        (b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0))
+--R
+--R                  +---------------------------------------------+
+--R                  |          4       3       2
+--R          ,       |      a4 x  + a3 x  + a2 x  + a1 x + a0
+--R   (43)  y (x) -  |---------------------------------------------
+--R                  |       4          3          2
+--R                 \|b4 y(x)  + b3 y(x)  + b2 y(x)  + b1 y(x) + b0
+--R                                                     Type: Expression Integer
+--E 44
+
+--S 45 of 120
+ode70a:=solve(ode70,y,x)
+--R 
+--R 
+--R   >> Error detected within library code:
+--R   PFO::possibleOrder: more than 1 algebraic constant
+--R
+--R   Continuing to read the file...
+--R
+--E 45
+
+--S 46 of 120
+ode71 := D(y(x),x) - sqrt((b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0)/_
+                       (a4*x**4+a3*x**3+a2*x**2+a1*x+a0))
+--R
+--R                  +---------------------------------------------+
+--R                  |       4          3          2
+--R          ,       |b4 y(x)  + b3 y(x)  + b2 y(x)  + b1 y(x) + b0
+--R   (44)  y (x) -  |---------------------------------------------
+--R                  |          4       3       2
+--R                 \|      a4 x  + a3 x  + a2 x  + a1 x + a0
+--R                                                     Type: Expression Integer
+--E 46
+
+--S 47 of 120
+ode71a:=solve(ode71,y,x)
+--R 
+--R
+--R   (45)
+--R             +---------------------------------------------+
+--R             |       4          3          2
+--R             |b4 y(x)  + b3 y(x)  + b2 y(x)  + b1 y(x) + b0
+--R             |---------------------------------------------
+--R        x    |        4       3       2
+--I      ++    \|      %N a4 + %N a3 + %N a2 + %N a1 + a0
+--I      |   - ------------------------------------------------ d%N
+--R     ++      +---------------------------------------------+
+--R             |       4          3          2
+--R            \|b4 y(x)  + b3 y(x)  + b2 y(x)  + b1 y(x) + b0
+--R   + 
+--R        y(x)
+--R      ++                       1
+--I      |      ------------------------------------- d%N
+--R     ++       +----------------------------------+
+--R              |  4       3       2
+--I             \|%N b4 + %N b3 + %N b2 + %N b1 + b0
+--R                                          Type: Union(Expression Integer,...)
+--E 47
+
+--S 48 of 120
+R1:=operator 'R1
+--R
+--R   (46)  R1
+--R                                                          Type: BasicOperator
+--E 48
+
+--S 49 of 120
+R2:=operator 'R2
+--R
+--R   (47)  R2
+--R                                                          Type: BasicOperator
+--E 49
+
+--S 50 of 120
+ode72 := D(y(x),x) - R1(x,sqrt(a4*x**4+a3*x**3+a2*x**2+a1*x+a0))*_
+             R2(y(x),sqrt(b4*y(x)**4+b3*y(x)**3+b2*y(x)**2+b1*y(x)+b0))
+--R
+--R   (48)
+--R     -
+--R                +---------------------------------+
+--R                |    4       3       2
+--R          R1(x,\|a4 x  + a3 x  + a2 x  + a1 x + a0 )
+--R       *
+--R                   +---------------------------------------------+
+--R                   |       4          3          2
+--R          R2(y(x),\|b4 y(x)  + b3 y(x)  + b2 y(x)  + b1 y(x) + b0 )
+--R   + 
+--R      ,
+--R     y (x)
+--R
+--R                                                     Type: Expression Integer
+--E 50
+
+--S 51 of 120
+ode72a:=solve(ode72,y,x)
+--R 
+--R   >> Error detected within library code:
+--R   Function not supported by Risch d.e.
+--R
+--R   Continuing to read the file...
+--R
+--E 51
+
+--S 52 of 120
+ode73 := D(y(x),x) - ((a3*x**3+a2*x**2+a1*x+a0)/_
+           (a3*y(x)**3+a2*y(x)**2+a1*y(x)+a0))**(2/3)
+--R
+--R                  +----------------------------------+2
+--R                  |         3       2
+--R          ,       |     a3 x  + a2 x  + a1 x + a0
+--R   (49)  y (x) -  |----------------------------------
+--R                 3|       3          2
+--R                 \|a3 y(x)  + a2 y(x)  + a1 y(x) + a0
+--R                                                     Type: Expression Integer
+--E 52
+
+@
+Attempting to solve this problem fails with the error:
+\begin{verbatim}
+ode73a:=solve(ode73,y,x)
+   >> Error detected within library code:
+   Table construction failed in MLIFT
+\end{verbatim}
+<<*>>=
+
+--S 53 of 120
+ode74 := D(y(x),x) - f(x)*(y(x)-g(x))*sqrt((y(x)-a)*(y(x)-b))
+--R
+--R                                         +---------------------------+
+--R          ,                              |    2
+--R   (50)  y (x) + (- f(x)y(x) + f(x)g(x))\|y(x)  + (- b - a)y(x) + a b
+--R
+--R                                                     Type: Expression Integer
+--E 53
+
+--S 54 of 120
+ode74a:=solve(ode74,y,x)
+--R
+--R   (51)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 54
+
+--S 55 of 120
+ode75 := D(y(x),x) - exp(x-y(x)) + exp(x)
+--R
+--R          ,        - y(x) + x     x
+--R   (52)  y (x) - %e           + %e
+--R
+--R                                                     Type: Expression Integer
+--E 55
+
+--S 56 of 120
+ode75a:=solve(ode75,y,x)
+--R
+--R   (53)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 56
+
+--S 57 of 120
+ode76 := D(y(x),x) - a*cos(y(x)) + b
+--R
+--R          ,
+--R   (54)  y (x) - a cos(y(x)) + b
+--R
+--R                                                     Type: Expression Integer
+--E 57
+
+--S 58 of 120
+yx:=solve(ode76,y,x)
+--R
+--R   (55)
+--R                                    +---------+              +---------+
+--R               2    2               |   2    2               |   2    2
+--R           (- b  + a )sin(y(x)) + b\|- b  + a  cos(y(x)) - a\|- b  + a
+--R       log(-------------------------------------------------------------)
+--R                                  a cos(y(x)) - b
+--R     + 
+--R         +---------+
+--R         |   2    2
+--R       x\|- b  + a
+--R  /
+--R      +---------+
+--R      |   2    2
+--R     \|- b  + a
+--R                                          Type: Union(Expression Integer,...)
+--E 58
+
+--S 59 of 120
+ode76expr := D(yx,x) - a*cos(yx) + b
+--R
+--R   (56)
+--R                2 2    4                3    3
+--R           ((- a b  + a )cos(y(x)) + a b  - a b)sin(y(x))
+--R         + 
+--R               +---------+                           +---------+
+--R            2  |   2    2          2         2    3  |   2    2
+--R           a b\|- b  + a  cos(y(x))  + (- a b  - a )\|- b  + a  cos(y(x))
+--R         + 
+--R               +---------+
+--R            2  |   2    2
+--R           a b\|- b  + a
+--R      *
+--R         cos
+--R                log
+--R                                            +---------+              +---------+
+--R                       2    2               |   2    2               |   2    2
+--R                   (- b  + a )sin(y(x)) + b\|- b  + a  cos(y(x)) - a\|- b  + a
+--R                   -------------------------------------------------------------
+--R                                          a cos(y(x)) - b
+--R              + 
+--R                  +---------+
+--R                  |   2    2
+--R                x\|- b  + a
+--R           /
+--R               +---------+
+--R               |   2    2
+--R              \|- b  + a
+--R     + 
+--R               +---------+
+--R               |   2    2          2       2    2
+--R           - a\|- b  + a  sin(y(x))  + (- b  + a )sin(y(x))
+--R         + 
+--R               +---------+               +---------+
+--R               |   2    2          2     |   2    2
+--R           - a\|- b  + a  cos(y(x))  + b\|- b  + a  cos(y(x))
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R            3      2    3     3              4    3    2 2    2
+--R       ((a b  + a b  - a b - a )cos(y(x)) - b  - b  + a b  + a b)sin(y(x))
+--R     + 
+--R                      +---------+
+--R             2        |   2    2          2
+--R       (- a b  - a b)\|- b  + a  cos(y(x))
+--R     + 
+--R                            +---------+                           +---------+
+--R         3    2    2     2  |   2    2                   2        |   2    2
+--R       (b  + b  + a b + a )\|- b  + a  cos(y(x)) + (- a b  - a b)\|- b  + a
+--R  /
+--R                                                        +---------+
+--R            2    3              3    2                  |   2    2          2
+--R       ((a b  - a )cos(y(x)) - b  + a b)sin(y(x)) - a b\|- b  + a  cos(y(x))
+--R     + 
+--R                 +---------+                +---------+
+--R         2    2  |   2    2                 |   2    2
+--R       (b  + a )\|- b  + a  cos(y(x)) - a b\|- b  + a
+--R                                                     Type: Expression Integer
+--E 59
+
+--S 60 of 120
+ode77 := D(y(x),x) - cos(a*y(x)+b*x)
+--R
+--R          ,
+--R   (57)  y (x) - cos(a y(x) + b x)
+--R
+--R                                                     Type: Expression Integer
+--E 60
+
+--S 61 of 120
+ode77a:=solve(ode77,y,x)
+--R
+--R   (58)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 61
+
+--S 62 of 120
+ode78 := D(y(x),x) + a*sin(alpha*y(x)+beta*x) + b
+--R
+--R          ,
+--R   (59)  y (x) + a sin(alpha y(x) + beta x) + b
+--R
+--R                                                     Type: Expression Integer
+--E 62
+
+--S 63 of 120
+ode78a:=solve(ode78,y,x)
+--R
+--R   (60)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 63
+
+--S 64 of 120
+ode79 := D(y(x),x) + f(x)*cos(a*y(x)) + g(x)*sin(a*y(x)) + h(x)
+--R
+--R          ,
+--R   (61)  y (x) + g(x)sin(a y(x)) + f(x)cos(a y(x)) + h(x)
+--R
+--R                                                     Type: Expression Integer
+--E 64
+
+--S 65 of 120
+ode79a:=solve(ode79,y,x)
+--R
+--R   (62)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 65
+
+--S 66 of 120
+ode80 := D(y(x),x) + f(x)*sin(y(x)) + (1-D(f(x),x))*cos(y(x)) - D(f(x),x) - 1
+--R
+--R          ,                        ,
+--R   (63)  y (x) + (- cos(y(x)) - 1)f (x) + f(x)sin(y(x)) + cos(y(x)) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 66
+
+--S 67 of 120
+ode80a:=solve(ode80,y,x)
+--R
+--R   (64)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 67
+
+--S 68 of 120
+ode81 := D(y(x),x) + 2*tan(y(x))*tan(x) - 1
+--R
+--R          ,
+--R   (65)  y (x) + 2tan(x)tan(y(x)) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 68
+
+--S 69 of 120
+ode81a:=solve(ode81,y,x)
+--R
+--R   (66)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 69
+
+--S 70 of 120
+ode82 := D(y(x),x) - a*(1+tan(y(x))**2) + tan(y(x))*tan(x)
+--R
+--R          ,                 2
+--R   (67)  y (x) - a tan(y(x))  + tan(x)tan(y(x)) - a
+--R
+--R                                                     Type: Expression Integer
+--E 70
+
+--S 71 of 120
+ode82a:=solve(ode82,y,x)
+--R
+--R   (68)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 71
+
+--S 72 of 120
+ode83 := D(y(x),x) - tan(x*y(x))
+--R
+--R          ,
+--R   (69)  y (x) - tan(x y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 72
+
+--S 73 of 120
+ode83a:=solve(ode83,y,x)
+--R
+--R   (70)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 73
+
+--S 74 of 120
+ode84 := D(y(x),x) - f(a*x + b*y(x))
+--R
+--R          ,
+--R   (71)  y (x) - f(b y(x) + a x)
+--R
+--R                                                     Type: Expression Integer
+--E 74
+
+--S 75 of 120
+ode84a:=solve(ode84,y,x)
+--R
+--R   (72)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 75
+
+--S 76 of 120
+ode85 := D(y(x),x) - x**(a-1)*y(x)**(1-b)*f(x**a/a + y(x)**b/b)
+--R
+--R                                    b      a
+--R            a - 1    - b + 1  a y(x)  + b x      ,
+--R   (73)  - x     y(x)       f(--------------) + y (x)
+--R                                    a b
+--R                                                     Type: Expression Integer
+--E 76
+
+--S 77 of 120
+ode85a:=solve(ode85,y,x)
+--R
+--R   (74)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 77
+
+--S 78 of 120
+ode86 := D(y(x),x) - (y(x)-x*f(x**2+a*y(x)**2))/(x+a*y(x)*f(x**2+a*y(x)**2))
+--R
+--R                        2    2       ,                2    2
+--R         (a y(x)f(a y(x)  + x ) + x)y (x) + x f(a y(x)  + x ) - y(x)
+--R
+--R   (75)  -----------------------------------------------------------
+--R                                        2    2
+--R                          a y(x)f(a y(x)  + x ) + x
+--R                                                     Type: Expression Integer
+--E 78
+
+--S 79 of 120
+ode86a:=solve(ode86,y,x)
+--R
+--R   (76)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 79
+
+--S 80 of 120
+ode87 := D(y(x),x) - (y(x)*a*f(x**c*y(x))+c*x**a*y(x)**b)/_
+            (x*b*f(x**c*y(x))-x**a*y(x)**b)
+--R
+--R           a    b              c   ,         a    b                c
+--R         (x y(x)  - b x f(y(x)x ))y (x) + c x y(x)  + a y(x)f(y(x)x )
+--R
+--R   (77)  ------------------------------------------------------------
+--R                             a    b              c
+--R                            x y(x)  - b x f(y(x)x )
+--R                                                     Type: Expression Integer
+--E 80
+
+--S 81 of 120
+ode87a:=solve(ode87,y,x)
+--R
+--R   (78)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 81
+
+--S 82 of 120
+ode88 := 2*D(y(x),x) - 3*y(x)**2 - 4*a*y(x) - b - c*exp(-2*a*x)
+--R
+--R           ,          - 2a x        2
+--R   (79)  2y (x) - c %e       - 3y(x)  - 4a y(x) - b
+--R
+--R                                                     Type: Expression Integer
+--E 82
+
+--S 83 of 120
+ode88a:=solve(ode88,y,x)
+--R
+--R   (80)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 83
+
+--S 84 of 120
+ode89 := x*D(y(x),x) - sqrt(a**2 - x**2)
+--R
+--R                   +---------+
+--R           ,       |   2    2
+--R   (81)  xy (x) - \|- x  + a
+--R
+--R                                                     Type: Expression Integer
+--E 84
+
+--S 85 of 120
+ode89a:=solve(ode89,y,x)
+--R
+--R   (82)
+--R                                         +---------+
+--R                   +---------+           |   2    2
+--R                   |   2    2     2     \|- x  + a   - a     2
+--R                (a\|- x  + a   - a )log(----------------) - x
+--R                                                x
+--R   [particular= ----------------------------------------------,basis= [1]]
+--R                                +---------+
+--R                                |   2    2
+--R                               \|- x  + a   - a
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 85
+
+--S 86 of 120
+yx:=ode89a.particular
+--R
+--R                                  +---------+
+--R            +---------+           |   2    2
+--R            |   2    2     2     \|- x  + a   - a     2
+--R         (a\|- x  + a   - a )log(----------------) - x
+--R                                         x
+--R   (83)  ----------------------------------------------
+--R                         +---------+
+--R                         |   2    2
+--R                        \|- x  + a   - a
+--R                                                     Type: Expression Integer
+--E 86
+
+--S 87 of 120
+ode89expr := x*D(yx,x) - sqrt(a**2 - x**2)
+--R
+--R   (84)  0
+--R                                                     Type: Expression Integer
+--E 87
+
+--S 88 of 120
+ode90 := x*D(y(x),x) + y(x) - x*sin(x)
+--R
+--R           ,
+--R   (85)  xy (x) - x sin(x) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 88
+
+--S 89 of 120
+ode90a:=solve(ode90,y,x)
+--R
+--R                      sin(x) - x cos(x)         1
+--R   (86)  [particular= -----------------,basis= [-]]
+--R                              x                 x
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 89
+
+--S 90 of 120
+yx:=ode90a.particular
+--R
+--R         sin(x) - x cos(x)
+--R   (87)  -----------------
+--R                 x
+--R                                                     Type: Expression Integer
+--E 90
+
+--S 91 of 120
+ode90expr := x*D(yx,x) + yx - x*sin(x)
+--R
+--R   (88)  0
+--R                                                     Type: Expression Integer
+--E 91
+
+--S 92 of 120
+ode91 := x*D(y(x),x) - y(x) - x/log(x)
+--R
+--R                  ,
+--R         x log(x)y (x) - y(x)log(x) - x
+--R
+--R   (89)  ------------------------------
+--R                     log(x)
+--R                                                     Type: Expression Integer
+--E 92
+
+--S 93 of 120
+ode91a:=solve(ode91,y,x)
+--R
+--R   (90)  [particular= x log(log(x)),basis= [x]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 93
+
+--S 94 of 120
+yx:=ode91a.particular
+--R
+--R   (91)  x log(log(x))
+--R                                                     Type: Expression Integer
+--E 94
+
+--S 95 of 120
+ode91expr := x*D(yx,x) - yx - x/log(x)
+--R
+--R   (92)  0
+--R                                                     Type: Expression Integer
+--E 95
+
+--S 96 of 120
+ode92 := x*D(y(x),x) - y(x) - x**2*sin(x)
+--R
+--R           ,       2
+--R   (93)  xy (x) - x sin(x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 96
+
+--S 97 of 120
+ode92a:=solve(ode92,y,x)
+--R
+--R   (94)  [particular= - x cos(x),basis= [x]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 97
+
+--S 98 of 120
+yx:=ode92a.particular
+--R
+--R   (95)  - x cos(x)
+--R                                                     Type: Expression Integer
+--E 98
+
+--S 99 of 120
+ode92expr := x*D(yx,x) - yx - x**2*sin(x)
+--R
+--R   (96)  0
+--R                                                     Type: Expression Integer
+--E 99
+
+
+--S 100 of 120
+ode93 := x*D(y(x),x) - y(x) - x*cos(log(log(x)))/log(x)
+--R
+--R                                         ,
+--R         - x cos(log(log(x))) + x log(x)y (x) - y(x)log(x)
+--R
+--R   (97)  -------------------------------------------------
+--R                               log(x)
+--R                                                     Type: Expression Integer
+--E 100
+
+--S 101 of 120
+ode93a:=solve(ode93,y,x)
+--R
+--R   (98)  [particular= x sin(log(log(x))),basis= [x]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 101
+
+--S 102 of 120
+yx:=ode93a.particular
+--R
+--R   (99)  x sin(log(log(x)))
+--R                                                     Type: Expression Integer
+--E 102
+
+--S 103 of 120
+ode93 := x*D(yx,x) - yx - x*cos(log(log(x)))/log(x)
+--R
+--R   (100)  0
+--R                                                     Type: Expression Integer
+--E 103
+
+--S 104 of 120
+ode94 := x*D(y(x),x) +a*y(x) + b*x**n
+--R
+--R            ,         n
+--R   (101)  xy (x) + b x  + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 104
+
+--S 105 of 120
+ode94a:=solve(ode94,y,x)
+--R
+--R                             n log(x)
+--R                         b %e                   - a log(x)
+--R   (102)  [particular= - ------------,basis= [%e          ]]
+--R                             n + a
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 105
+
+--S 106 of 120
+yx:=ode94a.particular
+--R
+--R                n log(x)
+--R            b %e
+--R   (103)  - ------------
+--R                n + a
+--R                                                     Type: Expression Integer
+--E 106
+
+--S 107 of 120
+ode94expr := x*D(yx,x) +a*yx + b*x**n
+--R
+--R                n log(x)      n
+--R   (104)  - b %e         + b x
+--R                                                     Type: Expression Integer
+--E 107
+
+--S 108 of 120
+exprule := rule x^n == %e^(n*log(x))
+--R
+--R           n      n log(x)
+--R   (105)  x  == %e
+--R                        Type: RewriteRule(Integer,Integer,Expression Integer)
+--E 108
+
+--S 109 of 120
+exprule ode94expr
+--R
+--R   (106)  0
+--R                                                     Type: Expression Integer
+--E 109
+
+--S 110 of 120
+ode95 := x*D(y(x),x) + y(x)**2 + x**2
+--R
+--R            ,          2    2
+--R   (107)  xy (x) + y(x)  + x
+--R
+--R                                                     Type: Expression Integer
+--E 110
+
+--S 111 of 120
+ode95a:=solve(ode95,y,x)
+--R 
+--R
+--R   (108)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 111
+
+--S 112 of 120
+ode96 := x*D(y(x),x) - y(x)**2 + 1
+--R 
+--R
+--R            ,          2
+--R   (109)  xy (x) - y(x)  + 1
+--R
+--R                                                     Type: Expression Integer
+--E 112
+
+--S 113 of 120
+yx:=solve(ode96,y,x)
+--R
+--R               - x y(x) - x
+--R   (110)  ----------------------
+--R           +--------+ +--------+
+--R          \|y(x) - 1 \|y(x) + 1
+--R                                          Type: Union(Expression Integer,...)
+--E 113
+
+--S 114 of 120
+ode96expr := x*D(yx,x) - yx**2 + 1
+--R
+--R   (111)
+--R    2 ,           2             2      +--------+ +--------+         2
+--R   x y (x) + ((- x  + 1)y(x) - x  - 1)\|y(x) - 1 \|y(x) + 1  - x y(x)  + x
+--R
+--R   -----------------------------------------------------------------------
+--R                                  +--------+ +--------+
+--R                       (y(x) - 1)\|y(x) - 1 \|y(x) + 1
+--R                                                     Type: Expression Integer
+--E 114
+
+--S 115 of 120
+ode98 := x*D(y(x),x) + a*y(x)**2 - b*y(x) + c*x**(2*b)
+--R 
+--R
+--R            ,         2b         2
+--R   (112)  xy (x) + c x   + a y(x)  - b y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 115
+
+--S 116 of 120
+ode98a:=solve(ode98,y,x)
+--R
+--R   (113)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 116
+
+--S 117 of 120
+ode99 := x*D(y(x),x) + a*y(x)**2 - b*y(x) - c*x**beta
+--R 
+--R
+--R            ,         beta         2
+--R   (114)  xy (x) - c x     + a y(x)  - b y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 117
+
+--S 118 of 120
+ode99a:=solve(ode99,y,x)
+--R 
+--R
+--R   (115)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 118
+
+--S 119 of 120
+ode100 := x*D(y(x),x) + x*y(x)**2 + a
+--R 
+--R
+--R            ,            2
+--R   (116)  xy (x) + x y(x)  + a
+--R
+--R                                                     Type: Expression Integer
+--E 119
+
+--S 120 of 120
+ode100a:=solve(ode100,y,x)
+--R 
+--R
+--R   (117)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 120
+)spool
+)lisp (bye)
+ 
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/kamke1.input.pdf b/src/axiom-website/CATS/kamke1.input.pdf
new file mode 100644
index 0000000..1a1b835
Binary files /dev/null and b/src/axiom-website/CATS/kamke1.input.pdf differ
diff --git a/src/axiom-website/CATS/kamke2.input.pamphlet b/src/axiom-website/CATS/kamke2.input.pamphlet
new file mode 100644
index 0000000..b4c8b85
--- /dev/null
+++ b/src/axiom-website/CATS/kamke2.input.pamphlet
@@ -0,0 +1,2217 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke2.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the 50 ODEs of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+<<*>>=
+)spool kamke2.output
+)set break resume
+)set mes auto off
+)clear all
+
+--S 1 of 126
+y:=operator 'y
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 126
+f:=operator 'f
+--R
+--R   (2)  f
+--R                                                          Type: BasicOperator
+--E 2
+
+--S 3 of 126
+g:=operator 'g
+--R
+--R   (3)  g
+--R                                                          Type: BasicOperator
+--E 3
+
+-------------------------------------------------------------------
+--S 4 of 126
+ode101 := x*D(y(x),x) + x*y(x)**2 - y(x)
+--R
+--R          ,            2
+--R   (4)  xy (x) + x y(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 4
+
+@
+Maxima gives $$\frac{2x}{x^2-2\%c}$$ 
+which can be substituted and simplifies to 0.
+
+Maple gives
+$$\frac{2x}{x^2+2\_C1}$$
+which can be substituted and simplifies to 0.
+
+Mathematica gives
+$$y(x)=\frac{2x}{x^2+2}$$
+which can be substituted and simplifies to 0.
+<<*>>=
+--S 5 of 126
+yx:=solve(ode101,y,x)
+--R
+--R         2
+--R        x y(x) - 2x
+--R   (5)  -----------
+--R           2y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 5
+
+--S 6 of 126
+ode101expr := x*D(yx,x) + x*yx**2 - yx
+--R
+--R          2 ,        5     2     2     4         3
+--R        4x y (x) + (x  + 2x )y(x)  - 4x y(x) + 4x
+--R
+--R   (6)  ------------------------------------------
+--R                               2
+--R                          4y(x)
+--R                                                     Type: Expression Integer
+--E 6
+
+-------------------------------------------------------------------
+--S 7 of 126
+ode102 := x*D(y(x),x) + x*y(x)**2 - y(x) - a*x**3
+--R
+--R          ,            2             3
+--R   (7)  xy (x) + x y(x)  - y(x) - a x
+--R
+--R                                                     Type: Expression Integer
+--E 7
+
+@
+Maxima fails.
+
+Maple gives
+$$\tanh(\left(\frac{x^2\sqrt{a}}{2}+\_C1\sqrt{a}\right)x\sqrt{a}$$
+which, upon substitution, simplifies to 0.
+
+Mathematica gives
+$$\sqrt{a}~x~
+\tanh\left(\frac{1}{2}\left(\sqrt{a}~x^2+2\sqrt{a}~C[1]\right)\right)$$
+which, upon substitution, cannot be simplified to 0.
+<<*>>=
+--S 8 of 126
+yx:=solve(ode102,y,x)
+--R
+--R                            +-+
+--R               (2y(x) + 3x)\|a  + 3y(x) + 2a x
+--R   (8)  ---------------------------------------------
+--R                                                2 +-+
+--R                        +-+                    x \|a
+--R        ((6y(x) - 4a x)\|a  + 4a y(x) - 6a x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 8
+
+--S 9 of 126
+ode102expr := x*D(yx,x) + x*yx**2 - yx - a*x**3
+--R
+--R   (9)
+--R                   2         2           3       2  3  +-+
+--R           ((- 144a  - 108a)x y(x) + (32a  + 216a )x )\|a
+--R         + 
+--R                 3       2  2            3       2  3
+--R           (- 32a  - 216a )x y(x) + (144a  + 108a )x
+--R      *
+--R            2 +-+
+--R           x \|a  ,
+--R         %e      y (x)
+--R
+--R     + 
+--R                      3       2  3    3       4       3  4    2
+--R               (- 144a  - 108a )x y(x)  + (96a  + 648a )x y(x)
+--R             + 
+--R                      4       3  5           5       4  6
+--R               (- 432a  - 324a )x y(x) + (32a  + 216a )x
+--R          *
+--R              +-+
+--R             \|a
+--R         + 
+--R                 4       3  3    3        4       3  4    2
+--R           (- 32a  - 216a )x y(x)  + (432a  + 324a )x y(x)
+--R         + 
+--R                 5       4  5            5       4  6
+--R           (- 96a  - 648a )x y(x) + (144a  + 108a )x
+--R      *
+--R             2 +-+ 2
+--R            x \|a
+--R         (%e      )
+--R     + 
+--R                       2         2      2            3
+--R               ((- 144a  - 108a)x  - 16a  - 108a)y(x)
+--R             + 
+--R                    3       2  3        2              2
+--R               ((32a  + 216a )x  + (216a  + 162a)x)y(x)
+--R             + 
+--R                     3       2  4         3       2  2              4       3  5
+--R               ((144a  + 108a )x  + (- 16a  - 108a )x )y(x) + (- 32a  - 216a )x
+--R             + 
+--R                     3      2  3
+--R               (- 72a  - 54a )x
+--R          *
+--R              +-+
+--R             \|a
+--R         + 
+--R                  3       2  2      2           3
+--R           ((- 32a  - 216a )x  - 72a  - 54a)y(x)
+--R         + 
+--R                 3       2  3       3       2       2
+--R           ((144a  + 108a )x  + (48a  + 324a )x)y(x)
+--R         + 
+--R                4       3  4         3      2  2               4       3  5
+--R           ((32a  + 216a )x  + (- 72a  - 54a )x )y(x) + (- 144a  - 108a )x
+--R         + 
+--R                 4       3  3
+--R           (- 16a  - 108a )x
+--R      *
+--R            2 +-+
+--R           x \|a
+--R         %e
+--R     + 
+--R                           3      2        2    2         2        3
+--R           (36a + 27)x y(x)  + (8a  + 54a)x y(x)  + (- 36a  - 27a)x y(x)
+--R         + 
+--R                3      2  4
+--R           (- 8a  - 54a )x
+--R      *
+--R          +-+
+--R         \|a
+--R     + 
+--R          2             3       2        2    2        3      2  3
+--R       (8a  + 54a)x y(x)  + (36a  + 27a)x y(x)  + (- 8a  - 54a )x y(x)
+--R     + 
+--R             3      2  4
+--R       (- 36a  - 27a )x
+--R  /
+--R                  2            3         3       2       2
+--R             (144a  + 108a)y(x)  + (- 96a  - 648a )x y(x)
+--R           + 
+--R                  3       2  2             4       3  3
+--R             (432a  + 324a )x y(x) + (- 32a  - 216a )x
+--R        *
+--R            +-+
+--R           \|a
+--R       + 
+--R             3       2     3          3       2       2       4       3  2
+--R         (32a  + 216a )y(x)  + (- 432a  - 324a )x y(x)  + (96a  + 648a )x y(x)
+--R       + 
+--R                4       3  3
+--R         (- 144a  - 108a )x
+--R    *
+--R           2 +-+ 2
+--R          x \|a
+--R       (%e      )
+--R                                                     Type: Expression Integer
+--E 9
+
+-------------------------------------------------------------------
+--S 10 of 126
+ode103 := x*D(y(x),x) + x*y(x)**2 - (2*x**2+1)*y(x) - x**3
+--R
+--R           ,            2        2             3
+--R   (10)  xy (x) + x y(x)  + (- 2x  - 1)y(x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 10
+
+@
+Maxima fails.
+
+Maple gives
+$$\frac{1}{2}x\left(\sqrt{2}+
+2\tanh\left(\frac{(x^2+x\_C1)\sqrt{2}}{2}\right)\right)\sqrt{2}$$
+which simplifies to 0 on substitution.
+
+Mathematica gives
+$$\frac{\left(e^{\sqrt{x}~x^2}+\sqrt{2}~e^{\sqrt{2}~x^2}+
+e^{2\sqrt{2}~C[1]}-\sqrt{2}~e^{2\sqrt{2}~C[1]}\right)x}
+{e^{\sqrt{2}~x^2}+e^{2*\sqrt{2}~C[1]}}$$
+which does not simplify to 0 on substitution.
+<<*>>=
+--S 11 of 126
+yx:=solve(ode103,y,x)
+--R
+--R                   +-+              +-+
+--R                (2\|2  + 3)y(x) + x\|2  + x
+--R   (11)  -----------------------------------------
+--R                                             2 +-+
+--R             +-+                +-+         x \|2
+--R         ((6\|2  + 8)y(x) - 14x\|2  - 20x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 11
+
+--S 12 of 126
+ode103expr := x*D(yx,x) + x*yx**2 - (2*x**2+1)*yx - x**3
+--R
+--R   (12)
+--R                                                            2 +-+
+--R               2 +-+        2             3 +-+        3   x \|2  ,
+--R       ((- 792x \|2  - 1120x )y(x) + 1912x \|2  + 2704x )%e      y (x)
+--R
+--R     + 
+--R                  3 +-+        3     3         4 +-+        4     2
+--R           (- 792x \|2  - 1120x )y(x)  + (5736x \|2  + 8112x )y(x)
+--R         + 
+--R                    5 +-+         5              6 +-+         6
+--R           (- 13848x \|2  - 19584x )y(x) + 11144x \|2  + 15760x
+--R      *
+--R             2 +-+ 2
+--R            x \|2
+--R         (%e      )
+--R     + 
+--R                    2        +-+        2           3
+--R           ((- 1352x  - 280)\|2  - 1912x  - 396)y(x)
+--R         + 
+--R                  3          +-+        3             2
+--R           ((5968x  + 2028x)\|2  + 8440x  + 2868x)y(x)
+--R         + 
+--R                    4        2  +-+        4        2
+--R           ((- 5176x  - 2984x )\|2  - 7320x  - 4220x )y(x)
+--R         + 
+--R                   5       3  +-+        5       3
+--R           (- 3264x  - 676x )\|2  - 4616x  - 956x
+--R      *
+--R            2 +-+
+--R           x \|2
+--R         %e
+--R     + 
+--R            +-+            3          2 +-+       2     2
+--R       (99x\|2  + 140x)y(x)  + (- 157x \|2  - 222x )y(x)
+--R     + 
+--R              3 +-+       3           4 +-+      4
+--R       (- 181x \|2  - 256x )y(x) - 41x \|2  - 58x
+--R  /
+--R              +-+            3            +-+             2
+--R         (792\|2  + 1120)y(x)  + (- 5736x\|2  - 8112x)y(x)
+--R       + 
+--R                2 +-+         2              3 +-+         3
+--R         (13848x \|2  + 19584x )y(x) - 11144x \|2  - 15760x
+--R    *
+--R           2 +-+ 2
+--R          x \|2
+--R       (%e      )
+--R                                                     Type: Expression Integer
+--E 12
+
+-------------------------------------------------------------------
+--S 13 of 126
+ode106 := x*D(y(x),x) + x**a*y(x)**2 + (a-b)*y(x)/2 + x**b
+--R
+--R            ,        b        2 a
+--R         2xy (x) + 2x  + 2y(x) x  + (- b + a)y(x)
+--R
+--R   (13)  ----------------------------------------
+--R                             2
+--R                                                     Type: Expression Integer
+--E 13
+
+@
+Maxima fails.
+
+Maple gets
+$$-\frac{\tan\left(
+\frac{\displaystyle 2x^{\left(\displaystyle
+\frac{a}{2}+\frac{b}{2}\right)}+\displaystyle\_C1~a+\_C1~b}
+{\displaystyle a+b}\right)}
+{x^{\left(\displaystyle{\frac{a}{2}-\displaystyle\frac{b}{2}}\right)}}$$
+which simplifies to 0 on substitution.
+
+
+Mathematica gets
+$$e^{-\frac{1}{2}a\log(x)+\frac{1}{2}b\log(x)}
+\tan\left(\frac{2x^{\frac{a+b}{2}}}{a+b}-C[1]\right)$$
+which does not simplify to 0 on substitution.
+<<*>>=
+--S 14 of 126
+yx:=solve(ode106,y,x)
+--R
+--R   (14)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 14
+
+-------------------------------------------------------------------
+--S 15 of 126
+ode107 := x*D(y(x),x) + a*x**alpha*y(x)**2 + b*y(x) - c*x**beta
+--R
+--R           ,         beta         2 alpha
+--R   (15)  xy (x) - c x     + a y(x) x      + b y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 15
+
+@
+Maxima fails.
+<<*>>=
+--S 16 of 126
+yx:=solve(ode107,y,x)
+--R
+--R   (16)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 16
+
+-------------------------------------------------------------------
+--S 17 of 126
+ode108 := x*D(y(x),x) - y(x)**2*log(x) + y(x)
+--R
+--R           ,          2
+--R   (17)  xy (x) - y(x) log(x) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 17
+@
+Maxima gets:
+$$\frac{1}{x\left(\frac{\log(x)}{x}+\frac{1}{x}+\%c\right)}$$
+which does not simplify on substitution.
+
+Maple gets:
+$$\frac{1}{1+\log(x)+x\_C1}$$
+which, on substitution, simplifies to 0.
+
+Mathematica gets:
+$$\frac{1}{1+xC[1]+\log(x)}$$
+which, on substitution, simplifies to 0.
+<<*>>=
+--S 18 of 126
+yx:=solve(ode108,y,x)
+--R
+--R         - y(x)log(x) - y(x) + 1
+--R   (18)  -----------------------
+--R                  x y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 18
+
+--S 19 of 126
+ode108expr := x*D(yx,x) - yx**2*log(x) + yx
+--R
+--R   (19)
+--R          2 ,          2      3           2               2
+--R       - x y (x) - y(x) log(x)  + (- 2y(x)  + 2y(x))log(x)
+--R
+--R     + 
+--R              2                            2
+--R       (- y(x)  + 2y(x) - 1)log(x) - x y(x)
+--R  /
+--R      2    2
+--R     x y(x)
+--R                                                     Type: Expression Integer
+--E 19
+
+-------------------------------------------------------------------
+--S 20 of 126
+ode109 := x*D(y(x),x) - y(x)*(2*y(x)*log(x)-1)
+--R
+--R           ,           2
+--R   (20)  xy (x) - 2y(x) log(x) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 20
+
+@
+Maxima gets:
+$$\frac{1}{x\left(\%c-2\left(-\frac{\log(x)}{x}-\frac{1}{x}\right)\right)}$$
+which does not simplify to 0 on substitution.
+
+Maple gets:
+$$\frac{1}{2+2\log(x)+x~\_C1}$$
+which simplifies to 0 on substitition.
+
+Mathematica gets
+$$\frac{1}{2+xC[1]+2\log(x)}$$
+which simplifies to 0 on substitution.
+<<*>>=
+--S 21 of 126
+yx:=solve(ode109,y,x)
+--R
+--R         - 2y(x)log(x) - 2y(x) + 1
+--R   (21)  -------------------------
+--R                   x y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 21
+
+--S 22 of 126
+ode109expr := x*D(yx,x) - yx*(2*yx*log(x)-1)
+--R
+--R   (22)
+--R          2 ,           2      3            2               2
+--R       - x y (x) - 8y(x) log(x)  + (- 16y(x)  + 8y(x))log(x)
+--R
+--R     + 
+--R               2                             2
+--R       (- 8y(x)  + 8y(x) - 2)log(x) - 2x y(x)
+--R  /
+--R      2    2
+--R     x y(x)
+--R                                                     Type: Expression Integer
+--E 22
+
+-------------------------------------------------------------------
+--S 23 of 126
+ode110 := x*D(y(x),x) + f(x)*(y(x)**2-x**2)
+--R
+--R           ,              2    2
+--R   (23)  xy (x) + f(x)y(x)  - x f(x)
+--R
+--R                                                     Type: Expression Integer
+--E 23
+
+@
+Maxima failed.
+<<*>>=
+--S 24 of 126
+yx:=solve(ode110,y,x)
+--R
+--R   (24)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 24
+
+-------------------------------------------------------------------
+--S 25 of 126
+ode111 := x*D(y(x),x) + y(x)**3 + 3*x*y(x)**2
+--R
+--R           ,          3          2
+--R   (25)  xy (x) + y(x)  + 3x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 25
+
+@
+Maxima fails.
+
+Maple gets 0 which simplifies to 0 on substitution.
+<<*>>=
+
+--S 26 of 126
+yx:=solve(ode111,y,x)
+--R
+--R   (26)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 26
+
+-------------------------------------------------------------------
+--S 27 of 126
+ode112 := x*D(y(x),x) - sqrt(y(x)**2 + x**2) - y(x)
+--R
+--R                   +----------+
+--R           ,       |    2    2
+--R   (27)  xy (x) - \|y(x)  + x   - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 27
+
+@
+Maxima gets
+$$x=\%c \%e^{\displaystyle
+\frac{x {\rm asinh}\left(\frac{y}{x}\right)}{\vert x\vert}}$$
+which does not simplify to 0 on substitution.
+
+Maple gets 0 but simplification gives the result $csgn(x)x$.
+<<*>>=
+
+--S 28 of 126
+yx:=solve(ode112,y,x)
+--R
+--R   (28)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 28
+
+-------------------------------------------------------------------
+--S 29 of 126
+ode113 := x*D(y(x),x) + a*sqrt(y(x)**2 + x**2) - y(x)
+--R
+--R                    +----------+
+--R           ,        |    2    2
+--R   (29)  xy (x) + a\|y(x)  + x   - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 29
+
+@
+Maxima gets
+$$x=\%c \%e^{\displaystyle
+-\frac{x {\rm asinh}\left(\frac{y}{x}\right)}{a\vert x\vert}}$$
+which does not simplify to 0 on substitution.
+
+Maple gets 0 but on substitition this simplifies to $a~csgn(x)~x$
+
+Mathematica gets
+$$x*\sinh(C[1]+\log(x))$$
+If we choose $C[1]=0$ this simplifies to 
+$$\frac{1}{2}(-1+x^2)$$
+However, Mathematica cannot simplify either substition to 0.
+<<*>>=
+--S 30 of 126
+yx:=solve(ode113,y,x)
+--R
+--R   (30)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 30
+
+-------------------------------------------------------------------
+--S 31 of 126
+ode114 := x*D(y(x),x) - x*sqrt(y(x)**2 + x**2) - y(x)
+--R
+--R                    +----------+
+--R           ,        |    2    2
+--R   (31)  xy (x) - x\|y(x)  + x   - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 31
+
+@
+Maxima fails.
+
+Maple gets 0 but, on substitition, simplifies to $-x^2csqn(x)$.
+
+Mathematica gets
+$$x\sinh(x+C[1])$$
+but cannot simplify the substituted expression to 0.
+<<*>>=
+--S 32 of 126
+yx:=solve(ode114,y,x)
+--R
+--R   (32)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 32
+
+-------------------------------------------------------------------
+--S 33 of 126
+ode115 := x*D(y(x),x) - x*(y(x)-x)*sqrt(y(x)**2 + x**2) - y(x)
+--R
+--R                                  +----------+
+--R           ,                   2  |    2    2
+--R   (33)  xy (x) + (- x y(x) + x )\|y(x)  + x   - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 33
+
+@
+Maxima failed.
+
+Maple claims the result is 0 but simplifies it, on substitution, to
+$x^3 csgn(x)$.
+
+Mathematica claims that the equations appear to involve the variables
+to be solved for in an essentially non-algebraic way.
+<<*>>=
+--S 34 of 126
+yx:=solve(ode115,y,x)
+--R
+--R   (34)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 34
+
+-------------------------------------------------------------------
+--S 35 of 126
+ode116 := x*D(y(x),x) - x*sqrt((y(x)**2 - x**2)*(y(x)**2-4*x**2)) - y(x)
+--R
+--R                    +----------------------+
+--R           ,        |    4     2    2     4
+--R   (35)  xy (x) - x\|y(x)  - 5x y(x)  + 4x   - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 35
+
+@
+Maxima failed.
+
+Maple claims the answer is 0 but simplifies, on substitution, to
+$-2x^3 csgn(x^2)$.
+
+Mathematica says that a potential solution of ComplexInfinity was possibly
+discarded by the verifier and should be checked by hand, possibly using
+limits. And the equations appear to involve the variables to be solved
+for in an essentially non-algebraic way.
+<<*>>=
+--S 36 of 126
+yx:=solve(ode116,y,x)
+--R
+--R   (36)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 36
+
+-------------------------------------------------------------------
+--S 37 of 126
+ode117 := x*D(y(x),x) - x*exp(y(x)/x) - y(x) - x
+--R
+--R                      y(x)
+--R                      ----
+--R           ,            x
+--R   (37)  xy (x) - x %e     - y(x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 37
+
+@
+Maxima gets:
+$$\%c~x=\%e^{\displaystyle -\frac{x\log(\%e^{y/x}+1)-y}{x}}$$
+which does not simplify to 0 on substitution.
+
+Maple gets:
+$$\left(\log\left(-\frac{x}{-1+x~e^{\_C1}}\right)+\_C1\right)x$$
+which simplifies to 0 on substitution.
+
+Mathematica says that inverse functions are being used by Solve, so some
+solutions may not be found and to use Reduce for complete solution
+information. It gets the answer:
+$$-x\log\left(-1+\frac{e^{-C[1]}}{x}\right)$$
+which simplifies to 0.
+<<*>>=
+--S 38 of 126
+yx:=solve(ode117,y,x)
+--R
+--R   (38)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 38
+
+-------------------------------------------------------------------
+--S 39 of 126
+ode118 := x*D(y(x),x) - y(x)*log(y(x))
+--R
+--R           ,
+--R   (39)  xy (x) - y(x)log(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 39
+
+@
+Maxima gets 
+$$\%e^{\%e^{\%c}x}$$
+which, on substitution, simplifies to 0.
+
+Maple gets
+$$e^{(x~\_C1)}$$
+which, on substitution, does not simplify to 0.
+
+Mathematics gets
+$$e^{e^{C[1]}x}$$
+which, on substitution simplifies to 
+$$e^x(x-\log(e^x))$$ which, if $log(e^x)$ could simplify to $x$
+then the result would be 0.
+<<*>>=
+--S 40 of 126
+yx:=solve(ode118,y,x)
+--R
+--R               x
+--R   (40)  - ---------
+--R           log(y(x))
+--R                                          Type: Union(Expression Integer,...)
+--E 40
+
+--S 41 of 126
+ode118expr := x*D(yx,x) - yx*log(yx)
+--R
+--R                                  x         2 ,
+--R         x y(x)log(y(x))log(- ---------) + x y (x) - x y(x)log(y(x))
+--R                              log(y(x))
+--R   (41)  -----------------------------------------------------------
+--R                                             2
+--R                                y(x)log(y(x))
+--R                                                     Type: Expression Integer
+--E 41
+
+-------------------------------------------------------------------
+--S 42 of 126
+ode119 := x*D(y(x),x) - y(x)*(log(x*y(x))-1)
+--R
+--R           ,
+--R   (42)  xy (x) - y(x)log(x y(x)) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 42
+
+@
+$$\frac{1}{x}$$ simplifies to 0.
+
+Maxima gets 
+$$\frac{\%e^{x/\%c}}{x}$$
+which, on substitution, does not simplify to 0.
+
+Maple get
+$$\frac{e^{\left(\frac{x}{\_C1}\right)}}{x}$$
+which, on substitution, does not simplify to 0.
+
+Mathematica gets
+$$\frac{1}{x(C[1]-log(log(x)))}$$
+which does not simplify to 0 on substitution.
+<<*>>=
+--S 43 of 126
+yx:=solve(ode119,y,x)
+--R
+--R   (43)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 43
+
+-------------------------------------------------------------------
+--S 44 of 126
+ode120 := x*D(y(x),x) - y(x)*(x*log(x**2/y(x))+2)
+--R
+--R                              2
+--R           ,                 x
+--R   (44)  xy (x) - x y(x)log(----) - 2y(x)
+--R                            y(x)
+--R                                                     Type: Expression Integer
+--E 44
+
+@
+Maxima fails.
+
+Maple gets
+$$\frac{x^2}{e^{\left(\frac{\_C1}{e^x}\right)}}$$
+which, on substitution, does not simplify to 0.
+
+Mathematics get:
+$$2e^{-e^{-x} C[1]+e^{-x}{\rm ExpIntegralEi}[x]}x$$
+which does not simplify to 0 on substitution.
+<<*>>=
+--S 45 of 126
+yx:=solve(ode120,y,x)
+--R
+--R   (45)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 45
+
+-------------------------------------------------------------------
+--S 46 of 126
+ode121 := x*D(y(x),x) + sin(y(x)-x)
+--R
+--R           ,
+--R   (46)  xy (x) + sin(y(x) - x)
+--R
+--R                                                     Type: Expression Integer
+--E 46
+
+@
+Maxima fails.
+
+Mathematics gets
+$$\frac{\sin(x)}{1+\sin(x)}+x^{-sin(x)}C[1]$$
+which, on substitution, does not simplify to 0.
+<<*>>=
+--S 47 of 126
+yx:=solve(ode121,y,x)
+--R
+--R   (47)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 47
+
+-------------------------------------------------------------------
+--S 48 of 126
+ode122 := x*D(y(x),x) + (sin(y(x))-3*x**2*cos(y(x)))*cos(y(x))
+--R
+--R           ,                             2         2
+--R   (48)  xy (x) + cos(y(x))sin(y(x)) - 3x cos(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 48
+
+@
+Maxima fails.
+
+Maple gets:
+$$\arctan\left(\frac{x^3+2~\_C1}{x}\right)$$
+which, on substitution, simplifies to 0.
+
+Mathematica gets:
+$$\arctan\left(\frac{2x^3+C[1]}{2x}\right)$$
+which, on substitution, simplifies to 0.
+<<*>>=
+--S 49 of 126
+yx:=solve(ode122,y,x)
+--R
+--R   (49)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 49
+
+-------------------------------------------------------------------
+--S 50 of 126
+ode123 := x*D(y(x),x) - x*sin(y(x)/x) - y(x)
+--R
+--R           ,            y(x)
+--R   (50)  xy (x) - x sin(----) - y(x)
+--R                          x
+--R                                                     Type: Expression Integer
+--E 50
+
+@
+Maxima gets:
+$$\%c~x=\%e^{\displaystyle -\frac{
+\log\left(\cos\left(\frac{y}{x}\right)+1\right)-
+\log\left(\cos\left(\frac{y}{x}\right)-1\right)}{2}}$$
+which, on substitution, does not simplify to 0.
+
+Maple gets:
+$$\arctan\left(\frac{2x~\_C1}{1+x^2~\_C1^2}\quad,\quad
+-\frac{-1+x^2~\_C1^2}{1+x^2~\_C1^2}\right)x$$
+which, on substitution, simplifies to 0.
+
+Mathematica get:
+$$x^{1+sin(x)}C[1]$$
+which does not simplfy to 0 on substitution.
+<<*>>=
+--S 51 of 126
+yx:=solve(ode123,y,x)
+--R
+--R   (51)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 51
+
+-------------------------------------------------------------------
+--S 52 of 126
+ode124 := x*D(y(x),x) + x*cos(y(x)/x) - y(x) + x
+--R
+--R           ,            y(x)
+--R   (52)  xy (x) + x cos(----) - y(x) + x
+--R                          x
+--R                                                     Type: Expression Integer
+--E 52
+
+@
+Maxima gets:
+$$\%c~x=\%e^{\displaystyle -\frac{\sin\left(\frac{y}{x}\right)}
+{\cos\left(\frac{y}{x}\right)+1}}$$
+which, on substitution, does not simplify to 0.
+
+Maple gets
+$$-2\arctan(\log(x)+~\_C1)x$$
+which, on substitution, does not simplify to 0.
+
+Mathematics gets
+$$2x\arctan(C[1]-\log(x))$$
+which does not simplify to 0 on substitution.
+<<*>>=
+--S 53 of 126
+yx:=solve(ode124,y,x)
+--R
+--R   (53)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 53
+
+-------------------------------------------------------------------
+--S 54 of 126
+ode125 := x*D(y(x),x) + x*tan(y(x)/x) - y(x)
+--R
+--R           ,            y(x)
+--R   (54)  xy (x) + x tan(----) - y(x)
+--R                          x
+--R                                                     Type: Expression Integer
+--E 54
+
+@
+Maxima gets:
+$$\arcsin\left(\frac{1}{\%c~x}\right)x$$
+which, on substitition, does simplifes to 0.
+
+Maple gets
+$$\arcsin\left(\frac{1}{x~\_C1}\right)x$$
+which, on substitution, simplifies to 0.
+
+Mathematica gets
+$$\arcsin\left(\frac{e^{C[1]}}{x}\right)$$
+which does not simplify to 0 on substitution.
+<<*>>=
+--S 55 of 126
+yx:=solve(ode125,y,x)
+--R
+--R   (55)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 55
+
+-------------------------------------------------------------------
+--S 56 of 126
+ode126 := x*D(y(x),x) - y(x)*f(x*y(x))
+--R
+--R           ,
+--R   (56)  xy (x) - y(x)f(x y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 56
+
+@
+Maxima fails.
+
+Maple gets
+$$\frac{{\rm RootOf}\left(-\log(x)+~\_C1+
+\displaystyle\int^{\_Z}{\frac{1}{\displaystyle\_a(1+g(\_a))}}~d\_a\right)}{x}$$
+which, on substitution, simplifies to 0.
+
+Mathematica gets
+$$\frac{1}{-f(x)-C[1]}$$
+which does not simplify to 0 on substitution.
+<<*>>=
+--S 57 of 126
+yx:=solve(ode126,y,x)
+--R
+--R   (57)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 57
+
+-------------------------------------------------------------------
+--S 58 of 126
+ode127 := x*D(y(x),x) - y(x)*f(x**a*y(x)**b)
+--R
+--R                  a    b      ,
+--R   (58)  - y(x)f(x y(x) ) + xy (x)
+--R
+--R                                                     Type: Expression Integer
+--E 58
+@
+Maxima fails.
+
+Maple gives 0 which, on substitution simplifies to 0.
+
+Mathematica gives:
+$$b\left(-\frac{f(x^a)}{a}-C[1]\right)^{-1/b}$$
+which, on substitution, does not simplify to 0.
+<<*>>=
+--S 59 of 126
+yx:=solve(ode127,y,x)
+--R
+--R   (59)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 59
+
+-------------------------------------------------------------------
+--S 60 of 126
+ode128 := x*D(y(x),x) + a*y(x) - f(x)*g(x**a*y(x))
+--R
+--R           ,                 a
+--R   (60)  xy (x) - f(x)g(y(x)x ) + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 60
+@
+Maxima fails.
+
+Maple gives 
+$$\frac{{\rm RootOf}\left(
+-\int{f(x)x^{(-1+a)}}~dx+\int^{\_Z}{\frac{1}{g(\_a)}~d\_a+\_C1}\right)}{x^a}$$
+which, on substitution, gives 0.
+
+Mathematica gives 
+$$e^{\frac{f(x)g(x^{1+a})}{1+a}-a\log(x)}C[1]$$
+which, on substitution, does not simplify to 0.
+<<*>>=
+--S 61 of 126
+yx:=solve(ode128,y,x)
+--R
+--R   (61)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 61
+
+-------------------------------------------------------------------
+--S 62 of 126
+ode129 := (x+1)*D(y(x),x) + y(x)*(y(x)-x)
+--R
+--R                 ,          2
+--R   (62)  (x + 1)y (x) + y(x)  - x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 62
+@
+Maxima gets:
+$$\frac{\%e^x}{(x+1)\left(\int{\frac{\%e^x}{(x+1)^2}}~dx+\%c\right)}$$
+which, on substitution, does not simplify to 0.
+
+Maple gives
+$$\frac{e^x}
+{-e^x-e^{(-1)}{\rm Ei}(1,-x-1)x-e^{(-1)}{\rm Ei}(1,-x-1)+x~\_C1+~\_C1}$$
+which, on substitution, simplifies to 0.
+
+Mathematica gives
+$$-\frac{e^{1+x}}{e^{1+x}-eC[1]-exC[1]-{\rm ExpIntegralEi}(1+x)-
+x{\rm ExpIntegralEi}(1+x)}$$
+<<*>>=
+--S 63 of 126
+yx:=solve(ode129,y,x)
+--R 
+--R
+--R                              x
+--R                        - x ++            1
+--I         (- x - 1)y(x)%e    |   --------------------- d%U  + 1
+--I                           ++      2             - %U
+--I                                (%U  + 2%U + 1)%e
+--R   (63)  -----------------------------------------------------
+--R                                         - x
+--R                            (x + 1)y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 63
+
+-------------------------------------------------------------------
+--S 64 of 126
+ode130 := 2*x*D(y(x),x) - y(x) -2*x**3
+--R
+--R            ,               3
+--R   (64)  2xy (x) - y(x) - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 64
+@
+Maxima gets:
+$$\%e^{\displaystyle\frac{\log(x)}{2}}\displaystyle
+\left(\frac{2\%e^{\displaystyle\frac{5\log(x)}{2}}}{5}+\%c\right)$$
+which, on substitution, does not give 0.
+
+Maple gives
+$$\frac{2x^3}{5}+\sqrt{x}~\_C1$$
+which, on substitution, simplifies to 0.
+
+Mathematica gives
+$$\frac{2x^3}{5}+\sqrt{x}C[1]$$
+which simplifies to 0 on substitution.
+<<*>>=
+--S 65 of 126
+ode130a:=solve(ode130,y,x)
+--R
+--R                        3
+--R                      2x           +-+
+--R   (65)  [particular= ---,basis= [\|x ]]
+--R                       5
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 65
+
+--S 66 of 126
+yx:=ode130a.particular
+--R
+--R           3
+--R         2x
+--R   (66)  ---
+--R          5
+--R                                                     Type: Expression Integer
+--E 66
+
+--S 67 of 126
+ode130expr := 2*x*D(yx,x) - yx -2*x**3
+--R
+--R   (67)  0
+--R                                                     Type: Expression Integer
+--E 67
+
+-------------------------------------------------------------------
+--S 68 of 126
+ode131 := (2*x+1)*D(y(x),x) - 4*exp(-y(x)) + 2
+--R
+--R                  ,         - y(x)
+--R   (68)  (2x + 1)y (x) - 4%e       + 2
+--R
+--R                                                     Type: Expression Integer
+--E 68
+@
+Maxima gets:
+$$\log\left(\frac{4\%e^{2\%c}x+2\%e^{2\%c}+1}
+{2\%e^{2\%c}x+\%e^{2\%c}}\right)$$
+which simplifies to 0 when substituted.
+
+Maple gives
+$$-\log\left(\frac{2x+1}{-1+4xe^{(2~\_C1)}+2e^{(2~\_C1)}}\right)-2~\_C1$$
+which simplifies to 0 when substituted.
+
+Mathematica gives
+$$\log\left(2+\frac{1}{1+2x}\right)$$
+which simplifies to 0 when substituted.
+<<*>>=
+--S 69 of 126
+yx:=solve(ode131,y,x)
+--R
+--R                 - y(x)            y(x)
+--R   (69)  (- 4x %e       + 2x + 1)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 69
+
+--S 70 of 126
+ode131expr := (2*x+1)*D(yx,x) - 4*exp(-yx) + 2
+--R
+--R   (70)
+--R                - y(x)            y(x)
+--R          (4x %e       - 2x - 1)%e          2            y(x) ,
+--R     - 4%e                             + (4x  + 4x + 1)%e    y (x)
+--R
+--R   + 
+--R                  - y(x)            y(x)
+--R     ((- 8x - 4)%e       + 4x + 2)%e     + 2
+--R                                                     Type: Expression Integer
+--E 70
+
+-------------------------------------------------------------------
+--S 71 of 126
+ode132 := 3*x*D(y(x),x) - 3*x*log(x)*y(x)**4 - y(x)
+--R
+--R            ,             4
+--R   (71)  3xy (x) - 3x y(x) log(x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 71
+@
+Maxima gives 3 solutions.
+$$-\frac{\left(\sqrt{3}~4^{1/3}\%i-4^{1/3}\right)x^{1/3}}
+{2\left(6x^2\log(x)-3x^2+4\%c\right)^{1/3}}$$
+$$\frac{\left(\sqrt{3}~4^{1/3}\%i+4^{1/3}\right)x^{1/3}}
+{2\left(6x^2\log(x)-3x^2+4\%c\right)^{1/3}}$$
+$$-\frac{4^{1/3}x^{1/3}}{\left(6x^2\log(x)-3x^2+4\%c\right)^{1/3}}$$
+which, on substitution, simplifies to 0.
+
+
+Maple gives 3 solutions.
+$$\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}}
+{6x^2\log(x)-3*x^2-4~\_C1}$$
+$$-\frac{1}{2}\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}}
+{6x^2\log(x)-3*x^2-4~\_C1}
++\frac{1}{2}I\sqrt{3}
+\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}}
+{6x^2\log(x)-3*x^2-4~\_C1}$$
+$$-\frac{1}{2}\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}}
+{6x^2\log(x)-3*x^2-4~\_C1}
+-\frac{1}{2}I\sqrt{3}
+\frac{\left(-4x(6x^2\log(x)-3x^2-4~\_C1)^2\right)^{(1/3)}}
+{6x^2\log(x)-3*x^2-4~\_C1}$$
+which, on substitution, simplifies to 0.
+
+
+Mathematica gives 3 solutions,
+$$\frac{(-2)^{2/3}x^{1/3}}{(3x^2+4C[1]-6x^2\log(x))^{1/3}}$$
+$$\frac{( 2)^{2/3}x^{1/3}}{(3x^2+4C[1]-6x^2\log(x))^{1/3}}$$
+$$\frac{(-1)^{1/3}2^{2/3}x^{1/3}}{(3x^2+4C[1]-6x^2\log(x))^{1/3}}$$
+which do not simplify to 0 on substitution.
+<<*>>=
+--S 72 of 126
+yx:=solve(ode132,y,x)
+--R
+--R             2    3           2    3
+--R         - 6x y(x) log(x) + 3x y(x)  - 4x
+--R   (72)  --------------------------------
+--R                           3
+--R                      4y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 72
+
+--S 73 of 126
+ode132expr := 3*x*D(yx,x) - 3*x*log(x)*yx**4 - yx
+--R
+--R   (73)
+--R            2    8 ,           9    12      5
+--R       2304x y(x) y (x) - 3888x y(x)  log(x)
+--R
+--R     + 
+--R             9    12         8    9       4
+--R       (7776x y(x)   - 10368x y(x) )log(x)
+--R     + 
+--R               9    12         8    9         7    6       3
+--R       (- 5832x y(x)   + 15552x y(x)  - 10368x y(x) )log(x)
+--R     + 
+--R             9    12        8    9         7    6        6    3       2
+--R       (1944x y(x)   - 7776x y(x)  + 10368x y(x)  - 4608x y(x) )log(x)
+--R     + 
+--R                  9        2     12        8    9        7    6        6    3
+--R           (- 243x  - 1920x )y(x)   + 1296x y(x)  - 2592x y(x)  + 2304x y(x)
+--R         + 
+--R                 5
+--R           - 768x
+--R      *
+--R         log(x)
+--R     + 
+--R             2    12            9
+--R       - 192x y(x)   - 512x y(x)
+--R  /
+--R            12
+--R     256y(x)
+--R                                                     Type: Expression Integer
+--E 73
+
+-------------------------------------------------------------------
+--S 74 of 126
+ode133 := x**2*D(y(x),x) + y(x) - x
+--R
+--R          2 ,
+--R   (74)  x y (x) + y(x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 74
+@
+Maxima gets
+$$\%e^{1/x}
+\left(\int{\displaystyle\frac{\%e^{-\frac{1}{x}}}{x}}~dx+\%c\right)$$
+which, on substitution, simplifies to 0.
+
+Maple gives
+$$\left({\rm Ei}\left(1,\frac{1}{x}\right)+~\_C1\right)e^{(\frac{1}{x})}$$
+which simplifies to 0 on substitution.
+
+Mathematica gets:
+$$e^{1/x}C[1]-e^{1/x}{\rm ExpIntegralEi}\left(-\frac{1}{x}\right)$$
+which simplifies to 0 on substitution.
+<<*>>=
+--S 75 of 126
+yx:=solve(ode133,y,x)
+--R 
+--R
+--R                        1                            1
+--R                        -   x                        -
+--R                        x ++     1                   x
+--I   (75)  [particular= %e  |   ------- d%U ,basis= [%e ]]
+--R                         ++         1
+--R                                   --
+--I                                   %U
+--I                              %U %e
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 75
+
+-------------------------------------------------------------------
+--S 76 of 126
+ode134 := x**2*D(y(x),x) - y(x) + x**2*exp(x-1/x)
+--R
+--R                        2
+--R                       x  - 1
+--R                       ------
+--R          2 ,       2     x
+--R   (76)  x y (x) + x %e       - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 76
+@
+Maxima gets
+$$\%e^{\displaystyle -\frac{1}{x}}\left(\%c-\%e^x\right)$$
+which simplifies to 0 on substitution.
+
+Maple gets
+$$(-e^x+~\_C1)e^{\left(-\frac{1}{x}\right)}$$
+which simplifies to 0 on substitution.
+
+Mathematics get
+$$-e^{-\frac{1}{x}+x}+e^{-1/x}C[1]$$
+which does not simplify to 0 on substitution.
+This is curious because the basis element is the same one
+computed by Axiom, which Axiom cannot simplify either. 
+However, Axiom can simplify the particular element to 0
+and Mathematica cannot.
+<<*>>=
+--S 77 of 126
+ode134a:=solve(ode134,y,x)
+--R
+--R                           2
+--R                          x  - 1             1
+--R                          ------           - -
+--R                             x               x
+--R   (77)  [particular= - %e      ,basis= [%e   ]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 77
+
+--S 78 of 126
+yx:=ode134a.particular
+--R
+--R              2
+--R             x  - 1
+--R             ------
+--R                x
+--R   (78)  - %e
+--R                                                     Type: Expression Integer
+--E 78
+
+--S 79 of 126
+ode134expr := x**2*D(yx,x) - yx + x**2*exp(x-1/x)
+--R
+--R   (79)  0
+--R                                                     Type: Expression Integer
+--E 79
+
+-------------------------------------------------------------------
+--S 80 of 126
+ode135 := x**2*D(y(x),x) - (x-1)*y(x)
+--R
+--R          2 ,
+--R   (80)  x y (x) + (- x + 1)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 80
+@
+Maxima gets
+$$\%c~x\%e^{1/x}$$
+which simplifies to 0 when substituted.
+
+Maple gets
+$$\_C1xe^{\left(\frac{1}{x}\right)}$$
+which simplifies to 0 when substituted.
+
+Mathematica gets 
+$$e^{1/x}xC[1]$$
+which simplifies to 0 when substituted.
+<<*>>=
+--S 81 of 126
+ode135a:=solve(ode135,y,x)
+--R
+--R                                    1
+--R                                    -
+--R                                    x
+--R   (81)  [particular= 0,basis= [x %e ]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 81
+
+--S 82 of 126
+yx:=ode135a.particular
+--R
+--R   (82)  0
+--R                                                     Type: Expression Integer
+--E 82
+
+--S 83 of 126
+ode135expr := x**2*D(yx,x) - (x-1)*yx
+--R
+--R   (83)  0
+--R                                                     Type: Expression Integer
+--E 83
+
+-------------------------------------------------------------------
+--S 84 of 126
+ode136 := x**2*D(y(x),x) + y(x)**2 + x*y(x) + x**2
+--R
+--R          2 ,          2             2
+--R   (84)  x y (x) + y(x)  + x y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 84
+@
+Maxima gets
+$$-\frac{x\log(\%c~x)-x}{log(\%c~x)}$$
+which simplifies to 0 on substitution.
+
+Maple gets
+$$-\frac{x(-1+\log(x)+~\_C1)}{\log(x)+~\_C1}$$
+which simplifies to 0 on substitution.
+
+Mathematica gets
+$$\frac{-x-xC[1]+x\log(x)}{C[1]-\log(x)}$$
+which simplifies to 0 on substition.
+<<*>>=
+--S 85 of 126
+yx:=solve(ode136,y,x)
+--R
+--R         (- y(x) - x)log(x) + x
+--R   (85)  ----------------------
+--R                y(x) + x
+--R                                          Type: Union(Expression Integer,...)
+--E 85
+
+--S 86 of 126
+ode136expr := x**2*D(yx,x) + yx**2 + x*yx + x**2
+--R
+--R   (86)
+--R          3 ,           2              2       2
+--R       - x y (x) + (y(x)  + 2x y(x) + x )log(x)
+--R
+--R     + 
+--R                2        2              3     2            2         2     3
+--R       (- x y(x)  + (- 2x  - 2x)y(x) - x  - 2x )log(x) + (x  - x)y(x)  + 2x y(x)
+--R     + 
+--R        4    2
+--R       x  + x
+--R  /
+--R         2              2
+--R     y(x)  + 2x y(x) + x
+--R                                                     Type: Expression Integer
+--E 86
+
+-------------------------------------------------------------------
+--S 87 of 126
+ode137 := x**2*D(y(x),x) - y(x)**2 - x*y(x)
+--R
+--R          2 ,          2
+--R   (87)  x y (x) - y(x)  - x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 87
+@
+Maxima gets
+$$\frac{x}{\log\left(\displaystyle \frac{1}{\%c~x}\right)}$$
+which simplifies to 0 on substitution.
+
+Maple gets:
+$$\frac{x}{-\log(x)+~\_C1}$$
+which simplifies to 0 on substitution.
+
+Mathematica gets:
+$$\frac{x}{C[1]-\log(x)}$$
+which simplifies to 0 on substitution.
+<<*>>=
+--S 88 of 126
+yx:=solve(ode137,y,x)
+--R
+--R         y(x)log(x) + x
+--R   (88)  --------------
+--R              y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 88
+
+--S 89 of 126
+ode137expr := x**2*D(yx,x) - yx**2 - x*yx
+--R
+--R            3 ,          2      2            2                          2    2
+--R         - x y (x) - y(x) log(x)  + (- x y(x)  - 2x y(x))log(x) + x y(x)  - x
+--R
+--R   (89)  ---------------------------------------------------------------------
+--R                                             2
+--R                                         y(x)
+--R                                                     Type: Expression Integer
+--E 89
+
+-------------------------------------------------------------------
+--S 90 of 126
+ode138 := x**2*D(y(x),x) - y(x)**2 - x*y(x) - x**2
+--R
+--R          2 ,          2             2
+--R   (90)  x y (x) - y(x)  - x y(x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 90
+@
+Maxima gets
+$$\%c~x=\%e^{\arctan\left(\frac{y}{x}\right)}$$
+which does not simplify to 0 when substituted.
+
+Maple gets
+$$\tan(\log(x)+~\_C1)x$$
+which simplifies to 0 on substitution.
+
+Mathematica get:
+$$x\tan(C[2]+\log(x))$$
+which simplifies to 0 when substituted.
+<<*>>=
+
+--S 91 of 126
+yx:=solve(ode138,y,x)
+--R
+--R                         +---+               +---+
+--R                    (- 7\|- 1  + 9)y(x) + 9x\|- 1  + 7x
+--R   (91)  --------------------------------------------------------
+--R                                                      +---+
+--R              +---+                 +---+         - 2\|- 1 log(x)
+--R         ((18\|- 1  + 14)y(x) - 14x\|- 1  + 18x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 91
+
+--S 92 of 126
+ode138expr := x**2*D(yx,x) - yx**2 - x*yx - x**2
+--R
+--R   (92)
+--R                  3 +---+        3             4 +---+        4
+--R         ((- 1188x \|- 1  + 2716x )y(x) - 2716x \|- 1  - 1188x )
+--R      *
+--R               +---+
+--R           - 2\|- 1 log(x) ,
+--R         %e               y (x)
+--R
+--R     + 
+--R                   2 +---+        2     3           3 +---+        3     2
+--R           (- 1188x \|- 1  + 2716x )y(x)  + (- 8148x \|- 1  - 3564x )y(x)
+--R         + 
+--R                 4 +---+        4             5 +---+        5
+--R           (3564x \|- 1  - 8148x )y(x) + 2716x \|- 1  + 1188x
+--R      *
+--R                +---+       2
+--R            - 2\|- 1 log(x)
+--R         (%e               )
+--R     + 
+--R                   +---+             3         2 +---+        2     2
+--R           (- 170x\|- 1  - 3310x)y(x)  + (4498x \|- 1  - 2886x )y(x)
+--R         + 
+--R                 3 +---+        3             4 +---+       4
+--R           (2546x \|- 1  - 2122x )y(x) + 3310x \|- 1  - 170x
+--R      *
+--R               +---+
+--R           - 2\|- 1 log(x)
+--R         %e
+--R     + 
+--R            +---+           3           +---+            2
+--R       (297\|- 1  - 679)y(x)  + (- 679x\|- 1  - 297x)y(x)
+--R     + 
+--R            2 +---+       2            3 +---+       3
+--R       (297x \|- 1  - 679x )y(x) - 679x \|- 1  - 297x
+--R  /
+--R               +---+            3          +---+             2
+--R         (1188\|- 1  - 2716)y(x)  + (8148x\|- 1  + 3564x)y(x)
+--R       + 
+--R                 2 +---+        2             3 +---+        3
+--R         (- 3564x \|- 1  + 8148x )y(x) - 2716x \|- 1  - 1188x
+--R    *
+--R              +---+       2
+--R          - 2\|- 1 log(x)
+--R       (%e               )
+--R                                                     Type: Expression Integer
+--E 92
+
+-------------------------------------------------------------------
+--S 93 of 126
+ode139 := x**2*(D(y(x),x)+y(x)**2) + a*x**k - b*(b-1)
+--R
+--R          2 ,         k    2    2    2
+--R   (93)  x y (x) + a x  + x y(x)  - b  + b
+--R
+--R                                                     Type: Expression Integer
+--E 93
+
+@
+Maxima gets 6 answers, one of which is:
+$$\frac{-\left(3^{5/6}\%i\left(ax^k+\%ckx-\%cx+b^2k-bk-b^2+b\right)^{1/3}-
+3^{1/3}\left(ax^k+\%ckx-\%cx+b^2k-bk-b^2+b\right)^{1/3}\right)}
+{\left(2(k-1)^{1/3}x^{1/3}\right)}$$
+which simplifies to 0 on substitution.
+<<*>>=
+
+--S 94 of 126
+yx:=solve(ode139,y,x)
+--R
+--R   (94)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 94
+
+-------------------------------------------------------------------
+--S 95 of 126
+ode140 := x**2*(D(y(x),x)+y(x)**2) + 4*x*y(x) + 2
+--R
+--R          2 ,       2    2
+--R   (95)  x y (x) + x y(x)  + 4x y(x) + 2
+--R
+--R                                                     Type: Expression Integer
+--E 95
+@
+Maxima gets
+$$-\frac{x-2\%c}{x^2-\%c~x}$$
+which simplifies to 0 when substituted.
+
+Maple gets
+$$-\frac{-2~\_C1+x}{x(-~\_C1+x)}$$
+which simplifies to 0 when substituted.
+
+Mathematica gets:
+$$-\frac{2}{x}+\frac{1}{x+C[1]}$$
+which does not simplify.
+<<*>>=
+--S 96 of 126
+yx:=solve(ode140,y,x)
+--R
+--R              x y(x) + 2
+--R   (96)  --------------------
+--R           2
+--R         (x  - x)y(x) + x - 2
+--R                                          Type: Union(Expression Integer,...)
+--E 96
+
+--S 97 of 126
+ode140expr := x**2*(D(yx,x)+yx**2) + 4*x*yx + 2
+--R
+--R   (97)
+--R      4 ,         4     3     2     2       3      2                2
+--R   - x y (x) + (6x  - 8x  + 2x )y(x)  + (16x  - 28x  + 8x)y(x) + 12x  - 24x + 8
+--R
+--R   ----------------------------------------------------------------------------
+--R               4     3    2     2      3     2              2
+--R             (x  - 2x  + x )y(x)  + (2x  - 6x  + 4x)y(x) + x  - 4x + 4
+--R                                                     Type: Expression Integer
+--E 97
+
+-------------------------------------------------------------------
+--S 98 of 126
+ode141 := x**2*(D(y(x),x)+y(x)**2) + a*x*y(x) + b
+--R
+--R          2 ,       2    2
+--R   (98)  x y (x) + x y(x)  + a x y(x) + b
+--R
+--R                                                     Type: Expression Integer
+--E 98
+
+@
+Maxima gets:
+$$\%e^{\displaystyle -a\log(x)-2x}
+\left(\%c-b \int{\displaystyle
+\frac{\%e^{\displaystyle a\log(x)+2x}}{x^2}}~dx\right)$$
+which, when substituted, simplifies to 0.
+<<*>>=
+
+--S 99 of 126
+yx:=solve(ode141,y,x)
+--R                                                     2
+--R   WARNING (genufact): No known algorithm to factor ?  + (a - 1)? + b
+--R     , trying square-free.
+--R
+--R   (99)
+--R      +------------------+
+--R      |        2
+--R     \|- 4b + a  - 2a + 1  - 2x y(x) - a + 1
+--R  /
+--R                          +------------------+
+--R                          |        2                   2
+--R       ((2x y(x) + a - 1)\|- 4b + a  - 2a + 1  - 4b + a  - 2a + 1)
+--R    *
+--R                  +------------------+
+--R                  |        2
+--R         - log(x)\|- 4b + a  - 2a + 1
+--R       %e
+--R                                          Type: Union(Expression Integer,...)
+--E 99
+
+--S 100 of 126
+ode141expr := x**2*(D(yx,x)+yx**2) + a*x*yx + b
+--R
+--R   (100)
+--R                        2           4                       3     2           3
+--R             ((- 8b + 2a  - 4a + 2)x y(x) + ((- 4a + 4)b + a  - 3a  + 3a - 1)x )
+--R          *
+--R              +------------------+
+--R              |        2
+--R             \|- 4b + a  - 2a + 1
+--R         + 
+--R               2        2                4     3     2           3
+--R           (16b  + (- 8a  + 16a - 8)b + a  - 4a  + 6a  - 4a + 1)x
+--R      *
+--R                    +------------------+
+--R                    |        2
+--R           - log(x)\|- 4b + a  - 2a + 1  ,
+--R         %e                             y (x)
+--R
+--R     + 
+--R                  2        2             3    3
+--R               (8b  + (- 2a  + 4a - 2)b)x y(x)
+--R             + 
+--R                           2        3     2             2    2
+--R               ((12a - 12)b  + (- 3a  + 9a  - 9a + 3)b)x y(x)
+--R             + 
+--R                          3       2             2
+--R                     - 24b  + (18a  - 36a + 18)b
+--R                   + 
+--R                          4      3      2
+--R                     (- 3a  + 12a  - 18a  + 12a - 3)b
+--R              *
+--R                 x y(x)
+--R             + 
+--R                            3      3      2            2
+--R               (- 12a + 12)b  + (7a  - 21a  + 21a - 7)b
+--R             + 
+--R                   5     4      3      2
+--R               (- a  + 5a  - 10a  + 10a  - 5a + 1)b
+--R          *
+--R              +------------------+
+--R              |        2
+--R             \|- 4b + a  - 2a + 1
+--R         + 
+--R                   3       2             2        4      3      2              2
+--R             (- 48b  + (24a  - 48a + 24)b  + (- 3a  + 12a  - 18a  + 12a - 3)b)x
+--R          *
+--R                 2
+--R             y(x)
+--R         + 
+--R                            3       3      2             2
+--R               (- 48a + 48)b  + (24a  - 72a  + 72a - 24)b
+--R             + 
+--R                    5      4      3      2
+--R               (- 3a  + 15a  - 30a  + 30a  - 15a + 3)b
+--R          *
+--R             x y(x)
+--R         + 
+--R              4         2             3      4      3      2            2
+--R           16b  + (- 24a  + 48a - 24)b  + (9a  - 36a  + 54a  - 36a + 9)b
+--R         + 
+--R               6     5      4      3      2
+--R           (- a  + 6a  - 15a  + 20a  - 15a  + 6a - 1)b
+--R      *
+--R                     +------------------+ 2
+--R                     |        2
+--R            - log(x)\|- 4b + a  - 2a + 1
+--R         (%e                             )
+--R     + 
+--R                         2           4    3
+--R               (- 8b + 2a  - 4a + 2)x y(x)
+--R             + 
+--R                                 3     2           3    2
+--R               ((- 16a + 4)b + 4a  - 9a  + 6a - 1)x y(x)
+--R             + 
+--R                    2        2                4     3     2       2
+--R               (- 8b  + (- 6a  + 4a + 2)b + 2a  - 6a  + 6a  - 2a)x y(x)
+--R             + 
+--R                           2      3     2
+--R               ((- 8a + 4)b  + (2a  - 5a  + 4a - 1)b)x
+--R          *
+--R              +------------------+
+--R              |        2
+--R             \|- 4b + a  - 2a + 1
+--R         + 
+--R                       3     2       4    3
+--R           (- 8a b + 2a  - 4a  + 2a)x y(x)
+--R         + 
+--R               2         2                 4      3      2           3    2
+--R           (16b  + (- 20a  + 28a - 8)b + 4a  - 13a  + 15a  - 7a + 1)x y(x)
+--R         + 
+--R                2         3      2             5     4      3     2       2
+--R           (8a b  + (- 10a  + 20a  - 10a)b + 2a  - 8a  + 12a  - 8a  + 2a)x y(x)
+--R         + 
+--R               3         2            2      4     3     2
+--R           (16b  + (- 12a  + 20a - 8)b  + (2a  - 7a  + 9a  - 5a + 1)b)x
+--R      *
+--R                    +------------------+
+--R                    |        2
+--R           - log(x)\|- 4b + a  - 2a + 1
+--R         %e
+--R     + 
+--R               5    3              4    2            2           3
+--R           - 2x y(x)  + (- 3a + 3)x y(x)  + (- 2b - a  + 2a - 1)x y(x)
+--R         + 
+--R                       2
+--R           (- a + 1)b x
+--R      *
+--R          +------------------+
+--R          |        2
+--R         \|- 4b + a  - 2a + 1
+--R     + 
+--R                2           4    2                   3     2           3
+--R       (- 4b + a  - 2a + 1)x y(x)  + ((- 4a + 4)b + a  - 3a  + 3a - 1)x y(x)
+--R     + 
+--R            2     2             2
+--R       (- 4b  + (a  - 2a + 1)b)x
+--R  /
+--R                     2           3    3
+--R             (8b - 2a  + 4a - 2)x y(x)
+--R           + 
+--R                              3     2           2    2
+--R             ((12a - 12)b - 3a  + 9a  - 9a + 3)x y(x)
+--R           + 
+--R                   2       2                  4      3      2
+--R             (- 24b  + (18a  - 36a + 18)b - 3a  + 12a  - 18a  + 12a - 3)x y(x)
+--R           + 
+--R                          2      3      2                5     4      3      2
+--R             (- 12a + 12)b  + (7a  - 21a  + 21a - 7)b - a  + 5a  - 10a  + 10a
+--R           + 
+--R             - 5a + 1
+--R        *
+--R            +------------------+
+--R            |        2
+--R           \|- 4b + a  - 2a + 1
+--R       + 
+--R               2       2                  4      3      2            2    2
+--R         (- 48b  + (24a  - 48a + 24)b - 3a  + 12a  - 18a  + 12a - 3)x y(x)
+--R       + 
+--R                          2       3      2                  5      4      3
+--R             (- 48a + 48)b  + (24a  - 72a  + 72a - 24)b - 3a  + 15a  - 30a
+--R           + 
+--R                2
+--R             30a  - 15a + 3
+--R        *
+--R           x y(x)
+--R       + 
+--R            3         2             2      4      3      2                6
+--R         16b  + (- 24a  + 48a - 24)b  + (9a  - 36a  + 54a  - 36a + 9)b - a
+--R       + 
+--R           5      4      3      2
+--R         6a  - 15a  + 20a  - 15a  + 6a - 1
+--R    *
+--R                   +------------------+ 2
+--R                   |        2
+--R          - log(x)\|- 4b + a  - 2a + 1
+--R       (%e                             )
+--R                                                     Type: Expression Integer
+--E 100
+
+-------------------------------------------------------------------
+--S 101 of 126
+ode142 := x**2*(D(y(x),x)-y(x)**2) - a*x**2*y(x) + a*x + 2
+--R
+--R           2 ,       2    2      2
+--R   (101)  x y (x) - x y(x)  - a x y(x) + a x + 2
+--R
+--R                                                     Type: Expression Integer
+--E 101
+
+@
+Maxima failed.
+<<*>>=
+
+--S 102 of 126
+yx:=solve(ode142,y,x)
+--R
+--R            2 3       2              3 3    2 2
+--R          (a x  - 2a x  + 2x)y(x) + a x  - a x  + 2a x - 2
+--R   (102)  ------------------------------------------------
+--R                         3          3   - a x
+--R                       (a x y(x) - a )%e
+--R                                          Type: Union(Expression Integer,...)
+--E 102
+
+--S 103 of 126
+ode142expr := x**2*(D(yx,x)-yx**2) - a*x**2*yx + a*x + 2
+--R
+--R   (103)
+--R          6 6  - a x ,
+--R       - a x %e     y (x)
+--R
+--R     + 
+--R          7 3     6 2     2        7 2     6          7      6    - a x 2
+--R       ((a x  + 2a x )y(x)  + (- 2a x  - 4a x)y(x) + a x + 2a )(%e     )
+--R     + 
+--R              5 5     4 4     2      6 5     5 4     4 3          6 4     5 3
+--R           (2a x  - 2a x )y(x)  + (2a x  - 4a x  + 4a x )y(x) - 3a x  + 2a x
+--R         + 
+--R               4 2
+--R           - 2a x
+--R      *
+--R           - a x
+--R         %e
+--R     + 
+--R           4 8     3 7     2 6       5     4     2
+--R       (- a x  + 4a x  - 8a x  + 8a x  - 4x )y(x)
+--R     + 
+--R            5 8     4 7      3 6      2 5        4     3         6 8     5 7
+--R       (- 2a x  + 6a x  - 12a x  + 16a x  - 16a x  + 8x )y(x) - a x  + 2a x
+--R     + 
+--R           4 6     3 5     2 4       3     2
+--R       - 5a x  + 8a x  - 8a x  + 8a x  - 4x
+--R  /
+--R       6 2    2     6          6    - a x 2
+--R     (a x y(x)  - 2a x y(x) + a )(%e     )
+--R                                                     Type: Expression Integer
+--E 103
+
+-------------------------------------------------------------------
+--S 104 of 126
+ode143 := x**2*(D(y(x),x)+a*y(x)**2) - b
+--R
+--R           2 ,         2    2
+--R   (104)  x y (x) + a x y(x)  - b
+--R
+--R                                                     Type: Expression Integer
+--E 104
+
+@
+Maxima, if $4ab+1 >= 0$ gets:
+$$x=\%c\%e^{
+-\frac{\displaystyle\log\left(
+-\frac{\displaystyle -2axy+\sqrt{4ab+1}+1}
+{\displaystyle 2axy+\sqrt{4ab+1}-1}\right)}
+{\displaystyle\sqrt{4ab+1}}}$$
+
+and if $4ab+1 < 0$ gets:
+$$x=\%c\%e^{
+-\frac{\displaystyle 2\arctan\left(
+\frac{\displaystyle 2axy-1}{\displaystyle\sqrt{-4ab-1}}\right)}
+{\displaystyle\sqrt{-4ab-1}}}$$
+
+neither of which simplify to 0 on substitution.
+<<*>>=
+
+--S 105 of 126
+yx:=solve(ode143,y,x)
+--R                                                     2
+--R   WARNING (genufact): No known algorithm to factor ?  - ? - a b
+--R     , trying square-free.
+--R
+--R                            +--------+     2
+--R                          a\|4a b + 1  - 2a x y(x) + a
+--R   (105)  ------------------------------------------------------------
+--R                                                            +--------+
+--R                           +--------+              - log(x)\|4a b + 1
+--R          ((2a x y(x) - 1)\|4a b + 1  + 4a b + 1)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 105
+
+--S 106 of 126
+ode143expr := x**2*(D(yx,x)+a*yx**2) - b
+--R
+--R   (106)
+--R                                  +--------+
+--R            3      2  3  - log(x)\|4a b + 1  ,
+--R       (- 8a b - 2a )x %e                   y (x)
+--R
+--R     + 
+--R                 2 2                     2      +--------+
+--R           ((- 8a b  - 2a b)x y(x) + 4a b  + b)\|4a b + 1
+--R         + 
+--R                3 2     2   2    2      2 2                   2 3       2
+--R           (- 8a b  - 2a b)x y(x)  + (8a b  + 2a b)x y(x) - 8a b  - 6a b  - b
+--R      *
+--R                     +--------+ 2
+--R            - log(x)\|4a b + 1
+--R         (%e                   )
+--R     + 
+--R                                                           +--------+
+--R             4      3  3    2      3 2     2      - log(x)\|4a b + 1
+--R       ((- 8a b - 2a )x y(x)  + (8a b  + 2a b)x)%e
+--R     + 
+--R            4 3        3 2  +--------+     5 4    2     4 3          4     3  2
+--R       (- 2a x y(x) + a x )\|4a b + 1  + 2a x y(x)  - 2a x y(x) + (2a b + a )x
+--R  /
+--R             2                          +--------+      3      2  2    2
+--R         ((8a b + 2a)x y(x) - 4a b - 1)\|4a b + 1  + (8a b + 2a )x y(x)
+--R       + 
+--R              2                  2 2
+--R         (- 8a b - 2a)x y(x) + 8a b  + 6a b + 1
+--R    *
+--R                   +--------+ 2
+--R          - log(x)\|4a b + 1
+--R       (%e                   )
+--R                                                     Type: Expression Integer
+--E 106
+
+-------------------------------------------------------------------
+--S 107 of 126
+ode144 := x**2*(D(y(x),x)+a*y(x)**2) + b*x**alpha + c
+--R
+--R           2 ,         alpha      2    2
+--R   (107)  x y (x) + b x      + a x y(x)  + c
+--R
+--R                                                     Type: Expression Integer
+--E 107
+
+@
+Maxima failed.
+<<*>>=
+--S 108 of 126
+yx:=solve(ode144,y,x)
+--R
+--R   (108)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 108
+
+-------------------------------------------------------------------
+--S 109 of 126
+ode145 := x**2*D(y(x),x) + a*y(x)**3 - a*x**2*y(x)**2
+--R
+--R           2 ,            3      2    2
+--R   (109)  x y (x) + a y(x)  - a x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 109
+
+@
+Maxima failed.
+
+Maple claims the result is 0, which when substituted, simplifies to 0
+<<*>>=
+--S 110 of 126
+yx:=solve(ode145,y,x)
+--R
+--R   (110)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 110
+
+-------------------------------------------------------------------
+--S 111 of 126
+ode146 := x**2*D(y(x),x) + x*y(x)**3 + a*y(x)**2
+--R
+--R           2 ,            3         2
+--R   (111)  x y (x) + x y(x)  + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 111
+
+@
+Maxima failed.
+
+Maple gets 0 which, when substituted, simplifies to 0.
+<<*>>=
+--S 112 of 126
+yx:=solve(ode146,y,x)
+--R
+--R   (112)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 112
+
+-------------------------------------------------------------------
+--S 113 of 126
+ode147 := x**2*D(y(x),x) + a*x**2*y(x)**3 + b*y(x)**2
+--R
+--R           2 ,         2    3         2
+--R   (113)  x y (x) + a x y(x)  + b y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 113
+@
+Maxima failed.
+
+Maple gets 0 which, when substituted, results in 0.
+<<*>>=
+--S 114 of 126
+yx:=solve(ode147,y,x)
+--R
+--R   (114)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 114
+
+-------------------------------------------------------------------
+--S 115 of 126
+ode148 := (x**2+1)*D(y(x),x) + x*y(x) - 1
+--R
+--R            2      ,
+--R   (115)  (x  + 1)y (x) + x y(x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 115
+@
+Maxima gets
+$$({\rm asinh}(x)+\%c)\%e^{-\frac{\displaystyle\log(x^2+1)}{\displaystyle 2}}$$
+which when substituted, does not simplify to 0.
+
+Maple gets
+$$\frac{{\rm arcsinh}(x)+~\_C1}{\sqrt{x^2+1}}$$
+which when substituted, simplifies to 0.
+
+Mathematica gets
+$$\frac{{\rm arcsinh}(x)}{\sqrt{1+x^2}}+\frac{C[1]}{\sqrt{1+x^2}}$$
+gives 0 when substituted.
+<<*>>=
+--S 116 of 126
+ode148a:=solve(ode148,y,x)
+--R
+--R                              +------+
+--R                              | 2
+--R                         log(\|x  + 1  - x)             1
+--R   (116)  [particular= - ------------------,basis= [---------]]
+--R                               +------+              +------+
+--R                               | 2                   | 2
+--R                              \|x  + 1              \|x  + 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 116
+
+--S 117 of 126
+yx:=ode148a.particular
+--R
+--R                 +------+
+--R                 | 2
+--R            log(\|x  + 1  - x)
+--R   (117)  - ------------------
+--R                  +------+
+--R                  | 2
+--R                 \|x  + 1
+--R                                                     Type: Expression Integer
+--E 117
+
+--S 118 of 126
+ode148expr := (x**2+1)*D(yx,x) + x*yx - 1
+--R
+--R   (118)  0
+--R                                                     Type: Expression Integer
+--E 118
+
+-------------------------------------------------------------------
+--S 119 of 126
+ode149 := (x**2+1)*D(y(x),x) + x*y(x) - x*(x**2+1)
+--R
+--R            2      ,                3
+--R   (119)  (x  + 1)y (x) + x y(x) - x  - x
+--R
+--R                                                     Type: Expression Integer
+--E 119
+@
+Maxima gets
+$$\left(\displaystyle\frac{(x^2+1)^{3/2}}{3}+\%c\right)
+\%e^{\displaystyle -\frac{log(x^2+1)}{2}}$$
+which simplifies to 0 when substituted.
+
+Maple gets
+$$\frac{x^2}{3}+\frac{1}{3}+\frac{\_C1}{\sqrt{x^2+1}}$$
+which simplifies to 0 when substituted.
+
+Mathematica gets
+$$\frac{1}{3}(1+x^2)+\frac{C[1]}{\sqrt{1+x^2}}$$
+which simplifes to 0 when substituted.
+<<*>>=
+--S 120 of 126
+ode149a:=solve(ode149,y,x)
+--R
+--R                        2
+--R                       x  + 1             1
+--R   (120)  [particular= ------,basis= [---------]]
+--R                          3            +------+
+--R                                       | 2
+--R                                      \|x  + 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 120
+
+--S 121 of 126
+yx:=ode149a.particular
+--R
+--R           2
+--R          x  + 1
+--R   (121)  ------
+--R             3
+--R                                                     Type: Expression Integer
+--E 121
+
+--S 122 of 126
+ode149expr := (x**2+1)*D(yx,x) + x*yx - x*(x**2+1)
+--R
+--R   (122)  0
+--R                                                     Type: Expression Integer
+--E 122
+
+-------------------------------------------------------------------
+--S 123 of 126
+ode150 := (x**2+1)*D(y(x),x) + 2*x*y(x) - 2*x**2
+--R
+--R            2      ,                  2
+--R   (123)  (x  + 1)y (x) + 2x y(x) - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 123
+@
+Maxima gets
+$$\displaystyle\frac{\frac{2x^3}{3}+\%c}{x^2+1}$$
+which simplifies to 0 on substitution.
+
+Maple gets
+$$\frac{\frac{2x^3}{3}+~\_C1}{x^2+1}$$
+which simplifies to 0 on substitution.
+
+Mathematica gets:
+$$\frac{2x^3}{3(1+x^2)}+\frac{C[1]}{1+x^2}$$
+which simplifies to 0 on substitution.
+<<*>>=
+
+--S 124 of 126
+ode150a:=solve(ode150,y,x)
+--R
+--R                         3
+--R                       2x  + 3            1
+--R   (124)  [particular= -------,basis= [------]]
+--R                         2              2
+--R                       3x  + 3         x  + 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 124
+
+--S 125 of 126
+yx:=ode150a.particular
+--R
+--R            3
+--R          2x  + 3
+--R   (125)  -------
+--R            2
+--R          3x  + 3
+--R                                                     Type: Expression Integer
+--E 125
+
+--S 126 of 126
+ode150expr := (x**2+1)*D(yx,x) + 2*x*yx - 2*x**2
+--R
+--R   (126)  0
+--R                                                     Type: Expression Integer
+--E 126
+)spool
+)lisp (bye)
+ 
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\bibitem{2} Mathematica 6.0.1.0
+\bibitem{3} Maple 11.01 Build ID 296069
+\bibitem{4} Maxima 5.13.0
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/kamke2.input.pdf b/src/axiom-website/CATS/kamke2.input.pdf
new file mode 100644
index 0000000..040a890
Binary files /dev/null and b/src/axiom-website/CATS/kamke2.input.pdf differ
diff --git a/src/axiom-website/CATS/kamke3.input.pamphlet b/src/axiom-website/CATS/kamke3.input.pamphlet
new file mode 100644
index 0000000..fc280ab
--- /dev/null
+++ b/src/axiom-website/CATS/kamke3.input.pamphlet
@@ -0,0 +1,2682 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke3.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the first 50 of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+<<*>>=
+)spool kamke3.output
+)set break resume
+)set mes auto off
+)clear all
+
+--S 1 of 139
+y:=operator 'y
+--R 
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 139
+ode151 := (x**2+1)*D(y(x),x) + (y(x)**2+1)*(2*x*y(x) - 1)
+--R 
+--R
+--R          2      ,             3       2
+--R   (2)  (x  + 1)y (x) + 2x y(x)  - y(x)  + 2x y(x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 2
+
+--S 3 of 139
+ode151a:=solve(ode151,y,x)
+--R 
+--R
+--R   (3)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 3
+
+--S 4 of 139
+ode152 := (x**2+1)*D(y(x),x) + x*sin(y(x))*cos(y(x)) - x*(x**2+1)*cos(y(x))**2
+--R 
+--R
+--R          2      ,                                 3              2
+--R   (4)  (x  + 1)y (x) + x cos(y(x))sin(y(x)) + (- x  - x)cos(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 4
+
+--S 5 of 139
+ode152a:=solve(ode152,y,x)
+--R 
+--R
+--R   (5)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 5
+
+--S 6 of 139
+ode153 := (x**2-1)*D(y(x),x) - x*y(x) + a
+--R 
+--R
+--R          2      ,
+--R   (6)  (x  - 1)y (x) - x y(x) + a
+--R
+--R                                                     Type: Expression Integer
+--E 6
+
+--S 7 of 139
+ode153a:=solve(ode153,y,x)
+--R 
+--R
+--R                                  +------+
+--R                                  | 2
+--R   (7)  [particular= a x,basis= [\|x  - 1 ]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 7
+
+--S 8 of 139
+yx:=ode153a.particular
+--R 
+--R
+--R   (8)  a x
+--R                                                     Type: Expression Integer
+--E 8
+
+--S 9 of 139
+ode153expr := (x**2-1)*D(yx,x) - x*yx + a
+--R 
+--R
+--R   (9)  0
+--R                                                     Type: Expression Integer
+--E 9
+
+--S 10 of 139
+ode154 := (x**2-1)*D(y(x),x) + 2*x*y(x) - cos(x)
+--R 
+--R
+--R           2      ,
+--R   (10)  (x  - 1)y (x) - cos(x) + 2x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 10
+
+--S 11 of 139
+ode154a:=solve(ode154,y,x)
+--R 
+--R
+--R                      sin(x)            1
+--R   (11)  [particular= ------,basis= [------]]
+--R                       2              2
+--R                      x  - 1         x  - 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 11
+
+--S 12 of 139
+yx:=ode154a.particular
+--R 
+--R
+--R         sin(x)
+--R   (12)  ------
+--R          2
+--R         x  - 1
+--R                                                     Type: Expression Integer
+--E 12
+
+--S 13 of 139
+ode154expr := (x**2-1)*D(yx,x) + 2*x*yx - cos(x)
+--R 
+--R
+--R   (13)  0
+--R                                                     Type: Expression Integer
+--E 13
+
+--S 14 of 139
+ode155 := (x**2-1)*D(y(x),x) + y(x)**2 - 2*x*y(x) + 1
+--R 
+--R
+--R           2      ,          2
+--R   (14)  (x  - 1)y (x) + y(x)  - 2x y(x) + 1
+--R
+--R                                                     Type: Expression Integer
+--E 14
+
+--S 15 of 139
+yx:=solve(ode155,y,x)
+--R 
+--R
+--R         (y(x) - x)log(x + 1) + (- y(x) + x)log(x - 1) + 2
+--R   (15)  -------------------------------------------------
+--R                             2y(x) - 2x
+--R                                          Type: Union(Expression Integer,...)
+--E 15
+
+--S 16 of 139
+ode155expr := (x**2-1)*D(yx,x) + yx**2 - 2*x*yx + 1
+--R 
+--R
+--R   (16)
+--R            2      ,           2              2           2
+--R       (- 4x  + 4)y (x) + (y(x)  - 2x y(x) + x )log(x + 1)
+--R
+--R     + 
+--R                   2               2                     2      2              3
+--R           (- 2y(x)  + 4x y(x) - 2x )log(x - 1) - 4x y(x)  + (8x  + 4)y(x) - 4x
+--R         + 
+--R           - 4x
+--R      *
+--R         log(x + 1)
+--R     + 
+--R            2              2           2
+--R       (y(x)  - 2x y(x) + x )log(x - 1)
+--R     + 
+--R               2        2              3                                2
+--R       (4x y(x)  + (- 8x  - 4)y(x) + 4x  + 4x)log(x - 1) - 8x y(x) + 12x
+--R  /
+--R          2               2
+--R     4y(x)  - 8x y(x) + 4x
+--R                                                     Type: Expression Integer
+--E 16
+
+--S 17 of 139
+ode156 := (x**2-1)*D(y(x),x) - y(x)*(y(x)-x)
+--R 
+--R
+--R           2      ,          2
+--R   (17)  (x  - 1)y (x) - y(x)  + x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 17
+
+--S 18 of 139
+yx:=solve(ode156,y,x)
+--R 
+--R
+--R          - x y(x) + 1
+--R   (18)  -------------
+--R              +------+
+--R              | 2
+--R         y(x)\|x  - 1
+--R                                          Type: Union(Expression Integer,...)
+--E 18
+
+--S 19 of 139
+ode156expr := (x**2-1)*D(yx,x) - yx*(yx-x)
+--R 
+--R
+--R   (19)
+--R                                                         +------+
+--R           4     2      ,          2    2                | 2
+--R       (- x  + 2x  - 1)y (x) + (- x y(x)  + 2x y(x) - 1)\|x  - 1
+--R
+--R     + 
+--R           4     2         2
+--R       (- x  + 2x  - 1)y(x)
+--R  /
+--R                   +------+
+--R       2         2 | 2
+--R     (x  - 1)y(x) \|x  - 1
+--R                                                     Type: Expression Integer
+--E 19
+
+--S 20 of 139
+ode157 := (x**2-1)*D(y(x),x) + a*(y(x)**2-2*x*y(x)+1)
+--R 
+--R
+--R           2      ,            2
+--R   (20)  (x  - 1)y (x) + a y(x)  - 2a x y(x) + a
+--R
+--R                                                     Type: Expression Integer
+--E 20
+
+--S 21 of 139
+ode157a:=solve(ode157,y,x)
+--R 
+--R
+--R   (21)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 21
+
+--S 22 of 139
+ode158 := (x**2-1)*D(y(x),x) + a*x*y(x)**2 + x*y(x)
+--R 
+--R
+--R           2      ,              2
+--R   (22)  (x  - 1)y (x) + a x y(x)  + x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 22
+
+--S 23 of 139
+yx:=solve(ode158,y,x)
+--R 
+--R
+--R           2 2    2
+--R          a x y(x)  + 2a y(x) + 1
+--R   (23)  ------------------------
+--R           4    2     3         2
+--R         2a y(x)  + 4a y(x) + 2a
+--R                                          Type: Union(Expression Integer,...)
+--E 23
+
+--S 24 of 139
+ode158expr := (x**2-1)*D(yx,x) + a*x*yx**2 + x*yx
+--R 
+--R
+--R   (24)
+--R           4 4     4 2     4     2      3 4     3 2     3       ,
+--R       ((4a x  - 8a x  + 4a )y(x)  + (4a x  - 8a x  + 4a )y(x))y (x)
+--R
+--R     + 
+--R         4 5     5 3     5      4        4     3  3     4      3
+--R       (a x  + 6a x  - 4a x)y(x)  + ((12a  + 4a )x  - 4a x)y(x)
+--R     + 
+--R           3     2  3      3     2       2      2
+--R       ((6a  + 2a )x  + (6a  + 4a )x)y(x)  + (8a  + 4a)x y(x) + (2a + 1)x
+--R  /
+--R       7    4      6    3      5    2      4         3
+--R     4a y(x)  + 16a y(x)  + 24a y(x)  + 16a y(x) + 4a
+--R                                                     Type: Expression Integer
+--E 24
+
+--S 25 of 139
+ode159 := (x**2-1)*D(y(x),x) - 2*x*y(x)*log(y(x))
+--R 
+--R
+--R           2      ,
+--R   (25)  (x  - 1)y (x) - 2x y(x)log(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 25
+
+--S 26 of 139
+yx:=solve(ode159,y,x)
+--R 
+--R
+--R             2
+--R          - x  + 1
+--R   (26)  ---------
+--R         log(y(x))
+--R                                          Type: Union(Expression Integer,...)
+--E 26
+
+--S 27 of 139
+ode159expr := (x**2-1)*D(yx,x) - 2*x*yx*log(yx)
+--R 
+--R
+--R   (27)
+--R                                      2
+--R          3                        - x  + 1      4     2      ,
+--R       (2x  - 2x)y(x)log(y(x))log(---------) + (x  - 2x  + 1)y (x)
+--R                                  log(y(x))
+--R     + 
+--R            3
+--R       (- 2x  + 2x)y(x)log(y(x))
+--R  /
+--R                  2
+--R     y(x)log(y(x))
+--R                                                     Type: Expression Integer
+--E 27
+
+--S 28 of 139
+ode160 := (x**2-4)*D(y(x),x) + (x+2)*y(x)**2 - 4*y(x)
+--R 
+--R
+--R           2      ,                 2
+--R   (28)  (x  - 4)y (x) + (x + 2)y(x)  - 4y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 28
+
+--S 29 of 139
+yx:=solve(ode160,y,x)
+--R 
+--R
+--R         (- x - 2)y(x)log(x + 2) + x - 2
+--R   (29)  -------------------------------
+--R                   (x + 2)y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 29
+
+--S 30 of 139
+ode160expr := (x**2-4)*D(yx,x) + (x+2)*yx**2 - 4*yx
+--R 
+--R
+--R   (30)
+--R           3     2           ,        2              2          2
+--R       (- x  + 2x  + 4x - 8)y (x) + (x  + 4x + 4)y(x) log(x + 2)
+--R
+--R     + 
+--R                  2        2                           2         2    2
+--R     ((4x + 8)y(x)  + (- 2x  + 8)y(x))log(x + 2) + (- x  + 4)y(x)  + x  - 4x + 4
+--R  /
+--R                2
+--R     (x + 2)y(x)
+--R                                                     Type: Expression Integer
+--E 30
+
+--S 31 of 139
+ode161 := (x**2-5*x+6)*D(y(x),x) + 3*x*y(x) - 8*y(x) + x**2
+--R 
+--R
+--R           2           ,                      2
+--R   (31)  (x  - 5x + 6)y (x) + (3x - 8)y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 31
+
+--S 32 of 139
+ode161a:=solve(ode161,y,x)
+--R 
+--R
+--R                              4     3
+--R                          - 3x  + 8x  - 144                     1
+--R   (32)  [particular= ------------------------,basis= [-------------------]]
+--R                         3      2                       3     2
+--R                      12x  - 84x  + 192x - 144         x  - 7x  + 16x - 12
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 32
+
+--S 33 of 139
+yx:=ode161a.particular
+--R 
+--R
+--R                 4     3
+--R             - 3x  + 8x  - 144
+--R   (33)  ------------------------
+--R            3      2
+--R         12x  - 84x  + 192x - 144
+--R                                                     Type: Expression Integer
+--E 33
+
+--S 34 of 139
+ode161expr := (x**2-5*x+6)*D(yx,x) + 3*x*yx - 8*yx + x**2
+--R 
+--R
+--R   (34)  0
+--R                                                     Type: Expression Integer
+--E 34
+
+--S 35 of 139
+ode162 := (x-a)*(x-b)*D(y(x),x) + y(x)**2 + k*(y(x)+x-a)*(y(x)+x-b)
+--R 
+--R
+--R   (35)
+--R       2                     ,                 2
+--R     (x  + (- b - a)x + a b)y (x) + (k + 1)y(x)  + (2k x + (- b - a)k)y(x)
+--R
+--R   + 
+--R        2
+--R     k x  + (- b - a)k x + a b k
+--R                                                     Type: Expression Integer
+--E 35
+@
+This loops infinitely 
+\begin{verbatim}
+ode162a:=solve(ode162,y,x)
+ 
+   WARNING (genufact): No known algorithm to factor
+      3     2       2          2
+     ?  - 3?  + (- k  + 3)? + k  - 1, trying square-free.
+
+\end{verbatim} 
+<<*>>=
+--S 36 of 139
+ode163 := 2*x**2*D(y(x),x) - 2*y(x)**2 - x*y(x) + 2*a**2*x
+--R 
+--R
+--R           2 ,           2              2
+--R   (36)  2x y (x) - 2y(x)  - x y(x) + 2a x
+--R
+--R                                                     Type: Expression Integer
+--E 36
+
+--S 37 of 139
+yx:=solve(ode163,y,x)
+--R 
+--R
+--R                   +-+
+--R                 a\|x  - y(x)
+--R   (37)  ---------------------------
+--R                                 4a
+--R                              - ----
+--R                                 +-+
+--R            2 +-+               \|x
+--R         (2a \|x  + 2a y(x))%e
+--R                                          Type: Union(Expression Integer,...)
+--E 37
+
+--S 38 of 139
+ode163expr := 2*x**2*D(yx,x) - 2*yx**2 - x*yx + 2*a**2*x
+--R 
+--R
+--R   (38)
+--R                                                                   4a
+--R                                                                - ----
+--R                                                                   +-+
+--R              3 3    2     5 4  +-+     2 3    3      4 4         \|x  ,
+--R       ((- 12a x y(x)  - 4a x )\|x  - 4a x y(x)  - 12a x y(x))%e      y (x)
+--R
+--R     + 
+--R              4      5      6 2    3      8 3      +-+      5 2    4
+--R           (4a x y(x)  + 40a x y(x)  + 20a x y(x))\|x  + 20a x y(x)
+--R         + 
+--R              7 3    2     9 4
+--R           40a x y(x)  + 4a x
+--R      *
+--R               4a  2
+--R            - ----
+--R               +-+
+--R              \|x
+--R         (%e      )
+--R     + 
+--R                       5      3      4     3 2    3     5 2    2    5 3
+--R               a x y(x)  + 12a x y(x)  + 8a x y(x)  - 8a x y(x)  - a x y(x)
+--R             + 
+--R                   7 3
+--R               - 4a x
+--R          *
+--R              +-+
+--R             \|x
+--R         + 
+--R           2      5     2 2    4     4 2    3     4 3    2      6 3        6 4
+--R         4a x y(x)  + 5a x y(x)  + 8a x y(x)  + 4a x y(x)  - 12a x y(x) - a x
+--R      *
+--R              4a
+--R           - ----
+--R              +-+
+--R             \|x
+--R         %e
+--R     + 
+--R              5     2      3    4 2      +-+           4     3 2    2    5 3
+--R       (- y(x)  + 2a x y(x)  - a x y(x))\|x  - a x y(x)  + 2a x y(x)  - a x
+--R  /
+--R            2    5      4      3      6 2      +-+      3      4      5 2    2
+--R         (2a y(x)  + 20a x y(x)  + 10a x y(x))\|x  + 10a x y(x)  + 20a x y(x)
+--R       + 
+--R           7 3
+--R         2a x
+--R    *
+--R             4a  2
+--R          - ----
+--R             +-+
+--R            \|x
+--R       (%e      )
+--R                                                     Type: Expression Integer
+--E 38
+
+--S 39 of 139
+ode164 := 2*x**2*D(y(x),x) - 2*y(x)**2 - 3*x*y(x) + 2*a**2*x
+--R 
+--R
+--R           2 ,           2               2
+--R   (39)  2x y (x) - 2y(x)  - 3x y(x) + 2a x
+--R
+--R                                                     Type: Expression Integer
+--E 39
+
+--S 40 of 139
+yx:=solve(ode164,y,x)
+--R 
+--R
+--R                              +-+
+--R                (- 2y(x) - x)\|x  + 2a x
+--R   (40)  -------------------------------------
+--R                                           4a
+--R                                        - ----
+--R                                           +-+
+--R                           +-+     2      \|x
+--R         ((4a y(x) + 2a x)\|x  + 4a x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 40
+
+--S 41 of 139
+ode164expr := 2*x**2*D(yx,x) - 2*yx**2 - 3*x*yx + 2*a**2*x
+--R 
+--R
+--R   (41)
+--R                     2 2    3       2 3    2         2 4       4 3           2 5
+--R               - 128a x y(x)  - 192a x y(x)  + (- 96a x  - 384a x )y(x) - 16a x
+--R             + 
+--R                     4 4
+--R               - 192a x
+--R          *
+--R              +-+
+--R             \|x
+--R         + 
+--R                 3 3    2       3 4          3 5       5 4
+--R           - 384a x y(x)  - 384a x y(x) - 96a x  - 128a x
+--R      *
+--R              4a
+--R           - ----
+--R              +-+
+--R             \|x  ,
+--R         %e      y (x)
+--R
+--R     + 
+--R                   5      4        5 2    3        5 3        7 2     2
+--R               640a x y(x)  + 1280a x y(x)  + (960a x  + 1280a x )y(x)
+--R             + 
+--R                    5 4        7 3           5 5       7 4       9 3
+--R               (320a x  + 1280a x )y(x) + 40a x  + 320a x  + 128a x
+--R          *
+--R              +-+
+--R             \|x
+--R         + 
+--R               4      5       4 2    4        4 3        6 2     3
+--R           128a x y(x)  + 320a x y(x)  + (320a x  + 1280a x )y(x)
+--R         + 
+--R                4 4        6 3     2       4 5       6 4       8 3          4 6
+--R           (160a x  + 1920a x )y(x)  + (40a x  + 960a x  + 640a x )y(x) + 4a x
+--R         + 
+--R               6 5       8 4
+--R           160a x  + 320a x
+--R      *
+--R               4a  2
+--R            - ----
+--R               +-+
+--R              \|x
+--R         (%e      )
+--R     + 
+--R                   2    5       2      4        2 2       4      3
+--R               128a y(x)  + 672a x y(x)  + (960a x  + 256a x)y(x)
+--R             + 
+--R                    2 3       4 2     2        2 4       6 2           2 5
+--R               (592a x  + 384a x )y(x)  + (168a x  - 384a x )y(x) + 18a x
+--R             + 
+--R                    4 4       6 3
+--R               - 64a x  - 288a x
+--R          *
+--R              +-+
+--R             \|x
+--R         + 
+--R                     5          2       3      4          3        3 2     3
+--R           96a x y(x)  + (240a x  + 384a x)y(x)  + (240a x  + 1152a x )y(x)
+--R         + 
+--R                  4       3 3       5 2     2         5       3 4       5 3
+--R           (120a x  + 960a x  - 256a x )y(x)  + (30a x  + 288a x  - 480a x )y(x)
+--R         + 
+--R               6      3 5       5 4       7 3
+--R           3a x  + 24a x  - 240a x  - 128a x
+--R      *
+--R              4a
+--R           - ----
+--R              +-+
+--R             \|x
+--R         %e
+--R     + 
+--R                     4             3           2      3      2
+--R           - 32a y(x)  - 64a x y(x)  + (- 48a x  + 64a x)y(x)
+--R         + 
+--R                   3      3 2            4      3 3      5 2
+--R           (- 16a x  + 64a x )y(x) - 2a x  + 16a x  - 32a x
+--R      *
+--R          +-+
+--R         \|x
+--R     + 
+--R               5           4         2      2      3         3      2 2     2
+--R       - 32y(x)  - 80x y(x)  + (- 80x  + 64a x)y(x)  + (- 40x  + 96a x )y(x)
+--R     + 
+--R             4      2 3      4 2         5     2 4      4 3
+--R       (- 10x  + 48a x  - 32a x )y(x) - x  + 8a x  - 16a x
+--R  /
+--R                 3    4       3      3        3 2       5      2
+--R             320a y(x)  + 640a x y(x)  + (480a x  + 640a x)y(x)
+--R           + 
+--R                  3 3       5 2           3 4       5 3      7 2
+--R             (160a x  + 640a x )y(x) + 20a x  + 160a x  + 64a x
+--R        *
+--R            +-+
+--R           \|x
+--R       + 
+--R            2    5       2      4        2 2       4      3
+--R         64a y(x)  + 160a x y(x)  + (160a x  + 640a x)y(x)
+--R       + 
+--R             2 3       4 2     2       2 4       4 3       6 2          2 5
+--R         (80a x  + 960a x )y(x)  + (20a x  + 480a x  + 320a x )y(x) + 2a x
+--R       + 
+--R            4 4       6 3
+--R         80a x  + 160a x
+--R    *
+--R             4a  2
+--R          - ----
+--R             +-+
+--R            \|x
+--R       (%e      )
+--R                                                     Type: Expression Integer
+--E 41
+
+--S 42 of 139
+ode165 := x*(2*x-1)*D(y(x),x) + y(x)**2 - (4*x+1)*y(x) + 4*x
+--R 
+--R
+--R            2      ,          2
+--R   (42)  (2x  - x)y (x) + y(x)  + (- 4x - 1)y(x) + 4x
+--R
+--R                                                     Type: Expression Integer
+--E 42
+
+--S 43 of 139
+yx:=solve(ode165,y,x)
+--R 
+--R
+--R                    2
+--R         x y(x) - 2x
+--R   (43)  ------------
+--R           y(x) - 1
+--R                                          Type: Union(Expression Integer,...)
+--E 43
+
+--S 44 of 139
+ode165expr := x*(2*x-1)*D(yx,x) + yx**2 - (4*x+1)*yx + 4*x
+--R 
+--R
+--R   (44)
+--R          4     3    2  ,          2          2        3     2               4
+--R       (4x  - 4x  + x )y (x) + (- x  + 2x)y(x)  + (- 4x  + 8x  - 6x)y(x) + 4x
+--R
+--R     + 
+--R           2
+--R       - 6x  + 4x
+--R  /
+--R         2
+--R     y(x)  - 2y(x) + 1
+--R                                                     Type: Expression Integer
+--E 44
+
+--S 45 of 139
+ode166 := 2*x*(x-1)*D(y(x),x) + (x-1)*y(x)**2 - x
+--R 
+--R
+--R            2       ,                 2
+--R   (45)  (2x  - 2x)y (x) + (x - 1)y(x)  - x
+--R
+--R                                                     Type: Expression Integer
+--E 45
+
+--S 46 of 139
+ode166a:=solve(ode166,y,x)
+--R 
+--R
+--R   (46)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 46
+
+--S 47 of 139
+ode167 := 3*x**2*D(y(x),x) - 7*y(x)**2 - 3*x*y(x) - x**2
+--R 
+--R
+--R           2 ,           2              2
+--R   (47)  3x y (x) - 7y(x)  - 3x y(x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 47
+
+--S 48 of 139
+yx:=solve(ode167,y,x)
+--R 
+--R
+--R                        +---+                    +---+
+--R                 (- 497\|- 7  + 1197)y(x) + 171x\|- 7  + 497x
+--R   (48)  ------------------------------------------------------------
+--R                                                          +---+
+--R                                                        2\|- 7 log(x)
+--R                                                      - -------------
+--R               +---+                   +---+                  3
+--R         ((342\|- 7  + 994)y(x) - 142x\|- 7  + 342x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 48
+
+--S 49 of 139
+ode167expr := 3*x**2*D(yx,x) - 7*yx**2 - 3*x*yx - x**2
+--R 
+--R
+--R   (49)
+--R                        3 +---+             3                 4 +---+
+--R           (- 275142420x \|- 7  + 547274532x )y(x) - 78182076x \|- 7
+--R         + 
+--R                       4
+--R           - 275142420x
+--R      *
+--R               +---+
+--R             2\|- 7 log(x)
+--R           - -------------
+--R                   3       ,
+--R         %e               y (x)
+--R
+--R     + 
+--R                       2 +---+             2     3
+--R           (- 91714140x \|- 7  + 182424844x )y(x)
+--R         + 
+--R                       3 +---+             3     2
+--R           (- 78182076x \|- 7  - 275142420x )y(x)
+--R         + 
+--R                     4 +---+            4                5 +---+            5
+--R           (39306060x \|- 7  - 78182076x )y(x) + 3722956x \|- 7  + 13102020x
+--R      *
+--R                +---+       2
+--R              2\|- 7 log(x)
+--R            - -------------
+--R                    3
+--R         (%e               )
+--R     + 
+--R                       +---+                   3
+--R           (368361714x\|- 7  - 2239972378x)y(x)
+--R         + 
+--R                      2 +---+             2     2
+--R           (595138474x \|- 7  - 178912818x )y(x)
+--R         + 
+--R                      3 +---+            3                 4 +---+            4
+--R           (130805178x \|- 7  - 44853634x )y(x) + 45713722x \|- 7  + 52623102x
+--R      *
+--R               +---+
+--R             2\|- 7 log(x)
+--R           - -------------
+--R                   3
+--R         %e
+--R     + 
+--R                   +---+                  3
+--R       (1123498215\|- 7  - 2234704339)y(x)
+--R     + 
+--R                     +---+                   2
+--R       (- 319243477x\|- 7  - 1123498215x)y(x)
+--R     + 
+--R                  2 +---+             2                 3 +---+             3
+--R       (160499745x \|- 7  - 319243477x )y(x) - 45606211x \|- 7  - 160499745x
+--R  /
+--R                   +---+                 3              +---+                  2
+--R         (91714140\|- 7  - 182424844)y(x)  + (78182076x\|- 7  + 275142420x)y(x)
+--R       + 
+--R                     2 +---+            2                3 +---+            3
+--R         (- 39306060x \|- 7  + 78182076x )y(x) - 3722956x \|- 7  - 13102020x
+--R    *
+--R              +---+       2
+--R            2\|- 7 log(x)
+--R          - -------------
+--R                  3
+--R       (%e               )
+--R                                                     Type: Expression Integer
+--E 49
+
+--S 50 of 139
+ode168 := 3*(x**2-4)*D(y(x),x) + y(x)**2 - x*y(x) - 3
+--R 
+--R
+--R            2       ,          2
+--R   (50)  (3x  - 12)y (x) + y(x)  - x y(x) - 3
+--R
+--R                                                     Type: Expression Integer
+--E 50
+
+--S 51 of 139
+ode168a:=solve(ode168,y,x)
+--R 
+--R
+--R   (51)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 51
+
+--S 52 of 139
+ode169 := (a*x+b)**2*D(y(x),x) + (a*x+b)*y(x)**3 + c*y(x)**2
+--R 
+--R
+--R           2 2             2  ,                   3         2
+--R   (52)  (a x  + 2a b x + b )y (x) + (a x + b)y(x)  + c y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 52
+
+--S 53 of 139
+ode169a:=solve(ode169,y,x)
+--R 
+--R
+--R   (53)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 53
+
+--S 54 of 139
+ode170 := x**3*D(y(x),x) - y(x)**2 - x**4
+--R 
+--R
+--R          3 ,          2    4
+--R   (54)  x y (x) - y(x)  - x
+--R
+--R                                                     Type: Expression Integer
+--E 54
+
+--S 55 of 139
+yx:=solve(ode170,y,x)
+--R 
+--R
+--R                  2           2
+--R         (y(x) - x )log(x) + x
+--R   (55)  ----------------------
+--R                        2
+--R                y(x) - x
+--R                                          Type: Union(Expression Integer,...)
+--E 55
+
+--S 56 of 139
+ode170expr := x**3*D(yx,x) - yx**2 - x**4
+--R 
+--R
+--R   (56)
+--R          5 ,             2     2        4       2        2         4
+--R       - x y (x) + (- y(x)  + 2x y(x) - x )log(x)  + (- 2x y(x) + 2x )log(x)
+--R
+--R     + 
+--R           4    2     2     6        8    6    4
+--R       (- x  + x )y(x)  + 2x y(x) - x  + x  - x
+--R  /
+--R         2     2        4
+--R     y(x)  - 2x y(x) + x
+--R                                                     Type: Expression Integer
+--E 56
+
+--S 57 of 139
+ode171 := x**3*D(y(x),x) - y(x)**2 - x**2*y(x)
+--R 
+--R
+--R          3 ,          2    2
+--R   (57)  x y (x) - y(x)  - x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 57
+
+--S 58 of 139
+yx:=solve(ode171,y,x)
+--R 
+--R
+--R                   2
+--R         - y(x) + x
+--R   (58)  -----------
+--R            x y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 58
+
+--S 59 of 139
+ode171expr := x**3*D(yx,x) - yx**2 - x**2*yx
+--R 
+--R
+--R            6 ,         3         2     2        4
+--R         - x y (x) + (2x  - 1)y(x)  + 2x y(x) - x
+--R
+--R   (59)  -----------------------------------------
+--R                           2    2
+--R                          x y(x)
+--R                                                     Type: Expression Integer
+--E 59
+
+--S 60 of 139
+ode172 := x**3*D(y(x),x) - x**4*y(x)**2 + x**2*y(x) + 20
+--R 
+--R
+--R          3 ,       4    2    2
+--R   (60)  x y (x) - x y(x)  + x y(x) + 20
+--R
+--R                                                     Type: Expression Integer
+--E 60
+
+--S 61 of 139
+yx:=solve(ode172,y,x)
+--R 
+--R
+--R              11      2           9
+--R           (7x   - 11x )y(x) + 35x  + 44
+--R   (61)  --------------------------------
+--R             11      2            9
+--R         (36x   - 36x )y(x) + 180x  + 144
+--R                                          Type: Union(Expression Integer,...)
+--E 61
+
+--S 62 of 139
+ode172expr := x**3*D(yx,x) - x**4*yx**2 + x**2*yx + 20
+--R 
+--R
+--R   (62)
+--R              14 ,
+--R       - 1296x  y (x)
+--R
+--R     + 
+--R                26       24         22       17       15         13       8
+--R           - 49x   + 252x   + 25920x   + 154x   + 648x   - 51840x   - 121x
+--R         + 
+--R               6         4
+--R           396x  + 25920x
+--R      *
+--R             2
+--R         y(x)
+--R     + 
+--R                 24        22          20       15        13         11       6
+--R           - 490x   + 2520x   + 259200x   + 154x   - 1944x   - 51840x   + 968x
+--R         + 
+--R                  4          2
+--R           - 3168x  - 207360x
+--R      *
+--R         y(x)
+--R     + 
+--R              22        20          18        13         11           9        4
+--R       - 1225x   + 6300x   + 648000x   - 3080x   - 12960x   + 1036800x  - 1936x
+--R     + 
+--R            2
+--R       6336x  + 414720
+--R  /
+--R             22        13        4     2          20        11         2
+--R       (1296x   - 2592x   + 1296x )y(x)  + (12960x   - 2592x   - 10368x )y(x)
+--R     + 
+--R             18         9
+--R       32400x   + 51840x  + 20736
+--R                                                     Type: Expression Integer
+--E 62
+
+--S 63 of 139
+ode173 := x**3*D(y(x),x) - x**6*y(x)**2 - (2*x-3)*x**2*y(x) + 3
+--R 
+--R
+--R          3 ,       6    2        3     2
+--R   (63)  x y (x) - x y(x)  + (- 2x  + 3x )y(x) + 3
+--R
+--R                                                     Type: Expression Integer
+--E 63
+
+--S 64 of 139
+yx:=solve(ode173,y,x)
+--R 
+--R
+--R               3
+--R            - x y(x) + 1
+--R   (64)  ------------------
+--R            3            4x
+--R         (4x y(x) + 12)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 64
+
+--S 65 of 139
+ode173expr := x**3*D(yx,x) - x**6*yx**2 - (2*x-3)*x**2*yx + 3
+--R 
+--R
+--R   (65)
+--R            6  4x ,          6    2       3              4x 2
+--R       - 16x %e  y (x) + (48x y(x)  + 288x y(x) + 432)(%e  )
+--R
+--R     + 
+--R            9      8     2       6      5           3      2   4x    12    2
+--R       ((24x  - 12x )y(x)  + (48x  - 72x )y(x) - 72x  + 36x )%e   - x  y(x)
+--R     + 
+--R         9        6
+--R       2x y(x) - x
+--R  /
+--R         6    2      3              4x 2
+--R     (16x y(x)  + 96x y(x) + 144)(%e  )
+--R                                                     Type: Expression Integer
+--E 65
+
+--S 66 of 139
+ode174 := x*(x**2+1)*D(y(x),x) + x**2*y(x)
+--R 
+--R
+--R           3      ,       2
+--R   (66)  (x  + x)y (x) + x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 66
+
+--S 67 of 139
+ode174a:=solve(ode174,y,x)
+--R 
+--R
+--R                                    1
+--R   (67)  [particular= 0,basis= [---------]]
+--R                                 +------+
+--R                                 | 2
+--R                                \|x  + 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 67
+
+--S 68 of 139
+yx:=ode174a.particular
+--R 
+--R
+--R   (68)  0
+--R                                                     Type: Expression Integer
+--E 68
+
+--S 69 of 139
+ode174expr := x*(x**2+1)*D(yx,x) + x**2*yx
+--R 
+--R
+--R   (69)  0
+--R                                                     Type: Expression Integer
+--E 69
+
+--S 70 of 139
+ode175 := x*(x**2-1)*D(y(x),x) - (2*x**2-1)*y(x) + a*x**3
+--R 
+--R
+--R           3      ,           2               3
+--R   (70)  (x  - x)y (x) + (- 2x  + 1)y(x) + a x
+--R
+--R                                                     Type: Expression Integer
+--E 70
+
+--S 71 of 139
+ode175a:=solve(ode175,y,x)
+--R 
+--R
+--R                                    +------+
+--R                                    | 2
+--R   (71)  [particular= a x,basis= [x\|x  - 1 ]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 71
+
+--S 72 of 139
+yx:=ode175a.particular
+--R 
+--R
+--R   (72)  a x
+--R                                                     Type: Expression Integer
+--E 72
+
+--S 73 of 139
+ode175expr := x*(x**2-1)*D(yx,x) - (2*x**2-1)*yx + a*x**3
+--R 
+--R
+--R   (73)  0
+--R                                                     Type: Expression Integer
+--E 73
+
+--S 74 of 139
+ode176 := x*(x**2-1)*D(y(x),x) + (x**2-1)*y(x)**2 - x**2
+--R 
+--R
+--R           3      ,        2         2    2
+--R   (74)  (x  - x)y (x) + (x  - 1)y(x)  - x
+--R
+--R                                                     Type: Expression Integer
+--E 74
+
+--S 75 of 139
+ode176a:=solve(ode176,y,x)
+--R 
+--R
+--R   (75)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 75
+
+--S 76 of 139
+ode177 := x**2*(x-1)*D(y(x),x) - y(x)**2 - x*(x-2)*y(x)
+--R 
+--R
+--R           3    2  ,          2       2
+--R   (76)  (x  - x )y (x) - y(x)  + (- x  + 2x)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 76
+
+--S 77 of 139
+yx:=solve(ode177,y,x)
+--R 
+--R
+--R                   2
+--R         - y(x) + x
+--R   (77)  -----------
+--R         (x - 1)y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 77
+
+--S 78 of 139
+ode177expr := x**2*(x-1)*D(yx,x) - yx**2 - x*(x-2)*yx
+--R 
+--R
+--R             6     5    4  ,         3     2              2     2        4
+--R         (- x  + 2x  - x )y (x) + (2x  - 4x  + 2x - 1)y(x)  + 2x y(x) - x
+--R
+--R   (78)  -----------------------------------------------------------------
+--R                                   2              2
+--R                                 (x  - 2x + 1)y(x)
+--R                                                     Type: Expression Integer
+--E 78
+
+--S 79 of 139
+ode178 := 2*x*(x**2-1)*D(y(x),x) + 2*(x**2-1)*y(x)**2 _
+           - (3*x**2-5)*y(x) + x**2 - 3
+--R 
+--R
+--R            3       ,         2         2        2             2
+--R   (79)  (2x  - 2x)y (x) + (2x  - 2)y(x)  + (- 3x  + 5)y(x) + x  - 3
+--R
+--R                                                     Type: Expression Integer
+--E 79
+
+--S 80 of 139
+yx:=solve(ode178,y,x)
+--R 
+--R
+--R                      +------+   x      +---+
+--I                      | 2      ++      \|%CL               +-+
+--I         (- y(x) + 1)\|x  - 1  |   -------------- d%CL  + \|x
+--R                              ++       +--------+
+--R                                       |   2
+--I                                   %CL\|%CL  - 1
+--R   (80)  -----------------------------------------------------
+--R                                     +------+
+--R                                     | 2
+--R                          (y(x) - 1)\|x  - 1
+--R                                          Type: Union(Expression Integer,...)
+--E 80
+
+--S 81 of 139
+ode178expr := 2*x*(x**2-1)*D(yx,x) + 2*(x**2-1)*yx**2 _
+               - (3*x**2-5)*yx + x**2 - 3
+--R 
+--R
+--R   (81)
+--R                                                          +------+
+--R             2         2        2              2      +-+ | 2
+--R         ((2x  - 2)y(x)  + (- 4x  + 4)y(x) + 2x  - 2)\|x \|x  - 1
+--R      *
+--R            x      +---+          2
+--I          ++      \|%CL
+--I          |   -------------- d%CL
+--R         ++       +--------+
+--R                  |   2
+--I              %CL\|%CL  - 1
+--R     + 
+--R                                                             +------+
+--R               2         2        2               2      +-+ | 2
+--R           ((3x  - 5)y(x)  + (- 6x  + 10)y(x) + 3x  - 5)\|x \|x  - 1
+--R         + 
+--R                3               3
+--R           (- 4x  + 4x)y(x) + 4x  - 4x
+--R      *
+--R            x      +---+
+--I          ++      \|%CL
+--I          |   -------------- d%CL
+--R         ++       +--------+
+--R                  |   2
+--I              %CL\|%CL  - 1
+--R     + 
+--R            4     2  ,
+--R       (- 2x  + 2x )y (x)
+--R
+--R     + 
+--R                                                           +------+
+--R          2         2        2             2           +-+ | 2
+--R       ((x  - 3)y(x)  + (- 2x  + 6)y(x) + x  + 2x - 3)\|x \|x  - 1
+--R     + 
+--R            3          2     3
+--R       (- 2x  + 2x)y(x)  + 2x  - 2x
+--R  /
+--R                             +------+
+--R          2              +-+ | 2
+--R     (y(x)  - 2y(x) + 1)\|x \|x  - 1
+--R                                                     Type: Expression Integer
+--E 81
+
+--S 82 of 139
+ode179 := 3*x*(x**2-1)*D(y(x),x) + x*y(x)**2 - (x**2+1)*y(x) - 3*x
+--R 
+--R
+--R            3       ,            2       2
+--R   (82)  (3x  - 3x)y (x) + x y(x)  + (- x  - 1)y(x) - 3x
+--R
+--R                                                     Type: Expression Integer
+--E 82
+
+--S 83 of 139
+ode179a:=solve(ode179,y,x)
+--R 
+--R
+--R   (83)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 83
+
+--S 84 of 139
+ode180 := (a*x**2+b*x+c)*(x*D(y(x),x)-y(x)) - y(x)**2 + x**2
+--R 
+--R
+--R             3      2        ,          2         2                   2
+--R   (84)  (a x  + b x  + c x)y (x) - y(x)  + (- a x  - b x - c)y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 84
+
+--S 85 of 139  random generation, FAILURE OK.
+yx:=solve(ode180,y,x)
+--R 
+--R   WARNING (genufact): No known algorithm to factor
+--R                     2            2
+--R      4   - 4a c + 2b   2        b
+--R     ?  + ------------ ?  - -----------, trying square-free.
+--R             3     2 2        5     4 2
+--R           4a c - a b       4a c - a b
+--R   WARNING (genufact): No known algorithm to factor
+--R                     2            2         2            2
+--R      4   - 4a c + 2b  - 4a b + 4a   2   - b  + 4a b - 4a
+--R     ?  + ------------------------- ?  + -----------------, trying square-free.
+--R                   3     2 2                  5     4 2
+--R                 4a c - a b                 4a c - a b
+--R   WARNING (genufact): No known algorithm to factor
+--R                           2              4      2
+--R        9   9b  8   (144a b  - 24a)c - 36b  + 12b   7
+--R       ?  - -- ?  + ------------------------------ ?
+--R             a                  3     2 2
+--R                              4a c - a b
+--R     + 
+--R                3                 5      3
+--R       (- 336a b  + 168a b)c + 84b  - 84b   6
+--R       ----------------------------------- ?
+--R                     4     3 2
+--R                   4a c - a b
+--R     + 
+--R                   2 4        2 2       2  2
+--R             (2016a b  - 2016a b  + 144a )c
+--R           + 
+--R                       6          4         2         8       6      4
+--R             (- 1008a b  + 1512a b  - 192a b )c + 126b  - 252b  + 48b
+--R        /
+--R              6 2     5 2     4 4
+--R           16a c  - 8a b c + a b
+--R      *
+--R          5
+--R         ?
+--R     + 
+--R                     2 5        2 3       2   2
+--R             (- 2016a b  + 3360a b  - 720a b)c
+--R           + 
+--R                     7          5         3         9       7       5
+--R             (1008a b  - 2520a b  + 960a b )c - 126b  + 420b  - 240b
+--R        /
+--R              7 2     6 2     5 4
+--R           16a c  - 8a b c + a b
+--R      *
+--R          4
+--R         ?
+--R     + 
+--R                   3 6         3 4        3 2       3  3
+--R             (5376a b  - 13440a b  + 5760a b  - 256a )c
+--R           + 
+--R                     2 8         2 6        2 4       2 2  2
+--R             (- 4032a b  + 13440a b  - 9120a b  + 640a b )c
+--R           + 
+--R                     10          8          6         4        12       10
+--R             (1008a b   - 4200a b  + 3840a b  - 384a b )c - 84b   + 420b
+--R           + 
+--R                   8      6
+--R             - 480b  + 64b
+--R        /
+--R              9 3      8 2 2      7 4     6 6
+--R           64a c  - 48a b c  + 12a b c - a b
+--R      *
+--R          3
+--R         ?
+--R     + 
+--R                     3 7        3 5        3 3       3   3
+--R             (- 2304a b  + 8064a b  - 5760a b  + 768a b)c
+--R           + 
+--R                   2 9        2 7        2 5        2 3  2
+--R             (1728a b  - 8064a b  + 9120a b  - 1920a b )c
+--R           + 
+--R                      11          9          7          5        13       11
+--R             (- 432a b   + 2520a b  - 3840a b  + 1152a b )c + 36b   - 252b
+--R           + 
+--R                 9       7
+--R             480b  - 192b
+--R        /
+--R              10 3      9 2 2      8 4     7 6
+--R           64a  c  - 48a b c  + 12a b c - a b
+--R      *
+--R          2
+--R         ?
+--R     + 
+--R                  3 8        3 6        3 4       3 2  3
+--R             (576a b  - 2688a b  + 2880a b  - 768a b )c
+--R           + 
+--R                    2 10        2 8        2 6        2 4       2 2  2
+--R             (- 432a b   + 2688a b  - 4560a b  + 1920a b  - 256a b )c
+--R           + 
+--R                    12         10          8          6       14      12
+--R             (108a b   - 840a b   + 1920a b  - 1152a b )c - 9b   + 84b
+--R           + 
+--R                   10       8
+--R             - 240b   + 192b
+--R        /
+--R              11 3      10 2 2      9 4     8 6
+--R           64a  c  - 48a  b c  + 12a b c - a b
+--R      *
+--R         ?
+--R     + 
+--R                 3 9       3 7       3 5       3 3  3
+--R           (- 64a b  + 384a b  - 576a b  + 256a b )c
+--R         + 
+--R               2 11       2 9       2 7       2 5       2 3  2
+--R           (48a b   - 384a b  + 912a b  - 640a b  + 256a b )c
+--R         + 
+--R                   13         11         9         7      15      13      11
+--R           (- 12a b   + 120a b   - 384a b  + 384a b )c + b   - 12b   + 48b
+--R         + 
+--R                9
+--R           - 64b
+--R      /
+--R            12 3      11 2 2      10 4     9 6
+--R         64a  c  - 48a  b c  + 12a  b c - a b
+--R     , trying square-free.
+--R   WARNING (genufact): No known algorithm to factor
+--R        9   9b - 18a  8
+--R       ?  + -------- ?
+--R                a
+--R     + 
+--R                    2       2        3              4         3
+--R             (144a b  - 576a b + 576a  - 24a)c - 36b  + 144a b
+--R           + 
+--R                    2       2              2
+--R             (- 144a  + 12)b  - 24a b + 24a
+--R        /
+--R             3     2 2
+--R           4a c - a b
+--R      *
+--R          7
+--R         ?
+--R     + 
+--R                    3        2 2         3                 4       2        5
+--R             (336a b  - 2016a b  + (4032a  - 168a)b - 2688a  + 336a )c - 84b
+--R           + 
+--R                   4           2       3        3         2       2        3
+--R             504a b  + (- 1008a  + 84)b  + (672a  - 336a)b  + 504a b - 336a
+--R        /
+--R             4     3 2
+--R           4a c - a b
+--R      *
+--R          6
+--R         ?
+--R     + 
+--R                      2 4         3 3          4        2  2
+--R                 2016a b  - 16128a b  + (48384a  - 2016a )b
+--R               + 
+--R                          5        3           6        4       2
+--R                 (- 64512a  + 8064a )b + 32256a  - 8064a  + 144a
+--R            *
+--R                2
+--R               c
+--R           + 
+--R                          6        2 5            3          4
+--R                 - 1008a b  + 8064a b  + (- 24192a  + 1512a)b
+--R               + 
+--R                        4        2  3            5         3         2
+--R                 (32256a  - 8064a )b  + (- 16128a  + 16128a  - 192a)b
+--R               + 
+--R                          4       2          5       3
+--R                 (- 16128a  + 480a )b + 8064a  - 480a
+--R            *
+--R               c
+--R           + 
+--R                 8          7         2        6           3          5
+--R             126b  - 1008a b  + (3024a  - 252)b  + (- 4032a  + 1512a)b
+--R           + 
+--R                   4        2       4         3         3           4       2  2
+--R             (2016a  - 3528a  + 48)b  + (4032a  - 192a)b  + (- 2016a  + 336a )b
+--R           + 
+--R                   3        4
+--R             - 288a b + 144a
+--R        /
+--R              6 2     5 2     4 4
+--R           16a c  - 8a b c + a b
+--R      *
+--R          5
+--R         ?
+--R     + 
+--R                      2 5         3 4          4        2  3
+--R                 2016a b  - 20160a b  + (80640a  - 3360a )b
+--R               + 
+--R                           5         3  2           6         4       2
+--R                 (- 161280a  + 20160a )b  + (161280a  - 40320a  + 720a )b
+--R               + 
+--R                         7         5        3
+--R                 - 64512a  + 26880a  - 1440a
+--R            *
+--R                2
+--R               c
+--R           + 
+--R                          7         2 6            3          5
+--R                 - 1008a b  + 10080a b  + (- 40320a  + 2520a)b
+--R               + 
+--R                        4         2  4            5         3         3
+--R                 (80640a  - 18480a )b  + (- 80640a  + 53760a  - 960a)b
+--R               + 
+--R                        6         4        2  2          5        3           6
+--R                 (32256a  - 80640a  + 4320a )b  + (67200a  - 7200a )b - 26880a
+--R               + 
+--R                      4
+--R                 4800a
+--R            *
+--R               c
+--R           + 
+--R                 9          8         2        7            3          6
+--R             126b  - 1260a b  + (5040a  - 420)b  + (- 10080a  + 3360a)b
+--R           + 
+--R                    4         2        5           5         3          4
+--R             (10080a  - 10920a  + 240)b  + (- 4032a  + 18480a  - 1440a)b
+--R           + 
+--R                      4        2  3         5        3  2        4         5
+--R             (- 16800a  + 3600a )b  + (6720a  - 4800a )b  + 3600a b - 1440a
+--R        /
+--R              7 2     6 2     5 4
+--R           16a c  - 8a b c + a b
+--R      *
+--R          4
+--R         ?
+--R     + 
+--R                      3 6         4 5           5         3  4
+--R                 5376a b  - 64512a b  + (322560a  - 13440a )b
+--R               + 
+--R                           6          4  3            7          5        3  2
+--R                 (- 860160a  + 107520a )b  + (1290240a  - 322560a  + 5760a )b
+--R               + 
+--R                            8          6         4            9          7
+--R                 (- 1032192a  + 430080a  - 23040a )b + 344064a  - 215040a
+--R               + 
+--R                       5       3
+--R                 23040a  - 256a
+--R            *
+--R                3
+--R               c
+--R           + 
+--R                        2 8         3 7             4         2  6
+--R                 - 4032a b  + 48384a b  + (- 241920a  + 13440a )b
+--R               + 
+--R                         5          3  5             6          4        2  4
+--R                 (645120a  - 120960a )b  + (- 967680a  + 443520a  - 9120a )b
+--R               + 
+--R                         7          5         3  3
+--R                 (774144a  - 860160a  + 55680a )b
+--R               + 
+--R                           8          6          4       2  2
+--R                 (- 258048a  + 967680a  - 132480a  + 640a )b
+--R               + 
+--R                         7          5        3            8         6        4
+--R               (- 645120a  + 153600a  - 1792a )b + 215040a  - 76800a  + 1792a
+--R            *
+--R                2
+--R               c
+--R           + 
+--R                        10         2 9          3          8
+--R                 1008a b   - 12096a b  + (60480a  - 4200a)b
+--R               + 
+--R                           4         2  7           5          3          6
+--R                 (- 161280a  + 40320a )b  + (241920a  - 161280a  + 3840a)b
+--R               + 
+--R                           6          4         2  5
+--R                 (- 193536a  + 349440a  - 27840a )b
+--R               + 
+--R                        7          5         3         4
+--R                 (64512a  - 443520a  + 83520a  - 384a)b
+--R               + 
+--R                         6          4        2  3
+--R                 (322560a  - 134400a  + 1792a )b
+--R               + 
+--R                           7          5        3  2            6        4
+--R                 (- 107520a  + 124800a  - 3584a )b  + (- 69120a  + 3584a )b
+--R               + 
+--R                       7        5
+--R                 23040a  - 1792a
+--R            *
+--R               c
+--R           + 
+--R                  12          11           2        10          3          9
+--R             - 84b   + 1008a b   + (- 5040a  + 420)b   + (13440a  - 4200a)b
+--R           + 
+--R                      4         2        8          5         3          7
+--R             (- 20160a  + 17640a  - 480)b  + (16128a  - 40320a  + 3840a)b
+--R           + 
+--R                     6         4         2       6
+--R             (- 5376a  + 53760a  - 12960a  + 64)b
+--R           + 
+--R                      5         3         5          6         4        2  4
+--R             (- 40320a  + 24000a  - 384a)b  + (13440a  - 26400a  + 1024a )b
+--R           + 
+--R                    5        3  3           6        4  2       5        6
+--R             (17280a  - 1536a )b  + (- 5760a  + 1408a )b  - 768a b + 256a
+--R        /
+--R              9 3      8 2 2      7 4     6 6
+--R           64a c  - 48a b c  + 12a b c - a b
+--R      *
+--R          3
+--R         ?
+--R     + 
+--R                      3 7         4 6           5        3  5
+--R                 2304a b  - 32256a b  + (193536a  - 8064a )b
+--R               + 
+--R                           6         4  4            7          5        3  3
+--R                 (- 645120a  + 80640a )b  + (1290240a  - 322560a  + 5760a )b
+--R               + 
+--R                            8          6         4  2
+--R                 (- 1548288a  + 645120a  - 34560a )b
+--R               + 
+--R                          9          7         5       3            10
+--R                 (1032192a  - 645120a  + 69120a  - 768a )b - 294912a
+--R               + 
+--R                        8         6        4
+--R                 258048a  - 46080a  + 1536a
+--R            *
+--R                3
+--R               c
+--R           + 
+--R                        2 9         3 8             4        2  7
+--R                 - 1728a b  + 24192a b  + (- 145152a  + 8064a )b
+--R               + 
+--R                         5         3  6             6          4        2  5
+--R                 (483840a  - 88704a )b  + (- 967680a  + 411264a  - 9120a )b
+--R               + 
+--R                          7           5         3  4
+--R                 (1161216a  - 1048320a  + 73920a )b
+--R               + 
+--R                           8           6          4        2  3
+--R                 (- 774144a  + 1612800a  - 243840a  + 1920a )b
+--R               + 
+--R                         9           7          5        3  2
+--R                 (221184a  - 1548288a  + 418560a  - 9216a )b
+--R               + 
+--R                       8          6         4            9          7         5
+--R               (903168a  - 384000a  + 16128a )b - 258048a  + 153600a  - 10752a
+--R            *
+--R                2
+--R               c
+--R           + 
+--R                       11        2 10          3          9
+--R                 432a b   - 6048a b   + (36288a  - 2520a)b
+--R               + 
+--R                           4         2  8           5          3          7
+--R                 (- 120960a  + 29232a )b  + (241920a  - 145152a  + 3840a)b
+--R               + 
+--R                           6          4         2  6
+--R                 (- 290304a  + 403200a  - 35520a )b
+--R               + 
+--R                         7          5          3          5
+--R                 (193536a  - 685440a  + 139200a  - 1152a)b
+--R               + 
+--R                          8          6          4        2  4
+--R                 (- 55296a  + 725760a  - 301440a  + 7680a )b
+--R               + 
+--R                           7          5         3  3
+--R                 (- 451584a  + 393600a  - 21504a )b
+--R               + 
+--R                         8          6         4  2           7         5
+--R                 (129024a  - 318720a  + 32256a )b  + (161280a  - 26880a )b
+--R               + 
+--R                         8         6
+--R                 - 46080a  + 10752a
+--R            *
+--R               c
+--R           + 
+--R                  13         12           2        11          3          10
+--R             - 36b   + 504a b   + (- 3024a  + 252)b   + (10080a  - 3024a)b
+--R           + 
+--R                      4         2        9          5         3          8
+--R             (- 20160a  + 15624a  - 480)b  + (24192a  - 45360a  + 4800a)b
+--R           + 
+--R                      6         4         2        7
+--R             (- 16128a  + 80640a  - 20640a  + 192)b
+--R           + 
+--R                   7         5         3          6
+--R             (4608a  - 88704a  + 49920a  - 1536a)b
+--R           + 
+--R                    6         4        2  5            7         5         3  4
+--R             (56448a  - 74400a  + 5376a )b  + (- 16128a  + 70080a  - 10752a )b
+--R           + 
+--R                      6         4  3          7         5  2        6         7
+--R             (- 40320a  + 13440a )b  + (11520a  - 10752a )b  + 5376a b - 1536a
+--R        /
+--R              10 3      9 2 2      8 4     7 6
+--R           64a  c  - 48a b c  + 12a b c - a b
+--R      *
+--R          2
+--R         ?
+--R     + 
+--R                     3 8        4 7          5        3  6
+--R                 576a b  - 9216a b  + (64512a  - 2688a )b
+--R               + 
+--R                           6         4  5           7          5        3  4
+--R                 (- 258048a  + 32256a )b  + (645120a  - 161280a  + 2880a )b
+--R               + 
+--R                            8          6         4  3
+--R                 (- 1032192a  + 430080a  - 23040a )b
+--R               + 
+--R                          9          7         5       3  2
+--R                 (1032192a  - 645120a  + 69120a  - 768a )b
+--R               + 
+--R                           10          8         6        4            11
+--R                 (- 589824a   + 516096a  - 92160a  + 3072a )b + 147456a
+--R               + 
+--R                          9         7        5
+--R                 - 172032a  + 46080a  - 3072a
+--R            *
+--R                3
+--R               c
+--R           + 
+--R                       2 10        3 9            4        2  8
+--R                 - 432a b   + 6912a b  + (- 48384a  + 2688a )b
+--R               + 
+--R                         5         3  7             6          4        2  6
+--R                 (193536a  - 34944a )b  + (- 483840a  + 196224a  - 4560a )b
+--R               + 
+--R                         7          5         3  5
+--R                 (774144a  - 623616a  + 46080a )b
+--R               + 
+--R                           8           6          4        2  4
+--R                 (- 774144a  + 1236480a  - 195840a  + 1920a )b
+--R               + 
+--R                         9           7          5         3  3
+--R                 (442368a  - 1591296a  + 453120a  - 13056a )b
+--R               + 
+--R                           10           8          6         4       2  2
+--R                 (- 110592a   + 1333248a  - 610560a  + 34560a  - 256a )b
+--R               + 
+--R                           9          7         5        3            10
+--R                 (- 688128a  + 460800a  - 43008a  + 1024a )b + 172032a
+--R               + 
+--R                          8         6        4
+--R                 - 153600a  + 21504a  - 1024a
+--R            *
+--R                2
+--R               c
+--R           + 
+--R                       12        2 11          3         10
+--R                 108a b   - 1728a b   + (12096a  - 840a)b
+--R               + 
+--R                          4         2  9           5         3          8
+--R                 (- 48384a  + 11424a )b  + (120960a  - 67872a  + 1920a)b
+--R               + 
+--R                           6          4         2  7
+--R                 (- 193536a  + 231168a  - 21600a )b
+--R               + 
+--R                         7          5          3          6
+--R                 (193536a  - 497280a  + 105120a  - 1152a)b
+--R               + 
+--R                           8          6          4        2  5
+--R                 (- 110592a  + 698880a  - 289920a  + 9984a )b
+--R               + 
+--R                        9          7          5         3  4
+--R                 (27648a  - 634368a  + 498240a  - 36864a )b
+--R               + 
+--R                         8          6         4       2  3
+--R                 (344064a  - 552960a  + 75264a  + 512a )b
+--R               + 
+--R                          9          7         5        3  2
+--R                 (- 86016a  + 399360a  - 91392a  - 2560a )b
+--R               + 
+--R                           8         6        4           9         7        5
+--R                 (- 184320a  + 64512a  + 4096a )b + 46080a  - 21504a  - 2048a
+--R            *
+--R               c
+--R           + 
+--R                 14         13           2       12         3          11
+--R             - 9b   + 144a b   + (- 1008a  + 84)b   + (4032a  - 1176a)b
+--R           + 
+--R                      4        2        10          5         3          9
+--R             (- 10080a  + 7224a  - 240)b   + (16128a  - 25536a  + 2880a)b
+--R           + 
+--R                      6         4         2        8
+--R             (- 16128a  + 57120a  - 15120a  + 192)b
+--R           + 
+--R                   7         5         3          7
+--R             (9216a  - 83328a  + 45600a  - 1920a)b
+--R           + 
+--R                     8         6         4        2  6
+--R             (- 2304a  + 77952a  - 87120a  + 8448a )b
+--R           + 
+--R                      7          5         3  5
+--R             (- 43008a  + 109440a  - 21504a )b
+--R           + 
+--R                    8         6         4       2  4
+--R             (10752a  - 90240a  + 34944a  - 256a )b
+--R           + 
+--R                    7         5        3  3            8         6        4  2
+--R             (46080a  - 37632a  + 1536a )b  + (- 11520a  + 26880a  - 3328a )b
+--R           + 
+--R                      7        5          8        6
+--R             (- 12288a  + 3072a )b + 3072a  - 1024a
+--R        /
+--R              11 3      10 2 2      9 4     8 6
+--R           64a  c  - 48a  b c  + 12a b c - a b
+--R      *
+--R         ?
+--R     + 
+--R                  3 9        4 8         5       3  7            6        4  6
+--R               64a b  - 1152a b  + (9216a  - 384a )b  + (- 43008a  + 5376a )b
+--R             + 
+--R                       7         5       3  5
+--R               (129024a  - 32256a  + 576a )b
+--R             + 
+--R                         8          6        4  4
+--R               (- 258048a  + 107520a  - 5760a )b
+--R             + 
+--R                       9          7         5       3  3
+--R               (344064a  - 215040a  + 23040a  - 256a )b
+--R             + 
+--R                         10          8         6        4  2
+--R               (- 294912a   + 258048a  - 46080a  + 1536a )b
+--R             + 
+--R                       11          9         7        5           12         10
+--R               (147456a   - 172032a  + 46080a  - 3072a )b - 32768a   + 49152a
+--R             + 
+--R                       8        6
+--R               - 18432a  + 2048a
+--R          *
+--R              3
+--R             c
+--R         + 
+--R                    2 11       3 10           4       2  9
+--R               - 48a b   + 864a b   + (- 6912a  + 384a )b
+--R             + 
+--R                      5        3  8            6         4       2  7
+--R               (32256a  - 5760a )b  + (- 96768a  + 38016a  - 912a )b
+--R             + 
+--R                       7          5         3  6
+--R               (193536a  - 145152a  + 11040a )b
+--R             + 
+--R                         8          6         4       2  5
+--R               (- 258048a  + 354816a  - 57600a  + 640a )b
+--R             + 
+--R                       9          7          5        3  4
+--R               (221184a  - 580608a  + 168960a  - 5632a )b
+--R             + 
+--R                         10          8          6         4       2  3
+--R               (- 110592a   + 645120a  - 303360a  + 20224a  - 256a )b
+--R             + 
+--R                      11          9          7         5        3  2
+--R               (24576a   - 479232a  + 336384a  - 37376a  + 1536a )b
+--R             + 
+--R                       10          8         6        4           11         9
+--R               (221184a   - 215040a  + 35840a  - 3072a )b - 49152a   + 61440a
+--R             + 
+--R                       7        5
+--R               - 14336a  + 2048a
+--R          *
+--R              2
+--R             c
+--R         + 
+--R                    13       2 12         3         11           4        2  10
+--R               12a b   - 216a b   + (1728a  - 120a)b   + (- 8064a  + 1872a )b
+--R             + 
+--R                      5         3         9            6         4        2  8
+--R               (24192a  - 12960a  + 384a)b  + (- 48384a  + 52416a  - 5088a )b
+--R             + 
+--R                      7          5         3         7
+--R               (64512a  - 137088a  + 29664a  - 384a)b
+--R             + 
+--R                        8          6          4        2  6
+--R               (- 55296a  + 241920a  - 100032a  + 4096a )b
+--R             + 
+--R                      9          7          5         3  5
+--R               (27648a  - 290304a  + 215616a  - 18944a )b
+--R             + 
+--R                       10          8          6         4       2  4
+--R               (- 6144a   + 230400a  - 309888a  + 49664a  + 512a )b
+--R             + 
+--R                         9          7         5        3  3
+--R               (- 110592a  + 301056a  - 80640a  - 3584a )b
+--R             + 
+--R                      10          8         6        4  2
+--R               (24576a   - 196608a  + 82432a  + 9216a )b
+--R             + 
+--R                      9         7         5           10         8        6
+--R               (82944a  - 50176a  - 10240a )b - 18432a   + 14336a  + 4096a
+--R          *
+--R             c
+--R         + 
+--R              15        14          2       13        3         12
+--R           - b   + 18a b   + (- 144a  + 12)b   + (672a  - 192a)b
+--R         + 
+--R                   4        2       11         5        3         10
+--R           (- 2016a  + 1368a  - 48)b   + (4032a  - 5712a  + 672a)b
+--R         + 
+--R                   6         4        2       9
+--R           (- 5376a  + 15456a  - 4176a  + 64)b
+--R         + 
+--R                 7         5         3         8
+--R           (4608a  - 28224a  + 15168a  - 768a)b
+--R         + 
+--R                   8         6         4        2  7
+--R           (- 2304a  + 34944a  - 35664a  + 4096a )b
+--R         + 
+--R                9         7         5         3  6
+--R           (512a  - 28416a  + 56736a  - 12800a )b
+--R         + 
+--R                  8         6         4       2  5
+--R           (13824a  - 61824a  + 25984a  - 256a )b
+--R         + 
+--R                   9         7         5        3  4
+--R           (- 3072a  + 45312a  - 35840a  + 2048a )b
+--R         + 
+--R                    8         6        4  3         9         7        5  2
+--R           (- 20736a  + 34048a  - 6400a )b  + (4608a  - 22016a  + 9728a )b
+--R         + 
+--R                 8        6          9        7
+--R           (9216a  - 7168a )b - 2048a  + 2048a
+--R      /
+--R            12 3      11 2 2      10 4     9 6
+--R         64a  c  - 48a  b c  + 12a  b c - a b
+--R     , trying square-free.
+--R
+--R   (85)
+--R     - y(x) + x
+--R  /
+--R       (2y(x) + 2x)
+--R    *
+--R         %e
+--R      **
+--R             2
+--R          *
+--R             log
+--R                                                 +-----------+
+--R                       2 2                    2  |          2       2        2
+--R                    (2a x  + 2a b x - 2a c + b )\|- 4a c + b   + (8a c - 2a b )x
+--R                  + 
+--R                              3
+--R                    4a b c - b
+--R               /
+--R                     2
+--R                  a x  + b x + c
+--R        /
+--R            +-----------+
+--R            |          2
+--R           \|- 4a c + b
+--R                                          Type: Union(Expression Integer,...)
+--E 85
+
+--S 86 of 139
+ode180expr := (a*x**2+b*x+c)*(x*D(yx,x)-yx) - yx**2 + x**2
+--R 
+--R
+--R   (86)
+--R            2    2     3         4
+--R         (4x y(x)  + 8x y(x) + 4x )
+--R      *
+--R             %e
+--R          **
+--R                 2
+--R              *
+--R                 log
+--R                                                     +-----------+
+--R                           2 2                    2  |          2
+--R                        (2a x  + 2a b x - 2a c + b )\|- 4a c + b
+--R                      + 
+--R                           2        2               3
+--R                        (8a c - 2a b )x + 4a b c - b
+--R                   /
+--R                         2
+--R                      a x  + b x + c
+--R            /
+--R                +-----------+
+--R                |          2
+--R               \|- 4a c + b
+--R        **
+--R           2
+--R     + 
+--R                  4       3       2  ,           2                      2
+--R           (- 4a x  - 4b x  - 4c x )y (x) + (2a x  + (2b + 4)x + 2c)y(x)
+--R
+--R         + 
+--R                3       2                   4              3       2
+--R           (4a x  + 4b x  + 4c x)y(x) - 2a x  + (- 2b - 4)x  - 2c x
+--R      *
+--R           %e
+--R        **
+--R               2
+--R            *
+--R               log
+--R                                                   +-----------+
+--R                         2 2                    2  |          2
+--R                      (2a x  + 2a b x - 2a c + b )\|- 4a c + b
+--R                    + 
+--R                         2        2               3
+--R                      (8a c - 2a b )x + 4a b c - b
+--R                 /
+--R                       2
+--R                    a x  + b x + c
+--R          /
+--R              +-----------+
+--R              |          2
+--R             \|- 4a c + b
+--R     + 
+--R             2              2
+--R       - y(x)  + 2x y(x) - x
+--R  /
+--R             2               2
+--R       (4y(x)  + 8x y(x) + 4x )
+--R    *
+--R           %e
+--R        **
+--R               2
+--R            *
+--R               log
+--R                                                   +-----------+
+--R                         2 2                    2  |          2
+--R                      (2a x  + 2a b x - 2a c + b )\|- 4a c + b
+--R                    + 
+--R                         2        2               3
+--R                      (8a c - 2a b )x + 4a b c - b
+--R                 /
+--R                       2
+--R                    a x  + b x + c
+--R          /
+--R              +-----------+
+--R              |          2
+--R             \|- 4a c + b
+--R      **
+--R         2
+--R                                                     Type: Expression Integer
+--E 86
+
+--S 87 of 139
+ode181 := x**4*(D(y(x),x)+y(x)**2) + a
+--R 
+--R
+--R          4 ,       4    2
+--R   (87)  x y (x) + x y(x)  + a
+--R
+--R                                                     Type: Expression Integer
+--E 87
+
+--S 88 of 139
+yx:=solve(ode181,y,x)
+--R 
+--R                                                     2
+--R   WARNING (genufact): No known algorithm to factor ?  + a, trying square-free.
+--R
+--R                   +---+    2
+--R                  \|- a  - x y(x) + x
+--R   (88)  ------------------------------------
+--R                                        +---+
+--R                                      2\|- a
+--R                                      -------
+--R             2           +---+           x
+--R         ((2x y(x) - 2x)\|- a  - 2a)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 88
+
+--S 89 of 139
+ode181expr := x**4*(D(yx,x)+yx**2) + a
+--R 
+--R
+--R   (89)
+--R                  +---+
+--R                2\|- a
+--R                -------
+--R             6     x    ,
+--R       - 4a x %e       y (x)
+--R
+--R     + 
+--R             2 2         2   +---+     2 4    2     2 3         2 2     3
+--R         ((8a x y(x) - 8a x)\|- a  + 4a x y(x)  - 8a x y(x) + 4a x  - 4a )
+--R      *
+--R              +---+ 2
+--R            2\|- a
+--R            -------
+--R               x
+--R         (%e       )
+--R     + 
+--R                                 +---+
+--R                               2\|- a
+--R                               -------
+--R              6    2     2 2      x         6         5  +---+    8    2
+--R       (- 4a x y(x)  - 4a x )%e        + (2x y(x) - 2x )\|- a  - x y(x)
+--R     + 
+--R         7        6      4
+--R       2x y(x) - x  + a x
+--R  /
+--R             2             +---+       4    2       3           2     2
+--R       ((8a x y(x) - 8a x)\|- a  + 4a x y(x)  - 8a x y(x) + 4a x  - 4a )
+--R    *
+--R            +---+ 2
+--R          2\|- a
+--R          -------
+--R             x
+--R       (%e       )
+--R                                                     Type: Expression Integer
+--E 89
+
+--S 90 of 139
+ode182 := x*(x**3-1)*D(y(x),x) - 2*x*y(x)**2 + y(x) + x**2
+--R 
+--R
+--R           4      ,             2           2
+--R   (90)  (x  - x)y (x) - 2x y(x)  + y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 90
+@
+
+This never completes
+\begin{verbatim}
+ ode182a:=solve(ode182,y,x)
+\end{verbatim}
+<<*>>=
+
+--S 91 of 139
+ode183 := (2*x**4-x)*D(y(x),x) - 2*(x**3-1)*y(x)
+--R 
+--R
+--R            4      ,           3
+--R   (91)  (2x  - x)y (x) + (- 2x  + 2)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 91
+
+--S 92 of 139
+ode183a:=solve(ode183,y,x)
+--R 
+--R
+--R                                     2
+--R                                    x
+--R   (92)  [particular= 0,basis= [----------]]
+--R                                 +-------+
+--R                                3|  3
+--R                                \|2x  - 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 92
+
+--S 93 of 139
+yx:=ode183a.particular
+--R 
+--R
+--R   (93)  0
+--R                                                     Type: Expression Integer
+--E 93
+
+--S 94 of 139
+ode183expr := (2*x**4-x)*D(yx,x) - 2*(x**3-1)*yx
+--R 
+--R
+--R   (94)  0
+--R                                                     Type: Expression Integer
+--E 94
+
+--S 95 of 139
+ode184 := (a*x**2+b*x+c)**2*(D(y(x),x)+y(x)**2) + A
+--R 
+--R
+--R   (95)
+--R       2 4         3            2  2             2  ,
+--R     (a x  + 2a b x  + (2a c + b )x  + 2b c x + c )y (x)
+--R
+--R   + 
+--R       2 4         3            2  2             2     2
+--R     (a x  + 2a b x  + (2a c + b )x  + 2b c x + c )y(x)  + A
+--R                                                     Type: Expression Integer
+--E 95
+
+@
+This never completes
+\begin{verbatim}
+ ode184a:=solve(ode184,y,x)
+\end{verbatim}
+<<*>>=
+
+--S 96 of 139
+ode185 := x**7*D(y(x),x) + 2*(x**2+1)*y(x)**3 + 5*x**3*y(x)**2
+--R 
+--R
+--R          7 ,         2         3     3    2
+--R   (96)  x y (x) + (2x  + 2)y(x)  + 5x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 96
+
+--S 97 of 139
+ode185a:=solve(ode185,y,x)
+--R 
+--R
+--R   (97)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 97
+
+--S 98 of 139
+ode186 := x**n*D(y(x),x) + y(x)**2 -(n-1)*x**(n-1)*y(x) + x**(2*n-2)
+--R 
+--R
+--R          n ,       2n - 2                 n - 1       2
+--R   (98)  x y (x) + x       + (- n + 1)y(x)x      + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 98
+
+--S 99 of 139
+ode186a:=solve(ode186,y,x)
+--R 
+--R
+--R   (99)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 99
+
+--S 100 of 139
+ode187 := x**n*D(y(x),x) - a*y(x)**2 - b*x**(2*n-2)
+--R 
+--R
+--R           n ,         2n - 2         2
+--R   (100)  x y (x) - b x       - a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 100
+
+--S 101 of 139
+ode187a:=solve(ode187,y,x)
+--R 
+--R
+--R   (101)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 101
+
+--S 102 of 139
+ode188 := x**(2*n+1)*D(y(x),x) - a*y(x)**3 - b*x**3*n
+--R 
+--R
+--R           2n + 1 ,            3        3
+--R   (102)  x      y (x) - a y(x)  - b n x
+--R
+--R                                                     Type: Expression Integer
+--E 102
+
+--S 103 of 139
+ode188a:=solve(ode188,y,x)
+--R 
+--R
+--R   (103)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 103
+
+--S 104 of 139
+ode189 := x**(m*(n-1)+n)*D(y(x),x) - a*y(x)**n - b*x**(n*(m+1))
+--R 
+--R
+--R           (m + 1)n - m ,            n      (m + 1)n
+--R   (104)  x            y (x) - a y(x)  - b x
+--R
+--R                                                     Type: Expression Integer
+--E 104
+
+--S 105 of 139
+ode189a:=solve(ode189,y,x)
+--R 
+--R
+--R   (105)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 105
+
+--S 106 of 139
+ode190 := sqrt(x**2-1)*D(y(x),x) - sqrt(y(x)**2-1)
+--R 
+--R
+--R           +------+         +---------+
+--R           | 2      ,       |    2
+--R   (106)  \|x  - 1 y (x) - \|y(x)  - 1
+--R
+--R                                                     Type: Expression Integer
+--E 106
+
+--S 107 of 139
+ode190a:=solve(ode190,y,x)
+--R 
+--R
+--R   (107)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 107
+
+--S 108 of 139
+ode191 := sqrt(1-x**2)*D(y(x),x) - y(x)*sqrt(y(x)**2-1)
+--R 
+--R
+--R           +--------+             +---------+
+--R           |   2      ,           |    2
+--R   (108)  \|- x  + 1 y (x) - y(x)\|y(x)  - 1
+--R
+--R                                                     Type: Expression Integer
+--E 108
+
+--S 109 of 139
+ode191a:=solve(ode191,y,x)
+--R 
+--R
+--R   (109)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 109
+
+--S 110 of 139
+ode192 := sqrt(x**2+a**2)*D(y(x),x) + y(x) - sqrt(x**2+a**2) + x
+--R 
+--R
+--R           +-------+         +-------+
+--R           | 2    2  ,       | 2    2
+--R   (110)  \|x  + a  y (x) - \|x  + a   + y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 110
+
+--S 111 of 139
+ode192a:=solve(ode192,y,x)
+--R 
+--R
+--R   (111)
+--R                    +-------+          +-------+               +-------+
+--R                    | 2    2           | 2    2                | 2    2
+--R   [particular= (- \|x  + a   + x)log(\|x  + a   - x),basis= [\|x  + a   - x]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 111
+
+--S 112 of 139
+yx:=ode192a.particular
+--R 
+--R
+--R              +-------+          +-------+
+--R              | 2    2           | 2    2
+--R   (112)  (- \|x  + a   + x)log(\|x  + a   - x)
+--R                                                     Type: Expression Integer
+--E 112
+
+--S 113 of 139
+ode192expr := sqrt(x**2+a**2)*D(yx,x) + yx - sqrt(x**2+a**2) + x
+--R 
+--R
+--R   (113)  0
+--R                                                     Type: Expression Integer
+--E 113
+
+--S 114 of 139
+ode193 := x*D(y(x),x)*log(x) + y(x) - a*x*(log(x)+1)
+--R 
+--R
+--R                   ,
+--R   (114)  x log(x)y (x) - a x log(x) + y(x) - a x
+--R
+--R                                                     Type: Expression Integer
+--E 114
+
+--S 115 of 139
+ode193a:=solve(ode193,y,x)
+--R 
+--R
+--R                                      1
+--R   (115)  [particular= a x,basis= [------]]
+--R                                   log(x)
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 115
+
+--S 116 of 139
+yx:=ode193a.particular
+--R
+--R   (116)  a x
+--R                                                     Type: Expression Integer
+--E 116
+
+--S 117 of 139
+ode193expr := x*D(yx,x)*log(x) + yx - a*x*(log(x)+1)
+--R
+--R   (117)  0
+--R                                                     Type: Expression Integer
+--E 117
+
+--S 118 of 139
+ode194 := x*D(y(x),x)*log(x) - y(x)**2*log(x) - _
+            (2*log(x)**2+1)*y(x) - log(x)**3
+--R 
+--R
+--R                   ,            3              2       2
+--R   (118)  x log(x)y (x) - log(x)  - 2y(x)log(x)  - y(x) log(x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 118
+
+--S 119 of 139
+ode194a:=solve(ode194,y,x)
+--R 
+--R
+--R   (119)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 119
+
+--S 120 of 139
+ode195 := sin(x)*D(y(x),x) - y(x)**2*sin(x)**2 + (cos(x) - 3*sin(x))*y(x) + 4
+--R 
+--R
+--R                 ,          2      2
+--R   (120)  sin(x)y (x) - y(x) sin(x)  - 3y(x)sin(x) + y(x)cos(x) + 4
+--R
+--R                                                     Type: Expression Integer
+--E 120
+
+--S 121 of 139
+yx:=solve(ode195,y,x)
+--R 
+--R
+--R              - y(x)sin(x) + 1
+--R   (121)  ------------------------
+--R                 5x             5x
+--R          5y(x)%e  sin(x) + 20%e
+--R                                          Type: Union(Expression Integer,...)
+--E 121
+
+--S 122 of 139
+ode195expr:=sin(x)*D(yx,x) - yx**2*sin(x)**2 + (cos(x) - 3*sin(x))*yx + 4
+--R 
+--R
+--R   (122)
+--R             5x      2 ,          2      4          2  5x               3
+--R       - 25%e  sin(x) y (x) - y(x) sin(x)  + (40y(x) %e   + 2y(x))sin(x)
+--R
+--R     + 
+--R               2   5x 2           2                   5x           2
+--R       (100y(x) (%e  )  + (- 5y(x) cos(x) + 120y(x))%e   - 1)sin(x)
+--R     + 
+--R                  5x 2                           5x                 5x 2
+--R       (800y(x)(%e  )  + (- 40y(x)cos(x) - 160)%e  )sin(x) + 1600(%e  )
+--R     + 
+--R                 5x
+--R       20cos(x)%e
+--R  /
+--R           2   5x 2      2             5x 2               5x 2
+--R     25y(x) (%e  ) sin(x)  + 200y(x)(%e  ) sin(x) + 400(%e  )
+--R                                                     Type: Expression Integer
+--E 122
+
+--S 123 of 139
+ode196 := cos(x)*D(y(x),x) + y(x) + (1 + sin(x))*cos(x)
+--R 
+--R
+--R                 ,
+--R   (123)  cos(x)y (x) + cos(x)sin(x) + cos(x) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 123
+
+--S 124 of 139
+ode196a:=solve(ode196,y,x)
+--R 
+--R
+--R   (124)
+--R   [
+--R     particular =
+--R                                        sin(x) - cos(x) - 1
+--R           (- 4sin(x) + 4cos(x) + 4)log(-------------------)
+--R                                             cos(x) + 1
+--R         + 
+--R                                         2              2
+--R         (2sin(x) - 2cos(x) - 2)log(----------) - sin(x)  + (cos(x) + 1)sin(x)
+--R                                    cos(x) + 1
+--R      /
+--R         sin(x) + cos(x) + 1
+--R     ,
+--R            sin(x) - cos(x) - 1
+--R    basis= [-------------------]]
+--R            sin(x) + cos(x) + 1
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 124
+
+--S 125 of 139
+yx:=ode196a.particular
+--R 
+--R
+--R   (125)
+--R                                    sin(x) - cos(x) - 1
+--R       (- 4sin(x) + 4cos(x) + 4)log(-------------------)
+--R                                         cos(x) + 1
+--R     + 
+--R                                       2              2
+--R       (2sin(x) - 2cos(x) - 2)log(----------) - sin(x)  + (cos(x) + 1)sin(x)
+--R                                  cos(x) + 1
+--R  /
+--R     sin(x) + cos(x) + 1
+--R                                                     Type: Expression Integer
+--E 125
+
+--S 126 of 139
+ode196expr := cos(x)*D(yx,x) + yx + (1 + sin(x))*cos(x)
+--R 
+--R
+--R   (126)
+--R                     2                      2          4           3          2
+--R           (- 8cos(x)  - 12cos(x) - 4)sin(x)  - 8cos(x)  - 12cos(x)  + 4cos(x)
+--R         + 
+--R           12cos(x) + 4
+--R      *
+--R             sin(x) - cos(x) - 1
+--R         log(-------------------)
+--R                  cos(x) + 1
+--R     + 
+--R                   2                     2          4          3          2
+--R           (4cos(x)  + 6cos(x) + 2)sin(x)  + 4cos(x)  + 6cos(x)  - 2cos(x)
+--R         + 
+--R           - 6cos(x) - 2
+--R      *
+--R                  2
+--R         log(----------)
+--R             cos(x) + 1
+--R     + 
+--R                2                     3          3                2
+--R       (- cos(x)  - 4cos(x) - 1)sin(x)  + (cos(x)  - cos(x))sin(x)
+--R     + 
+--R                4          3                              5          3
+--R       (- cos(x)  - 4cos(x)  + 4cos(x) + 1)sin(x) + cos(x)  - 2cos(x)  + cos(x)
+--R  /
+--R                         2           2                              3          2
+--R       (cos(x) + 1)sin(x)  + (2cos(x)  + 4cos(x) + 2)sin(x) + cos(x)  + 3cos(x)
+--R     + 
+--R       3cos(x) + 1
+--R                                                     Type: Expression Integer
+--E 126
+
+--S 127 of 139
+ode197 := cos(x)*D(y(x),x) - y(x)**4 - y(x)*sin(x)
+--R 
+--R
+--R                 ,                       4
+--R   (127)  cos(x)y (x) - y(x)sin(x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 127
+
+--S 128 of 139
+yx:=solve(ode197,y,x)
+--R 
+--R
+--R                3      2       3
+--R          (2y(x) cos(x)  + y(x) )sin(x) + 1
+--R   (128)  ---------------------------------
+--R                         3      3
+--R                     y(x) cos(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 128
+
+--S 129 of 139
+ode197expr := cos(x)*D(yx,x) - yx**4 - yx*sin(x)
+--R 
+--R
+--R   (129)
+--R              8      10 ,
+--R       - 3y(x) cos(x)  y (x)
+--R
+--R     + 
+--R                   12      8         12      6         12      4
+--R           - 16y(x)  cos(x)  - 32y(x)  cos(x)  - 24y(x)  cos(x)
+--R         + 
+--R                  12      2       12
+--R           - 8y(x)  cos(x)  - y(x)
+--R      *
+--R               4
+--R         sin(x)
+--R     + 
+--R                9      6         9      4         9      2        9       3
+--R       (- 32y(x) cos(x)  - 48y(x) cos(x)  - 24y(x) cos(x)  - 4y(x) )sin(x)
+--R     + 
+--R             12      9         6      4         6      2        6       2
+--R       (2y(x)  cos(x)  - 24y(x) cos(x)  - 24y(x) cos(x)  - 6y(x) )sin(x)
+--R     + 
+--R             9      9        3      2        3               12      13
+--R       (2y(x) cos(x)  - 8y(x) cos(x)  - 4y(x) )sin(x) + 2y(x)  cos(x)
+--R     + 
+--R           12      11
+--R       y(x)  cos(x)   - 1
+--R  /
+--R         12      12
+--R     y(x)  cos(x)
+--R                                                     Type: Expression Integer
+--E 129
+
+--S 130 of 139
+ode198 := sin(x)*cos(x)*D(y(x),x) - y(x) - sin(x)**3
+--R 
+--R
+--R                       ,            3
+--R   (130)  cos(x)sin(x)y (x) - sin(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 130
+
+--S 131 of 139
+ode198a:=solve(ode198,y,x)
+--R 
+--R
+--R                                        sin(x)
+--R   (131)  [particular= - sin(x),basis= [------]]
+--R                                        cos(x)
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 131
+
+--S 132 of 139
+yx:=ode198a.particular
+--R 
+--R
+--R   (132)  - sin(x)
+--R                                                     Type: Expression Integer
+--E 132
+
+--S 133 of 139
+ode198expr := sin(x)*cos(x)*D(yx,x) - yx - sin(x)**3
+--R 
+--R
+--R                  3            2
+--R   (133)  - sin(x)  + (- cos(x)  + 1)sin(x)
+--R                                                     Type: Expression Integer
+--E 133
+
+--S 134 of 139
+ode199 := sin(2*x)*D(y(x),x) + sin(2*y(x))
+--R 
+--R
+--R                  ,
+--R   (134)  sin(2x)y (x) + sin(2y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 134
+
+--S 135 of 139
+ode199a:=solve(ode199,y,x)
+--R 
+--R
+--R   (135)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 135
+
+--S 136 of 139
+ode200 := (a*sin(x)**2+b)*D(y(x),x) + a*y(x)*sin(2*x) + A*x*(a*sin(x)**2+c)
+--R 
+--R
+--R                   2      ,                                  2
+--R   (136)  (a sin(x)  + b)y (x) + a y(x)sin(2x) + A a x sin(x)  + A c x
+--R
+--R                                                     Type: Expression Integer
+--E 136
+
+--S 137 of 139
+ode200a:=solve(ode200,y,x)
+--R 
+--R
+--R   (137)
+--R                                                  2                2
+--R                - 2A a x cos(x)sin(x) - A a cos(x)  + (2A c + A a)x
+--R   [particular= ----------------------------------------------------,
+--R                                         2
+--R                                4a cos(x)  - 4b - 4a
+--R                    1
+--R    basis= [-----------------]]
+--R                    2
+--R            a cos(x)  - b - a
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 137
+
+--S 138 of 139
+yx:=ode200a.particular
+--R 
+--R
+--R                                            2                2
+--R          - 2A a x cos(x)sin(x) - A a cos(x)  + (2A c + A a)x
+--R   (138)  ----------------------------------------------------
+--R                                   2
+--R                          4a cos(x)  - 4b - 4a
+--R                                                     Type: Expression Integer
+--E 138
+
+--S 139 of 139
+ode200expr := (a*sin(x)**2+b)*D(yx,x) + a*yx*sin(2*x) + A*x*(a*sin(x)**2+c)
+--R 
+--R
+--R   (139)
+--R                  3        3        2        3                      3      4
+--R           (- 2A a x cos(x)  + (2A a b + 2A a )x cos(x))sin(x) - A a cos(x)
+--R         + 
+--R                 2       3  2      2       3       2
+--R           ((2A a c + A a )x  + A a b + A a )cos(x)
+--R         + 
+--R                            2        2       3  2
+--R           ((- 2A a b - 2A a )c - A a b - A a )x
+--R      *
+--R         sin(2x)
+--R     + 
+--R              3        2          2        3         4
+--R       (- 2A a x cos(x)  + (- 2A a b - 2A a )x)sin(x)
+--R     + 
+--R              3      3        2        3  2             3
+--R       (- 2A a cos(x)  + (4A a c + 2A a )x cos(x))sin(x)
+--R     + 
+--R               3        4        2        2        3         2
+--R           2A a x cos(x)  + (4A a c - 8A a b - 4A a )x cos(x)
+--R         + 
+--R                            2           2       2        3
+--R           ((- 4A a b - 4A a )c + 2A a b  + 4A a b + 2A a )x
+--R      *
+--R               2
+--R         sin(x)
+--R     + 
+--R              2        3                   2   2
+--R       (- 2A a b cos(x)  + (4A a b c + 2A a b)x cos(x))sin(x)
+--R     + 
+--R            2        2          4
+--R       (4A a c - 2A a b)x cos(x)
+--R     + 
+--R                        2           2       2          2
+--R       ((- 4A a b - 8A a )c + 2A a b  + 4A a b)x cos(x)
+--R     + 
+--R                      2           2       2
+--R       ((4A a b + 4A a )c - 2A a b  - 2A a b)x
+--R  /
+--R       2      4               2       2     2            2
+--R     4a cos(x)  + (- 8a b - 8a )cos(x)  + 4b  + 8a b + 4a
+--R                                                     Type: Expression Integer
+--E 139
+
+)spool
+)lisp (bye)
+ 
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/kamke3.input.pdf b/src/axiom-website/CATS/kamke3.input.pdf
new file mode 100644
index 0000000..3a30466
Binary files /dev/null and b/src/axiom-website/CATS/kamke3.input.pdf differ
diff --git a/src/axiom-website/CATS/kamke4.input.pamphlet b/src/axiom-website/CATS/kamke4.input.pamphlet
new file mode 100644
index 0000000..57e395d
--- /dev/null
+++ b/src/axiom-website/CATS/kamke4.input.pamphlet
@@ -0,0 +1,1462 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke4.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the 201-250 of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+<<*>>=
+)spool kamke4.output
+)set break resume
+)set mes auto off
+)clear all
+--S 1 of 127
+y:=operator 'y
+--R 
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 127
+f:=operator 'f
+--R 
+--R
+--R   (2)  f
+--R                                                          Type: BasicOperator
+--E 2
+
+--S 3 of 127
+f0:=operator 'f0
+--R 
+--R
+--R   (3)  f0
+--R                                                          Type: BasicOperator
+--E 3
+
+--S 4 of 127
+f1:=operator 'f1
+--R 
+--R
+--R   (4)  f1
+--R                                                          Type: BasicOperator
+--E 4
+
+--S 5 of 127
+f2:=operator 'f2
+--R 
+--R
+--R   (5)  f2
+--R                                                          Type: BasicOperator
+--E 5
+
+--S 6 of 127
+g:=operator 'g
+--R 
+--R
+--R   (6)  g
+--R                                                          Type: BasicOperator
+--E 6
+
+--S 7 of 127
+tg:=operator 'tg
+--R 
+--R
+--R   (7)  tg
+--R                                                          Type: BasicOperator
+--E 7
+
+--S 8 of 127
+h:=operator 'h
+--R 
+--R
+--R   (8)  h
+--R                                                          Type: BasicOperator
+--E 8
+
+--S 9 of 127
+ode201 := 2*f(x)*D(y(x),x)+2*f(x)*y(x)**2-D(f(x),x)*y(x)-2*f(x)**2
+--R 
+--R
+--R              ,           ,               2        2
+--R   (9)  2f(x)y (x) - y(x)f (x) + 2f(x)y(x)  - 2f(x)
+--R
+--R                                                     Type: Expression Integer
+--E 9
+
+--S 10 of 127
+solve(ode201,y,x)
+--R 
+--R
+--R   (10)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 10
+
+--S 11 of 127
+ode202 := f(x)*D(y(x),x)+g(x)*tg(y(x))+h(x)
+--R 
+--R
+--R              ,
+--R   (11)  f(x)y (x) + g(x)tg(y(x)) + h(x)
+--R
+--R                                                     Type: Expression Integer
+--E 11
+
+--S 12 of 127
+solve(ode202,y,x)
+--R 
+--R
+--R   (12)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 12
+
+--S 13 of 127
+ode203 := y(x)*D(y(x),x)+y(x)+x**3
+--R 
+--R
+--R              ,              3
+--R   (13)  y(x)y (x) + y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 13
+
+--S 14 of 127
+solve(ode203,y,x)
+--R 
+--R
+--R   (14)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 14
+
+--S 15 of 127
+ode204 := y(x)*D(y(x),x)+a*y(x)+x
+--R 
+--R
+--R              ,
+--R   (15)  y(x)y (x) + a y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 15
+
+--S 16 of 127
+solve(ode204,y,x)
+--R 
+--R
+--R   (16)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 16
+
+--S 17 of 127
+ode205 := y(x)*D(y(x),x)+a*y(x)+(a**2-1)/(4)*x+b*x**n
+--R 
+--R
+--R               ,          n               2
+--R         4y(x)y (x) + 4b x  + 4a y(x) + (a  - 1)x
+--R
+--R   (17)  ----------------------------------------
+--R                             4
+--R                                                     Type: Expression Integer
+--E 17
+
+--S 18 of 127
+solve(ode205,y,x)
+--R 
+--R
+--R   (18)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 18
+
+--S 19 of 127
+ode206 := y(x)*D(y(x),x)+a*y(x)+b*exp(x)-2*a
+--R 
+--R
+--R              ,          x
+--R   (19)  y(x)y (x) + b %e  + a y(x) - 2a
+--R
+--R                                                     Type: Expression Integer
+--E 19
+
+--S 20 of 127
+solve(ode206,y,x)
+--R 
+--R
+--R   (20)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 20
+
+--S 21 of 127
+ode207 := y(x)*D(y(x),x)+y(x)**2+4*x*(x+1)
+--R 
+--R
+--R              ,          2     2
+--R   (21)  y(x)y (x) + y(x)  + 4x  + 4x
+--R
+--R                                                     Type: Expression Integer
+--E 21
+
+--S 22 of 127
+yx:=solve(ode207,y,x)
+--R 
+--R
+--R              2     2   2x
+--R         (y(x)  + 4x )%e
+--R   (22)  -----------------
+--R                 2
+--R                                          Type: Union(Expression Integer,...)
+--E 22
+
+--S 23 of 127
+ode207expr := yx*D(yx,x)+yx**2+4*x*(x+1)
+--R 
+--R
+--R   (23)
+--R             3     2        2x 2 ,
+--R       (2y(x)  + 8x y(x))(%e  ) y (x)
+--R
+--R     + 
+--R             4       2          2      4      3    2x 2      2
+--R       (3y(x)  + (24x  + 8x)y(x)  + 48x  + 32x )(%e  )  + 16x  + 16x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 23
+
+--S 24 of 127
+ode208 := y(x)*D(y(x),x)+a*y(x)**2-b*cos(x+c)
+--R 
+--R
+--R              ,                           2
+--R   (24)  y(x)y (x) - b cos(x + c) + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 24
+
+--S 25 of 127
+yx:=solve(ode208,y,x)
+--R 
+--R
+--R                2a x                                     2         2   2a x
+--R         - 2b %e    sin(x + c) + (- 4a b cos(x + c) + (4a  + 1)y(x) )%e
+--R   (25)  ------------------------------------------------------------------
+--R                                         2
+--R                                       8a  + 2
+--R                                          Type: Union(Expression Integer,...)
+--E 25
+
+--S 26 of 127
+ode208expr := yx*D(yx,x)+a*yx**2-b*cos(x+c)
+--R 
+--R
+--R   (26)
+--R                 2              2a x 2
+--R           (- 16a  - 4)b y(x)(%e    ) sin(x + c)
+--R         + 
+--R                  3                             4      2         3    2a x 2
+--R           ((- 32a  - 8a)b y(x)cos(x + c) + (32a  + 16a  + 2)y(x) )(%e    )
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R           2   2a x 2          2
+--R       4a b (%e    ) sin(x + c)
+--R     + 
+--R            2      2                   3            2    2a x 2
+--R       ((32a  + 4)b cos(x + c) + (- 32a  - 8a)b y(x) )(%e    ) sin(x + c)
+--R     + 
+--R               3       2          2         4      2           2
+--R           (48a  + 8a)b cos(x + c)  + (- 96a  - 32a  - 2)b y(x) cos(x + c)
+--R         + 
+--R               5      3          4
+--R           (48a  + 24a  + 3a)y(x)
+--R      *
+--R            2a x 2
+--R         (%e    )
+--R     + 
+--R             4      2
+--R       (- 64a  - 32a  - 4)b cos(x + c)
+--R  /
+--R        4      2
+--R     64a  + 32a  + 4
+--R                                                     Type: Expression Integer
+--E 26
+
+--S 27 of 127
+ode209 := y(x)*D(y(x),x)-sqrt(a*y(x)**2+b)
+--R 
+--R
+--R                      +-----------+
+--R              ,       |      2
+--R   (27)  y(x)y (x) - \|a y(x)  + b
+--R
+--R                                                     Type: Expression Integer
+--E 27
+
+--S 28 of 127
+yx:=solve(ode209,y,x)
+--R 
+--R
+--R                 +-----------+
+--R             +-+ |      2            2 +-+
+--R         - x\|b \|a y(x)  + b  + y(x) \|b  + b x
+--R   (28)  ---------------------------------------
+--R                       +-----------+
+--R                   +-+ |      2
+--R                  \|b \|a y(x)  + b  - b
+--R                                          Type: Union(Expression Integer,...)
+--E 28
+
+--S 29 of 127
+ode209expr := yx*D(yx,x)-sqrt(a*yx**2+b)
+--R 
+--R
+--R   (29)
+--R                               +-----------+
+--R                      2     2  |      2          2    4            2     2  +-+
+--R         ((- 3a b y(x)  - 4b )\|a y(x)  + b  + (a y(x)  + 5a b y(x)  + 4b )\|b )
+--R      *
+--R         ROOT
+--R                                                +-----------+
+--R                      2       +-+            2  |      2                 2 +-+
+--R                ((2a x  + 2b)\|b  + 2a x y(x) )\|a y(x)  + b  - 2a x y(x) \|b
+--R              + 
+--R                        4       2 2           2         2     2
+--R                - a y(x)  + (- a x  - a b)y(x)  - 2a b x  - 2b
+--R           /
+--R                    +-----------+
+--R                +-+ |      2              2
+--R              2\|b \|a y(x)  + b  - a y(x)  - 2b
+--R     + 
+--R                                                    +-----------+
+--R                     3              +-+          3  |      2
+--R           ((a x y(x)  + 4b x y(x))\|b  + 2b y(x) )\|a y(x)  + b
+--R         + 
+--R                    5          3  +-+              3     2
+--R           (- a y(x)  - 2b y(x) )\|b  - 3a b x y(x)  - 4b x y(x)
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                                                        +-----------+
+--R               4          2  +-+              2     2   |      2
+--R       ((a y(x)  + 2b y(x) )\|b  + 3a b x y(x)  + 4b x)\|a y(x)  + b
+--R     + 
+--R           2      4              2     2   +-+            4     2    2
+--R       (- a x y(x)  - 5a b x y(x)  - 4b x)\|b  - 2a b y(x)  - 2b y(x)
+--R  /
+--R                        +-----------+
+--R               2     2  |      2            2    4            2     2  +-+
+--R     (3a b y(x)  + 4b )\|a y(x)  + b  + (- a y(x)  - 5a b y(x)  - 4b )\|b
+--R                                                     Type: Expression Integer
+--E 29
+
+--S 30 of 127
+ode210 := y(x)*D(y(x),x)+x*y(x)**2-4*x
+--R 
+--R
+--R              ,            2
+--R   (30)  y(x)y (x) + x y(x)  - 4x
+--R
+--R                                                     Type: Expression Integer
+--E 30
+
+--S 31 of 127
+yx:=solve(ode210,y,x)
+--R 
+--R
+--R                       2
+--R              2       x
+--R         (y(x)  - 4)%e
+--R   (31)  ---------------
+--R                2
+--R                                          Type: Union(Expression Integer,...)
+--E 31
+
+--S 32 of 127
+ode210expr := yx*D(yx,x)+x*yx**2-4*x
+--R 
+--R
+--R   (32)
+--R                       2 2                                        2 2
+--R         3            x    ,              4           2          x
+--R   (2y(x)  - 8y(x))(%e  ) y (x) + (3x y(x)  - 24x y(x)  + 48x)(%e  )  - 16x
+--R
+--R   ------------------------------------------------------------------------
+--R                                       4
+--R                                                     Type: Expression Integer
+--E 32
+
+--S 33 of 127
+ode211 := y(x)*D(y(x),x)-x*exp(x/y(x))
+--R 
+--R
+--R                           x
+--R                         ----
+--R              ,          y(x)
+--R   (33)  y(x)y (x) - x %e
+--R
+--R                                                     Type: Expression Integer
+--E 33
+
+--S 34 of 127
+solve(ode211,y,x)
+--R 
+--R
+--R   (34)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 34
+
+--S 35 of 127
+ode212 := y(x)*D(y(x),x)+f(x**2+y(x)**2)*g(x)+x
+--R 
+--R
+--R              ,                2    2
+--R   (35)  y(x)y (x) + g(x)f(y(x)  + x ) + x
+--R
+--R                                                     Type: Expression Integer
+--E 35
+
+--S 36 of 127
+solve(ode212,y,x)
+--R 
+--R
+--R   (36)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 36
+
+--S 37 of 127
+ode213 := (y(x)+1)*D(y(x),x)-y(x)-x
+--R 
+--R
+--R                    ,
+--R   (37)  (y(x) + 1)y (x) - y(x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 37
+
+--S 38 of 127
+solve(ode213,y,x)
+--R 
+--R
+--R   (38)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 38
+
+--S 39 of 127
+ode214 := (y(x)+x-1)*D(y(x),x)-y(x)+2*x+3
+--R 
+--R
+--R                        ,
+--R   (39)  (y(x) + x - 1)y (x) - y(x) + 2x + 3
+--R
+--R                                                     Type: Expression Integer
+--E 39
+
+--S 40 of 127
+solve(ode214,y,x)
+--R 
+--R
+--R   (40)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 40
+
+--S 41 of 127
+ode215 := (y(x)+2*x-2)*D(y(x),x)-y(x)+x+1
+--R 
+--R
+--R                         ,
+--R   (41)  (y(x) + 2x - 2)y (x) - y(x) + x + 1
+--R
+--R                                                     Type: Expression Integer
+--E 41
+
+--S 42 of 127
+solve(ode215,y,x)
+--R 
+--R
+--R   (42)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 42
+
+--S 43 of 127
+ode216 := (y(x)-2*x+1)*D(y(x),x)+y(x)+x
+--R 
+--R
+--R                         ,
+--R   (43)  (y(x) - 2x + 1)y (x) + y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 43
+
+--S 44 of 127
+solve(ode216,y,x)
+--R 
+--R
+--R   (44)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 44
+
+--S 45 of 127
+ode217 := (y(x)-x**2)*D(y(x),x)-x
+--R 
+--R
+--R                  2  ,
+--R   (45)  (y(x) - x )y (x) - x
+--R
+--R                                                     Type: Expression Integer
+--E 45
+
+--S 46 of 127
+yx:=solve(ode217,y,x)
+--R 
+--R
+--R                    2       2y(x)
+--R         (2y(x) - 2x  - 1)%e
+--R   (46)  ------------------------
+--R                     4
+--R                                          Type: Union(Expression Integer,...)
+--E 46
+
+--S 47 of 127
+ode217expr := (yx-x**2)*D(yx,x)-x
+--R 
+--R
+--R   (47)
+--R                 2        2              4    2    2y(x) 2
+--R           (2y(x)  + (- 4x  - 1)y(x) + 2x  + x )(%e     )
+--R         + 
+--R                2         4   2y(x)
+--R           (- 4x y(x) + 4x )%e
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                      3        2y(x) 2     3  2y(x)
+--R       (- 2x y(x) + 2x  + x)(%e     )  + 4x %e      - 4x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 47
+
+--S 48 of 127
+ode218 := (y(x)-x**2)*D(y(x),x)+4*x*y(x)
+--R 
+--R
+--R                  2  ,
+--R   (48)  (y(x) - x )y (x) + 4x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 48
+
+--S 49 of 127
+yx:=solve(ode218,y,x)
+--R 
+--R
+--R                   2
+--R         2y(x) + 2x
+--R   (49)  -----------
+--R            +----+
+--R           \|y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 49
+
+--S 50 of 127
+ode218expr := (yx-x**2)*D(yx,x)+4*x*yx
+--R 
+--R
+--R   (50)
+--R              2     4  +----+    2    2    4      ,
+--R       ((2y(x)  - 2x )\|y(x)  - x y(x)  + x y(x))y (x)
+--R
+--R     + 
+--R               2     3      +----+          3     3    2
+--R       (8x y(x)  + 8x y(x))\|y(x)  + 8x y(x)  + 4x y(x)
+--R  /
+--R         2 +----+
+--R     y(x) \|y(x)
+--R                                                     Type: Expression Integer
+--E 50
+
+--S 51 of 127
+ode219 := (y(x)+g(x))*D(y(x),x)-f2(x)*y(x)**2-f1(x)*y(x)-f0(x)
+--R 
+--R
+--R                       ,               2
+--R   (51)  (y(x) + g(x))y (x) - f2(x)y(x)  - f1(x)y(x) - f0(x)
+--R
+--R                                                     Type: Expression Integer
+--E 51
+
+--S 52 of 127
+solve(ode219,y,x)
+--R 
+--R
+--R   (52)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 52
+
+--S 53 of 127
+ode220 := 2*y(x)*D(y(x),x)-x*y(x)**2-x**3
+--R 
+--R
+--R               ,            2    3
+--R   (53)  2y(x)y (x) - x y(x)  - x
+--R
+--R                                                     Type: Expression Integer
+--E 53
+
+--S 54 of 127
+yx:=solve(ode220,y,x)
+--R 
+--R
+--R                              2
+--R                             x
+--R                           - --
+--R              2    2          2
+--R   (54)  (y(x)  + x  + 2)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 54
+
+--S 55 of 127
+ode220expr := 2*yx*D(yx,x)-x*yx**2-x**3
+--R 
+--R
+--R   (55)
+--R                                   2 2
+--R                                  x
+--R                                - --
+--R           3      2                2   ,
+--R     (4y(x)  + (4x  + 8)y(x))(%e    ) y (x)
+--R
+--R   + 
+--R                                                            2 2
+--R                                                           x
+--R                                                         - --
+--R               4        3          2     5     3            2      3
+--R     (- 3x y(x)  + (- 6x  - 8x)y(x)  - 3x  - 8x  - 4x)(%e    )  - x
+--R                                                     Type: Expression Integer
+--E 55
+
+--S 56 of 127
+ode221 := (2*y(x)+x+1)*D(y(x),x)-(2*y(x)+x-1)
+--R 
+--R
+--R                         ,
+--R   (56)  (2y(x) + x + 1)y (x) - 2y(x) - x + 1
+--R
+--R                                                     Type: Expression Integer
+--E 56
+
+--S 57 of 127
+solve(ode221,y,x)
+--R 
+--R
+--R   (57)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 57
+
+--S 58 of 127
+ode222 := (2*y(x)+x+7)*D(y(x),x)-y(x)+2*x+4
+--R 
+--R
+--R                         ,
+--R   (58)  (2y(x) + x + 7)y (x) - y(x) + 2x + 4
+--R
+--R                                                     Type: Expression Integer
+--E 58
+
+--S 59 of 127
+solve(ode222,y,x)
+--R 
+--R
+--R   (59)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 59
+
+--S 60 of 127
+ode223 := (2*y(x)-x)*D(y(x),x)-y(x)-2*x
+--R 
+--R
+--R                     ,
+--R   (60)  (2y(x) - x)y (x) - y(x) - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 60
+
+--S 61 of 127
+yx:=solve(ode223,y,x)
+--R 
+--R
+--R             2             2
+--R   (61)  y(x)  - x y(x) - x
+--R                                          Type: Union(Expression Integer,...)
+--E 61
+
+--S 62 of 127
+ode223expr := (2*yx-x)*D(yx,x)-yx-2*x
+--R 
+--R
+--R   (62)
+--R           3          2        2               3    2  ,           3
+--R     (4y(x)  - 6x y(x)  + (- 2x  - 2x)y(x) + 2x  + x )y (x) - 2y(x)
+--R
+--R   + 
+--R                   2      2               3     2
+--R     (- 2x - 1)y(x)  + (6x  + 2x)y(x) + 4x  + 3x  - 2x
+--R                                                     Type: Expression Integer
+--E 62
+
+--S 63 of 127
+ode224 := (2*y(x)-6*x)*D(y(x),x)-y(x)+3*x+2
+--R 
+--R
+--R                      ,
+--R   (63)  (2y(x) - 6x)y (x) - y(x) + 3x + 2
+--R
+--R                                                     Type: Expression Integer
+--E 63
+
+--S 64 of 127
+solve(ode224,y,x)
+--R 
+--R
+--R   (64)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 64
+
+--S 65 of 127
+ode225 := (4*y(x)+2*x+3)*D(y(x),x)-2*y(x)-x-1
+--R 
+--R
+--R                          ,
+--R   (65)  (4y(x) + 2x + 3)y (x) - 2y(x) - x - 1
+--R
+--R                                                     Type: Expression Integer
+--E 65
+
+--S 66 of 127
+solve(ode225,y,x)
+--R 
+--R
+--R   (66)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 66
+
+--S 67 of 127
+ode226 := (4*y(x)-2*x-3)*D(y(x),x)+2*y(x)-x-1
+--R 
+--R
+--R                          ,
+--R   (67)  (4y(x) - 2x - 3)y (x) + 2y(x) - x - 1
+--R
+--R                                                     Type: Expression Integer
+--E 67
+
+--S 68 of 127
+solve(ode226,y,x)
+--R 
+--R
+--R   (68)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 68
+
+--S 69 of 127
+ode227 := (4*y(x)-3*x-5)*D(y(x),x)-3*y(x)+7*x+2
+--R 
+--R
+--R                          ,
+--R   (69)  (4y(x) - 3x - 5)y (x) - 3y(x) + 7x + 2
+--R
+--R                                                     Type: Expression Integer
+--E 69
+
+--S 70 of 127
+yx:=solve(ode227,y,x)
+--R 
+--R
+--R              2                       2
+--R         4y(x)  + (- 6x - 10)y(x) + 7x  + 4x
+--R   (70)  -----------------------------------
+--R                          2
+--R                                          Type: Union(Expression Integer,...)
+--E 70
+
+--S 71 of 127
+ode227expr := (4*yx-3*x-5)*D(yx,x)-3*yx+7*x+2
+--R 
+--R
+--R   (71)
+--R                 3                     2        2                        3
+--R           64y(x)  + (- 144x - 240)y(x)  + (184x  + 280x + 160)y(x) - 84x
+--R         + 
+--R                 2
+--R           - 170x  - 20x + 50
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R               3                   2          2                        3       2
+--R       - 48y(x)  + (184x + 140)y(x)  + (- 252x  - 340x - 20)y(x) + 196x  + 105x
+--R     + 
+--R       - 48x - 16
+--R  /
+--R     2
+--R                                                     Type: Expression Integer
+--E 71
+
+--S 72 of 127
+ode228 := (4*y(x)+11*x-11) *D(y(x),x)-25*y(x)-8*x+62
+--R 
+--R
+--R                            ,
+--R   (72)  (4y(x) + 11x - 11)y (x) - 25y(x) - 8x + 62
+--R
+--R                                                     Type: Expression Integer
+--E 72
+
+--S 73 of 127
+solve(ode228,y,x)
+--R 
+--R
+--R   (73)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 73
+
+--S 74 of 127
+ode229 := (12*y(x)-5*x-8)*D(y(x),x)-5*y(x)+2*x+3
+--R 
+--R
+--R                           ,
+--R   (74)  (12y(x) - 5x - 8)y (x) - 5y(x) + 2x + 3
+--R
+--R                                                     Type: Expression Integer
+--E 74
+
+--S 75 of 127
+yx:=solve(ode229,y,x)
+--R 
+--R
+--R              2                     2
+--R   (75)  6y(x)  + (- 5x - 8)y(x) + x  + 3x
+--R                                          Type: Union(Expression Integer,...)
+--E 75
+
+--S 76 of 127
+ode229expr := (12*yx-5*x-8)*D(yx,x)-5*yx+2*x+3
+--R 
+--R
+--R   (76)
+--R                3                       2        2                         3
+--R         864y(x)  + (- 1080x - 1728)y(x)  + (444x  + 1332x + 672)y(x) - 60x
+--R       + 
+--R               2
+--R         - 251x  - 208x + 64
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R              3                   2          2                        3      2
+--R     - 360y(x)  + (444x + 666)y(x)  + (- 180x  - 502x - 208)y(x) + 24x  + 93x
+--R   + 
+--R     64x - 21
+--R                                                     Type: Expression Integer
+--E 76
+
+--S 77 of 127
+ode230 := a*y(x)*D(y(x),x)+b*y(x)**2+f(x)
+--R 
+--R
+--R                ,            2
+--R   (77)  a y(x)y (x) + b y(x)  + f(x)
+--R
+--R                                                     Type: Expression Integer
+--E 77
+
+--S 78 of 127
+solve(ode230,y,x)
+--R 
+--R
+--I                                 2%I b
+--R            x                    -----
+--R          ++         2             a
+--I   (78)   |   (b y(x)  + f(%I))%e     d%I
+--R         ++
+--R                                          Type: Union(Expression Integer,...)
+--E 78
+
+--S 79 of 127
+ode231 := (a*y(x)+b*x+c)*D(y(x),x)+alpha*y(x)+beta*x+gamma
+--R 
+--R
+--R                            ,
+--R   (79)  (a y(x) + b x + c)y (x) + alpha y(x) + beta x + gamma
+--R
+--R                                                     Type: Expression Integer
+--E 79
+
+--S 80 of 127
+solve(ode231,y,x)
+--R 
+--R
+--R   (80)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 80
+
+--S 81 of 127
+ode232 := x*y(x)*D(y(x),x)+y(x)**2+x**2
+--R 
+--R
+--R                ,          2    2
+--R   (81)  x y(x)y (x) + y(x)  + x
+--R
+--R                                                     Type: Expression Integer
+--E 81
+
+--S 82 of 127
+yx:=solve(ode232,y,x)
+--R 
+--R
+--R           2    2    4
+--R         2x y(x)  + x
+--R   (82)  -------------
+--R               4
+--R                                          Type: Union(Expression Integer,...)
+--E 82
+
+--S 83 of 127
+ode232expr := x*yx*D(yx,x)+yx**2+x**2
+--R 
+--R
+--R            5    3     7      ,         4    4      6    2     8      2
+--R         (8x y(x)  + 4x y(x))y (x) + 12x y(x)  + 16x y(x)  + 5x  + 16x
+--R
+--R   (83)  --------------------------------------------------------------
+--R                                       16
+--R                                                     Type: Expression Integer
+--E 83
+
+--S 84 of 127
+ode233 := x*y(x)*D(y(x),x)-y(x)**2+a*x**3*cos(x)
+--R 
+--R
+--R                ,         3             2
+--R   (84)  x y(x)y (x) + a x cos(x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 84
+
+--S 85 of 127
+yx:=solve(ode233,y,x)
+--R 
+--R
+--R             2             2
+--R         2a x sin(x) + y(x)
+--R   (85)  -------------------
+--R                   2
+--R                 2x
+--R                                          Type: Union(Expression Integer,...)
+--E 85
+
+--S 86 of 127
+ode233expr := x*yx*D(yx,x)-yx**2+a*x**3*cos(x)
+--R 
+--R
+--R   (86)
+--R            3                    3  ,        2 4      2
+--R       (4a x y(x)sin(x) + 2x y(x) )y (x) - 4a x sin(x)
+--R
+--R     + 
+--R          2 5             2    2               3    2       7               4
+--R       (4a x cos(x) - 8a x y(x) )sin(x) + (2a x y(x)  + 4a x )cos(x) - 3y(x)
+--R  /
+--R       4
+--R     4x
+--R                                                     Type: Expression Integer
+--E 86
+
+--S 87 of 127
+ode234 := x*y(x)*D(y(x),x)-y(x)**2+x*y(x)+x**3-2*x**2
+--R 
+--R
+--R                ,          2             3     2
+--R   (87)  x y(x)y (x) - y(x)  + x y(x) + x  - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 87
+
+--S 88 of 127
+solve(ode234,y,x)
+--R 
+--R
+--R   (88)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 88
+
+--S 89 of 127
+ode235 := (x*y(x)+a)*D(y(x),x)+b*y(x)
+--R 
+--R
+--R                      ,
+--R   (89)  (x y(x) + a)y (x) + b y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 89
+
+--S 90 of 127
+yx:=solve(ode235,y,x)
+--R 
+--R
+--R               y(x)
+--R               ----
+--R                 b         y(x)
+--R   (90)  b x %e     + a Ei(----)
+--R                             b
+--R                                          Type: Union(Expression Integer,...)
+--E 90
+
+--S 91 of 127
+ode235expr := (x*yx+a)*D(yx,x)+b*yx
+--R 
+--R
+--R   (91)
+--R                                 y(x) 2
+--R                                 ----
+--R               3            2      b
+--R           (b x y(x) + a b x )(%e    )
+--R         + 
+--R                                                       y(x)
+--R                                                       ----
+--R                2        2     y(x)                2     b
+--R           ((a x y(x) + a x)Ei(----) + a x y(x) + a )%e
+--R                                 b
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                  y(x) 2                                           y(x)
+--R                  ----                                             ----
+--R        2 2         b                    y(x)      2                 b
+--R       b x y(x)(%e    )  + (a b x y(x)Ei(----) + (b x + a b)y(x))%e
+--R                                           b
+--R     + 
+--R                  y(x)
+--R       a b y(x)Ei(----)
+--R                    b
+--R  /
+--R     y(x)
+--R                                                     Type: Expression Integer
+--E 91
+
+--S 92 of 127
+ode236 := x*(y(x)+4)*D(y(x),x)-y(x)**2-2*y(x)-2*x
+--R 
+--R
+--R                       ,          2
+--R   (92)  (x y(x) + 4x)y (x) - y(x)  - 2y(x) - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 92
+
+--S 93 of 127
+solve(ode236,y,x)
+--R 
+--R
+--R   (93)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 93
+
+--S 94 of 127
+ode237 := x*(y(x)+a)*D(y(x),x)+b*y(x)+c*x
+--R 
+--R
+--R                        ,
+--R   (94)  (x y(x) + a x)y (x) + b y(x) + c x
+--R
+--R                                                     Type: Expression Integer
+--E 94
+
+--S 95 of 127
+solve(ode237,y,x)
+--R 
+--R
+--R   (95)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 95
+
+--S 96 of 127
+ode238 := (x*(y(x)+x)+a)*D(y(x),x)-y(x)*(y(x)+x)-b
+--R 
+--R
+--R                    2      ,          2
+--R   (96)  (x y(x) + x  + a)y (x) - y(x)  - x y(x) - b
+--R
+--R                                                     Type: Expression Integer
+--E 96
+
+--S 97 of 127
+solve(ode238,y,x)
+--R 
+--R
+--R   (97)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 97
+
+--S 98 of 127
+ode239 := (x*y(x)-x**2)*D(y(x),x)+y(x)**2-3*x*y(x)-2*x**2
+--R 
+--R
+--R                    2  ,          2               2
+--R   (98)  (x y(x) - x )y (x) + y(x)  - 3x y(x) - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 98
+
+--S 99 of 127
+yx:=solve(ode239,y,x)
+--R 
+--R
+--R          2    2     3        4
+--R         x y(x)  - 2x y(x) - x
+--R   (99)  ----------------------
+--R                    2
+--R                                          Type: Union(Expression Integer,...)
+--E 99
+
+--S 100 of 127
+ode239expr := (x*yx-x**2)*D(yx,x)+yx**2-3*x*yx-2*x**2
+--R 
+--R
+--R   (100)
+--R          5    3     6    2      7     4          8     5  ,        4    4
+--R       (2x y(x)  - 6x y(x)  + (2x  - 4x )y(x) + 2x  + 4x )y (x) + 3x y(x)
+--R
+--R     + 
+--R            5    3      6      3     2       7      4          8      5     2
+--R       - 14x y(x)  + (8x  - 10x )y(x)  + (18x  + 24x )y(x) + 5x  + 14x  - 8x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 100
+
+--S 101 of 127
+ode240 := 2*x*y(x)*D(y(x),x)-y(x)**2+a*x
+--R 
+--R
+--R                  ,          2
+--R   (101)  2x y(x)y (x) - y(x)  + a x
+--R
+--R                                                     Type: Expression Integer
+--E 101
+
+--S 102 of 127
+yx:=solve(ode240,y,x)
+--R 
+--R
+--R                           2
+--R          a x log(x) + y(x)
+--R   (102)  ------------------
+--R                   x
+--R                                          Type: Union(Expression Integer,...)
+--E 102
+
+--S 103 of 127
+ode240expr := 2*x*yx*D(yx,x)-yx**2+a*x
+--R 
+--R
+--R   (103)
+--R            2                    3  ,       2 2      2
+--R       (4a x y(x)log(x) + 4x y(x) )y (x) - a x log(x)
+--R
+--R     + 
+--R                   2     2 2               4            2      3
+--R       (- 4a x y(x)  + 2a x )log(x) - 3y(x)  + 2a x y(x)  + a x
+--R  /
+--R      2
+--R     x
+--R                                                     Type: Expression Integer
+--E 103
+
+--S 104 of 127
+ode241 := 2*x*y(x)*D(y(x),x)-y(x)**2+a*x**2
+--R 
+--R
+--R                  ,          2      2
+--R   (104)  2x y(x)y (x) - y(x)  + a x
+--R
+--R                                                     Type: Expression Integer
+--E 104
+
+--S 105 of 127
+yx:=solve(ode241,y,x)
+--R 
+--R
+--R              2      2
+--R          y(x)  + a x
+--R   (105)  ------------
+--R                x
+--R                                          Type: Union(Expression Integer,...)
+--E 105
+
+--S 106 of 127
+ode241expr := 2*x*yx*D(yx,x)-yx**2+a*x**2
+--R 
+--R
+--R                  3       3      ,           4       2    2     2      4
+--R          (4x y(x)  + 4a x y(x))y (x) - 3y(x)  - 2a x y(x)  + (a  + a)x
+--R
+--R   (106)  --------------------------------------------------------------
+--R                                         2
+--R                                        x
+--R                                                     Type: Expression Integer
+--E 106
+
+--S 107 of 127
+ode242 := 2*x*y(x)*D(y(x),x)+2*y(x)**2+1
+--R 
+--R
+--R                  ,           2
+--R   (107)  2x y(x)y (x) + 2y(x)  + 1
+--R
+--R                                                     Type: Expression Integer
+--E 107
+
+--S 108 of 127
+yx:=solve(ode242,y,x)
+--R 
+--R
+--R            2    2    2
+--R          2x y(x)  + x
+--R   (108)  -------------
+--R                2
+--R                                          Type: Union(Expression Integer,...)
+--E 108
+
+--S 109 of 127
+ode242expr := 2*x*yx*D(yx,x)+2*yx**2+1
+--R 
+--R
+--R             5    3     5      ,         4    4      4    2     4
+--R          (8x y(x)  + 4x y(x))y (x) + 12x y(x)  + 12x y(x)  + 3x  + 2
+--R
+--R   (109)  -----------------------------------------------------------
+--R                                       2
+--R                                                     Type: Expression Integer
+--E 109
+
+--S 110 of 127
+ode243 := x*(2*y(x)+x-1)*D(y(x),x)-y(x)*(y(x)+2*x+1)
+--R 
+--R
+--R                      2      ,          2
+--R   (110)  (2x y(x) + x  - x)y (x) - y(x)  + (- 2x - 1)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 110
+
+--S 111 of 127
+solve(ode243,y,x)
+--R 
+--R
+--R   (111)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 111
+
+--S 112 of 127
+ode244 := x*(2*y(x)-x-1)*D(y(x),x)+y(x)*(2*x-y(x)-1)
+--R 
+--R
+--R                      2      ,          2
+--R   (112)  (2x y(x) - x  - x)y (x) - y(x)  + (2x - 1)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 112
+
+--S 113 of 127
+solve(ode244,y,x)
+--R 
+--R
+--R   (113)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 113
+
+--S 114 of 127
+ode245 := (2*x*y(x)+4*x**3)*D(y(x),x)+y(x)**2+112*x**2*y(x)
+--R 
+--R
+--R                       3  ,          2       2
+--R   (114)  (2x y(x) + 4x )y (x) + y(x)  + 112x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 114
+
+--S 115 of 127
+solve(ode245,y,x)
+--R 
+--R
+--R   (115)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 115
+
+--S 116 of 127
+ode246 := x*(3*y(x)+2*x)*D(y(x),x)+3*(y(x)+x)**2
+--R 
+--R
+--R                       2  ,           2               2
+--R   (116)  (3x y(x) + 2x )y (x) + 3y(x)  + 6x y(x) + 3x
+--R
+--R                                                     Type: Expression Integer
+--E 116
+
+--S 117 of 127
+yx:=solve(ode246,y,x)
+--R 
+--R
+--R            2    2     3         4
+--R          6x y(x)  + 8x y(x) + 3x
+--R   (117)  ------------------------
+--R                      4
+--R                                          Type: Union(Expression Integer,...)
+--E 117
+
+--S 118 of 127
+ode246expr := x*(3*yx+2*x)*D(yx,x)+3*(yx+x)**2
+--R 
+--R
+--R   (118)
+--R            5    3       6    2        7      4           8      5  ,
+--R       (216x y(x)  + 432x y(x)  + (300x  + 96x )y(x) + 72x  + 64x )y (x)
+--R
+--R     + 
+--R           4    4        5    3         6       3     2        7       4
+--R       324x y(x)  + 1008x y(x)  + (1200x  + 240x )y(x)  + (648x  + 384x )y(x)
+--R     + 
+--R           8       5      2
+--R       135x  + 168x  + 48x
+--R  /
+--R     16
+--R                                                     Type: Expression Integer
+--E 118
+
+--S 119 of 127
+ode247 := (3*x+2)*(y(x)-2*x-1)*D(y(x),x)-y(x)**2+x*y(x)-7*x**2-9*x-3
+--R 
+--R
+--R                            2           ,          2              2
+--R   (119)  ((3x + 2)y(x) - 6x  - 7x - 2)y (x) - y(x)  + x y(x) - 7x  - 9x - 3
+--R
+--R                                                     Type: Expression Integer
+--E 119
+
+--S 120 of 127
+solve(ode247,y,x)
+--R 
+--R
+--R   (120)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 120
+
+--S 121 of 127
+ode248 := (6*x*y(x)+x**2+3)*D(y(x),x)+3*y(x)**2+2*x*y(x)+2*x
+--R 
+--R
+--R                      2      ,           2
+--R   (121)  (6x y(x) + x  + 3)y (x) + 3y(x)  + 2x y(x) + 2x
+--R
+--R                                                     Type: Expression Integer
+--E 121
+
+--S 122 of 127
+yx:=solve(ode248,y,x)
+--R 
+--R
+--R                 2     2             2
+--R   (122)  3x y(x)  + (x  + 3)y(x) + x
+--R                                          Type: Union(Expression Integer,...)
+--E 122
+
+--S 123 of 127
+ode248expr := (6*x*yx+x**2+3)*D(yx,x)+3*yx**2+2*x*yx+2*x
+--R 
+--R
+--R   (123)
+--R             3    3       4       2     2      5      4      3                5
+--R         108x y(x)  + (54x  + 162x )y(x)  + (6x  + 36x  + 42x  + 72x)y(x) + 6x
+--R       + 
+--R          4      3     2
+--R         x  + 18x  + 6x  + 9
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R        2    4       3            3       4      3      2          2
+--R     81x y(x)  + (72x  + 108x)y(x)  + (15x  + 72x  + 63x  + 36)y(x)
+--R   + 
+--R         4     3      2                 4     3
+--R     (30x  + 4x  + 54x  + 12x)y(x) + 15x  + 4x  + 8x
+--R                                                     Type: Expression Integer
+--E 123
+
+--S 124 of 127
+ode249 := (a*x*y(x)+b*x**n)*D(y(x),x)+alpha*y(x)**3+beta*y(x)**2
+--R 
+--R
+--R              n             ,                3            2
+--R   (124)  (b x  + a x y(x))y (x) + alpha y(x)  + beta y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 124
+
+--S 125 of 127
+solve(ode249,y,x)
+--R 
+--R
+--R   (125)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 125
+
+--S 126 of 127
+ode250 := (B*x*y(x)+A*x**2+a*x+b*y(x)+c)*D(y(x),x)-B*g(x)**2+_
+             A*x*y(x)+alpha*x+beta*y(x)+gamma
+--R 
+--R
+--R   (126)
+--R                         2            ,                               2
+--R     ((B x + b)y(x) + A x  + a x + c)y (x) + (A x + beta)y(x) - B g(x)
+--R
+--R   + 
+--R     alpha x + gamma
+--R                                                     Type: Expression Integer
+--E 126
+
+--S 127 of 127
+solve(ode250,y,x)
+--R 
+--R
+--R   (127)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 127
+
+)spool
+)lisp (bye)
+ 
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\end{thebibliography}
+\end{document}
+ 
diff --git a/src/axiom-website/CATS/kamke4.input.pdf b/src/axiom-website/CATS/kamke4.input.pdf
new file mode 100644
index 0000000..ac75173
--- /dev/null
+++ b/src/axiom-website/CATS/kamke4.input.pdf
@@ -0,0 +1,2203 @@
+%PDF-1.2
+7 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis]
+>>
+endobj
+10 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F1
+/FontDescriptor 9 0 R
+/BaseFont/NFGNHM+CMR17
+/FirstChar 33
+/LastChar 196
+/Widths[249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9
+249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6
+249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6
+471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3
+693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8
+458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1
+510.9 484.7 667.6 484.7 484.7 406.4 458.6 917.2 458.6 458.6 458.6 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 772.1 719.8 641.1 615.3 693.3
+667.6 719.8 667.6 719.8 0 0 667.6 525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6
+458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6
+458.6]
+>>
+endobj
+13 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F2
+/FontDescriptor 12 0 R
+/BaseFont/QIVRHA+CMR12
+/FirstChar 33
+/LastChar 196
+/Widths[272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6
+489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4
+462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2
+734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6
+272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6
+544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2 489.6 489.6
+489.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611.8 816
+761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 0 0 707.2 571.2 544 544 816 816 272
+299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6
+761.6 272 489.6]
+>>
+endobj
+16 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F3
+/FontDescriptor 15 0 R
+/BaseFont/IJERUK+CMBX9
+/FirstChar 33
+/LastChar 196
+/Widths[360.2 617.6 986.1 591.7 986.1 920.4 328.7 460.2 460.2 591.7 920.4 328.7 394.4
+328.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 328.7 328.7
+360.2 920.4 558.8 558.8 920.4 892.9 840.9 854.6 906.6 776.5 743.7 929.9 924.4 446.3
+610.8 925.8 710.8 1121.6 924.4 888.9 808 888.9 886.7 657.4 823.1 908.6 892.9 1221.6
+892.9 892.9 723.1 328.7 617.6 328.7 591.7 328.7 328.7 575.2 657.4 525.9 657.4 543
+361.6 591.7 657.4 328.7 361.6 624.5 328.7 986.1 657.4 591.7 657.4 624.5 488.1 466.8
+460.2 657.4 624.5 854.6 624.5 624.5 525.9 591.7 1183.3 591.7 591.7 591.7 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 710.8 986.1 920.4 827.2
+788.9 924.4 854.6 920.4 854.6 920.4 0 0 854.6 690.3 657.4 657.4 986.1 986.1 328.7
+361.6 591.7 591.7 591.7 591.7 591.7 892.9 525.9 616.8 854.6 920.4 591.7 1071 1202.5
+920.4 328.7 591.7]
+>>
+endobj
+19 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F4
+/FontDescriptor 18 0 R
+/BaseFont/GQPUBO+CMR9
+/FirstChar 33
+/LastChar 196
+/Widths[285.5 513.9 856.5 513.9 856.5 799.4 285.5 399.7 399.7 513.9 799.4 285.5 342.6
+285.5 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 285.5 285.5
+285.5 799.4 485.3 485.3 799.4 770.7 727.9 742.3 785 699.4 670.8 806.5 770.7 371 528.1
+799.2 642.3 942 770.7 799.4 699.4 799.4 756.5 571 742.3 770.7 770.7 1056.2 770.7
+770.7 628.1 285.5 513.9 285.5 513.9 285.5 285.5 513.9 571 456.8 571 457.2 314 513.9
+571 285.5 314 542.4 285.5 856.5 571 513.9 571 542.4 402 405.4 399.7 571 542.4 742.3
+542.4 542.4 456.8 513.9 1027.8 513.9 513.9 513.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642.3 856.5 799.4 713.6 685.2 770.7 742.3 799.4
+742.3 799.4 0 0 742.3 599.5 571 571 856.5 856.5 285.5 314 513.9 513.9 513.9 513.9
+513.9 770.7 456.8 513.9 742.3 799.4 513.9 927.8 1042 799.4 285.5 513.9]
+>>
+endobj
+22 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F5
+/FontDescriptor 21 0 R
+/BaseFont/SCGRCL+CMR10
+/FirstChar 33
+/LastChar 196
+/Widths[277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8
+500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8
+750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8
+680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8
+277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6
+500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500
+500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3
+777.8 694.4 666.7 750 722.2 777.8 722.2 777.8 0 0 722.2 583.3 555.6 555.6 833.3 833.3
+277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8
+277.8 500]
+>>
+endobj
+24 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 497
+>>
+stream
+xÚURMÓ0½ó+|à0‘ˆk;_Î±Ð]$¸ m$ËœÖÛX›&Åvèî¿g&.±çë½—7f‚ÁÎl=>³Ýî^2Ùp%Y÷Ì¤*xÝ²\Š’Wšu‡Gxÿð-k4ì»à;7]—˜å…ð’UÌå%S5Ø’§ÊS÷ew¯˜”¼­°)x#Y^”\—+\ç.s2ÕÀÂ¨
+f|£1$U\"7J(SïÁí…Zû,'O5â]PBèÄX0ÍÛš•æ¢FÂŠëjÙ÷!zsÜ¤•s‰|Š×*I\Èò²ðçŒƒ¥‹D&™«J¤ìüœ’[UÀ×Õ…(Ô-Dbê‹‹[	)u]úÑ…ÁžRºßœ ¹;žZøæGÁµ¢]¬^¢ÀOƒíó.ÓZáMÿ(Ÿp¢.jTn	C(L¦4ü¢ãšÈ»¬(,ÀÛ›w1¦PÁÜtN•ý«›/)Þ&Bˆæu#ø>XoWU"	ªWAWÄÖ0‡àúÑÒ]Âm3B5-„a¦èF2ÓÄÔ³G—«ñÑ—Ñø‡y\¢›§áÒ3âëH5]ø¡ªÆ†ÿPpÞÝdÆõ%ÃfÂ‚§—V*89¯ñG&RN`^‚ý¹båé‰T¬Ýžˆ,K^â
+]pÕ¬ˆr%¹ëÞý°­Ùè
+endstream
+endobj
+26 0 obj
+<<
+/F1 10 0 R
+/F2 13 0 R
+/F3 16 0 R
+/F4 19 0 R
+/F5 22 0 R
+>>
+endobj
+6 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 26 0 R
+>>
+endobj
+31 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F6
+/FontDescriptor 30 0 R
+/BaseFont/FPQMFZ+CMBX12
+/FirstChar 33
+/LastChar 196
+/Widths[342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5
+562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6
+875 531.3 531.3 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8
+675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5
+687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.8 562.5 625 312.5
+343.8 593.8 312.5 937.5 625 562.5 625 593.8 459.5 443.8 437.5 625 593.8 812.5 593.8
+593.8 500 562.5 1125 562.5 562.5 562.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5
+656.3 625 625 937.5 937.5 312.5 343.8 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1
+812.5 875 562.5 1018.5 1143.5 875 312.5 562.5]
+>>
+endobj
+32 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 97
+>>
+stream
+xÚ%Ë+€0EQÏ*žÁÐié4µ|J‚G€û)¨cî…!cpàcB§MpK®…î¦àQ‹Íè°”ýuVŽËgû¹«Uç&yDŠ’–HÎ¢ö(ð·ØÜ`ÔâúY-
+endstream
+endobj
+33 0 obj
+<<
+/F6 31 0 R
+/F5 22 0 R
+>>
+endobj
+28 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 33 0 R
+>>
+endobj
+36 0 obj
+<<
+/Type/Encoding
+/Differences[0/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft
+161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus
+173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade]
+>>
+endobj
+39 0 obj
+<<
+/Encoding 36 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F7
+/FontDescriptor 38 0 R
+/BaseFont/YXHVQO+CMSY10
+/FirstChar 33
+/LastChar 196
+/Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8
+275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8
+611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9
+820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7
+666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8
+500 500 611.1 500 277.8 833.3 750 833.3 416.7 666.7 666.7 777.8 777.8 444.4 444.4
+444.4 611.1 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 0 0 777.8
+777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8
+777.8 777.8 1000 1000 777.8 777.8 1000 777.8]
+>>
+endobj
+40 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis]
+>>
+endobj
+43 0 obj
+<<
+/Encoding 40 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F8
+/FontDescriptor 42 0 R
+/BaseFont/VYZCRU+CMTI10
+/FirstChar 33
+/LastChar 196
+/Widths[306.7 514.4 817.8 769.1 817.8 766.7 306.7 408.9 408.9 511.1 766.7 306.7 357.8
+306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7
+306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6
+525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9
+743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7
+460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7
+460 664.4 463.9 485.6 408.9 511.1 1022.2 511.1 511.1 511.1 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627.2 817.8 766.7 692.2 664.4 743.3 715.6
+766.7 715.6 766.7 0 0 715.6 613.3 562.2 587.8 881.7 894.4 306.7 332.2 511.1 511.1
+511.1 511.1 511.1 831.3 460 536.7 715.6 715.6 511.1 882.8 985 766.7 255.6 511.1]
+>>
+endobj
+44 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis]
+>>
+endobj
+47 0 obj
+<<
+/Encoding 44 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F9
+/FontDescriptor 46 0 R
+/BaseFont/MXMDUO+CMTT10
+/FirstChar 33
+/LastChar 196
+/Widths[525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 525 525 525 525 525 525 525 525 525 525 0 0 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525]
+>>
+endobj
+48 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 363
+>>
+stream
+xÚ­”;oƒ0…÷þ
+o…JvüGê5©Ô¥RËV:ÐÈ´QˆŒxüûLH"HJ*&_8ç^ßO0Â|ƒæx‹`¶ò€BJ‚ ’ O (éþž>œ÷3x™­üÎÁïÜhV;éFÂoµMH%·ºêtˆW ‚”ºyjLâBA…³v[Í‘)‹´,ö­õ¨s¯.¬ó+ÓÑÖ–™ÎË¾êÞéÜQY[™8jY':ÊZo’œ:dã€ðÝªä0¦}¤^\54©Î¢Â´#ï«¾	Â·^B"<á„	ÝºÆ;ÕÐ’µ‘aÎ•T©žÛËQ¾Y¿ö˜¾<µeHCÓÐq:ÞðvhÚAÇŒÿ†¦§Ðäœš¡Æ}l<UØìÈ§N›]N›á&}nò'¢ÇÍÜdêÀù•ÀÅpÚ§S.ŽàtêÀÅåÀå ÷l%ºß7
+1Y÷*äûM³ý~–ÁÝ/ád€Š
+endstream
+endobj
+49 0 obj
+<<
+/F7 39 0 R
+/F8 43 0 R
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+35 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 49 0 R
+>>
+endobj
+52 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 438
+>>
+stream
+xÚ­UMo‚0¾ïW4»¬ ­m¥”šx1â²]–lì4v0ÐÄˆ²è¿_G±“ L£ò–÷£¼ÏG ˜‚2<‚qØŸJ ±ô@˜ A±  yÂÉL‡£logE¶µg>¤Ögø@”b©›z½ ‰(FÐ‹,u&œÀ–+Ñ€¸®„á~õÇÇ³|ùõrØçhÈ«†Ýçjl€eUzÓ%¡C–èH™h~¼h¢.þ‡í[ØÅõ¸y·8ÆMëÀý3€/¸·RÛ7°·VÛoW[ž:›ÇŒPÝ0éÈì$‚»È²'Ü—'G==“Ö9ÛfH5$¦¡Ê#Óg³«m#Š3G­%„û…¯ødr!u“.éL/´×ðÊ³>"ôâI£Ü«ø¨Æ«Jy%ª•.±>s•v›mœçËl­ßŸÖEœÆ]N—N§äÕólõG•øÎÞ¹ÂIý¬Sb8ºOfËU<¿o%‚Éšåß×ŠƒÈŒ9ãÓ{j«÷)í¤Áû3?«›ÿ¤õS,ÒCVå—*ßépUìO¹ùQ.ñÀSÀ$öý²Ù-çƒðîEÓ˜³
+endstream
+endobj
+53 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+51 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 53 0 R
+>>
+endobj
+56 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 390
+>>
+stream
+xÚ½•Ao‚0€ïû§‚´Ò–¶Öd—E\¶ãÆNcÁ™1jø÷
+H°š¹^ÛGï{ \ìº`Êð‚ÉB…• A$Á’ $(–ówˆÐ‹…—†ÐÊ'.waÂ4´2qZdÒ"QÇ:¬Ë¥S²rÔIêÁ3p"«óÍz•SêÁ ÛG3}„ŸîÑñ¸Ivzþ´;EëèÐ·Ý×WR')ÃŠTÉ×*IuLâz./:&Û¯(„É*¢.u2çºú«ÑÒí(^n¶ÑjÔÞ Ú$¨Rmo»BØls0ÆýÏå7¥¶8t00eýÕ…³{u›íyÝð‚ÍXÇ©m³þb®à$YŽÆ)¢§ û&k`fÃžf—Ké_k):í`íð®´’Z)­ô­ä·´ÒÀÀ1ˆ³•ž•K»öò×/o%å0Cn*ãÒÌIñŸJ>ÐaÐŒ¶“Þ¿”¢×ÉÉ‚7?1Âf"x…§Óò ]Ü}A9¤œ
+endstream
+endobj
+57 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+55 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 57 0 R
+>>
+endobj
+60 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 477
+>>
+stream
+xÚµUÁNã0½ïWXHHŽS»ö4¶c$.+
+bN˜C*\„„ÒŠ®Pú÷¸±ÚBÚF@¤h<žñhæå½qÆ9zB¹B‹á¥A†…Š)Ò‚i¨¦%*.î1¥7	Æàb9wg	• ñ]õ<«,>™–Ï/îñdÀ³IòPüCQ!˜Y‡|¡ÖA1c·1¦ƒM£ús¥Ù£.CÂÙy°K‹k›Wÿ¦%	NjqIPa“¡Å™Ï«Ó	©	©6‹«vÆ/zïØ¤:×V=dWÑ‡ŽäLûN³ÐÓ2ôÝ¬Ã2&›['TpÉÛírsÐ­~º˜K#j6©ñ1.R¯ª½*
+ùt*$@†³Ž(èÜG74®ç¯n±ð4
+þuõß=¹×}Ò›;$Ê ÑböòæläÒ`¹âKïÞ5vÀ1oq\‹¢‰¾ZR;8ä{´dŽÕ’ê£¥	qõ¼YR ešuhäajäm} XÓ{@DQC§n[D_h(JÊ>ú'lö0xO«ï0øóŸ øï1x?j'ƒAì…A}0XÁà¸I Íü¿ß;©øÍoñ< Ê3£¹ †—²½J…4l¤üŒ†åys8\‚ãâÏ;¿À¼P
+endstream
+endobj
+61 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+59 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 61 0 R
+>>
+endobj
+64 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 532
+>>
+stream
+xÚ½VÉnÛ0½÷+x)@É"ÍM\äRÄ)Úc£žªW	
+V…ô÷å&ÛRD×’Ú‡1‡Cræ=>ŽÁ„€àÍGð¡Z^`°‘ ºŠbE’«T—ß B_2DKUÂ2Zgv@JûvuÖg¨dn¦sîç"˜>º|lô‰îÙø¦ú@”bs8mÖ‰˜ÒLÀªlVaùº{|jv»í6Œ?m5ÍÓÜòuˆ`t˜d'¯ã$¶½–2õ|«¾[]ìÚŸ¿›¶ßFTÑ®Îóë˜/Nq‹M€I—IÄ›ð‘‡h¡<æ)Œ=#Ùû&qÖÀ%Û¯EÓOb¥6>»?ŒsÌÏ×­¥¦NÑT`Œç[ïù8A?ƒ¬ÀPcÏA«‹x7»üÒ¢×9æv³…È»Ü¢¹ ¯Àå€/ïuÄŸÔ6~`[PcÛ¡´`ŠÄî\†ÝçÈ×Ý±øìÚK"yŽû/ê“^Ûó“¾sóùÛ›`-§öd­«—r\§÷³H±P>W¨­ú˜h÷Í	BO9ÛKd‚Ï!J@*'Ëœ#Á·‹ZžÂM¼á“ÆO©Dœ«=QˆÒ«ÄÿòJ¹Í£;gè.ß´;'˜Ík=~…RP%’÷a•økBÁÜ5§Í¤YÝŽzÖîIâåz’~IOZ^•û¿ ´4˜K›ÁZû pêºz÷j5âÄ
+endstream
+endobj
+65 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+63 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 65 0 R
+>>
+endobj
+68 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 646
+>>
+stream
+xÚ­V=oÛ0Ýû+¸lSæ7Å ]Š$E;6êTup\%Èbqûß÷DR%‘‚Öƒi“Ç»{ïÞ„HAzFvù‚>Wë{ƒLaªž¦…¦+Vh‰ªÛŸÆßs\
+B2¶É±d2;æ˜ÁDÆr,4lÀJ¥–Á¯ê"SZ˜À‹5ÆÎ†=ºõc“cFÁûáeW·®ÛÍ¥[¶u>ø_w—…ä}l÷‡ÄUÑ_mïP"I·Cëü·ºu™ÄÓ¶ØêŒÉÖÖºÀÿüI„bTZ^§Dh‘•# kXƒ¹ÉªÓksãì^öÀñÝñõ­9à·ÛþºûÓ<7o«¢( `$ò#»CÆãÏü™rëþÉ“ËôÔÓþwÃHÙ@xgtóÉ­§ãâ¶†ïc¹YÀßÃWÕåv˜T0ÊÑ|U`+pãt¬9p}BppGjh’ª®.HëÜëÓé¬îµÞ‰.¡ùx=m÷,¹y‹”€DŽ9…®A¹{°34ÎFÐÊÍ[ºƒæíÝ,”ã”Ç=9ä,ž­EºHAap¸š›G§.½ãUBÃLÍ”Ã28‹žõv0™$û\éÉ„{—vf“„¥8±Ré$cLÞï_#›|+vß‰åbé¤BŒù_‡ºÔ¶‹,¼¾€NAA·ùºÏ¶•ð RŠšÐüÌOO¤†Ïýá*d¦GRÊ±´HŸ{ZÄ•ðÙøÉÌ7ç1ðŽŽwª½L­\rÆ¨Å¡ÊfÃF‰xébO«Êe]¬Sp`Œ&:†ª&5™´sªt	 à­#ñº1÷¢¡ÚÃõ½<¿”Ri
+®´(¹5.íý»êÃ_sBZ©
+endstream
+endobj
+69 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+67 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 69 0 R
+>>
+endobj
+72 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 656
+>>
+stream
+xÚ­VÑn›0}ßWø‘„Ø±Æ8R_¦¦ÓöR©eOc‰F«ISÒ%ÕR?~Û€a˜Á4¢È`__sÏ9>QB)zFºù€ÞgÛ;…Q	ÊždD2„N¤@Ùí— ãÇ\\šöüdZ_³Oˆ"ÌQ&úü­àT™€Ýi«<(óÕú6·wøãëÏËkÖvpÍÃc¾ú3Æ:áQ„¸»B72é"e›Ž)‚7hY¬îK+ (à1£0Ó¼ve
+Ô÷æÛžüíàog…¦ï¸¤$.SYõRìÌì}ùr)®×ïç“yþxz-ž‹ËØô}ËœäQl@k:ƒÖªÜÝ\Ï?~¹exSÕ,þ_©‚½t9($©´ j¾ O\Õ¼éîÐ;=–7%sœGSï±rh6)Á:ù_”¶‹ày—/§rrJÉ!rC¥;„¨^m@OÊs^9
+þ|ñæ>!o!ãÒÚ·Šuä<P³šTsâ˜TËŒªÔ&Uöªüoæd5 |¹0K¸Œg±jŒtÏpnyqöÔcÆ¥Aû$¢M¼hãC¯=ê“ÃÏrz2ï©Á†ÄfV‹¶`<ŒµØA1±l8²l{ïM£³ž2‰‡ûûÌ§cÁÀk±§Kl6_ƒÿ'í€ãþåúd³k:ø¡ñ™üØ”ßëí‚¨¤g`3IÂ#™F¬p}Æz1â‰Q¦ÆÈ"P7RêV³Ñ	v<‰ÆÅ¾ãD5ù ¦ìW#28ÐGtÍ‡ïúŠ×ul=|Öè,)é
+Ç>M|°häùÒƒÎd‡”·ZÍ’®a{'ÚI&‰ðiEÒT+=Ÿ½û+‹U
+endstream
+endobj
+73 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+71 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 73 0 R
+>>
+endobj
+76 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 612
+>>
+stream
+xÚVMoœ0½÷WøR‰/{ý1^)—*›ª=6ôTzXTEŠv£lU”_c›]`m ­lðx˜yïÍxFƒG ‡¯àK±¹“@"™â‚0£HpPÜþ
+ üB*¨”A/Wþ.¾ !H,	Á”,„‚¥ÝŽ8„œrÜ½!Xo!dDÔ³ŸÁƒRÝ{½1hÌÐ–AS†Ö‡ñ¤•ÃDÝå[56¤ÕØI7×vû©ó.dó®òÄ—
+µèM^}¼ó <õ)k3 Ð¬h¸?»JšöŽÔáBFÕØŽíûlÜ`ª(á˜ž45‘ÀŽíd½ÖÆëÿ‚z*ÙJ…Š\œZŽèGôÌ$\Y.	–ecÁº”ºHW¼Ž.‡ö?ªãk0§:¤6ñÔÖòYÆ°¶èW(Á‹PåÝøUÎ—á€.8&E@‡nÒ5õä¯î`ã[¤Æëõ7óÜÈÒÊtð<´½îµY9•Òœ†ÜºØMDº¦?ñeÈG_¯|%/rµ½h_ê­±Þ5/¯õéôt<˜ço‡¿õcýêÂbg©•ý"eHÚµ{[oØŒÇ3*®=ÿÔŠ
+c°½æÝ–v–¨_ÜDöuDa5î”–úÝP(LwRuKé­)]ŠŠn|Æ×1j²z/WQóžð>ÂM6æFáïç†¬à¦m¶7§ãó¿º´4%mò¾SÅWÍXp/æý9¡ûY3wÔ•nœËðs½À'¹l_žJÉÓ™ÆKiw"¨úyP,•>Æ„ÄÝ™µ¸¹ãç¿„g( ¦åLÃí®øô§°Rb
+endstream
+endobj
+77 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+75 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 77 0 R
+>>
+endobj
+80 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 527
+>>
+stream
+xÚµ•[kÛ0Çß÷)Da _¤è.»°—Ñtl›÷4÷aP9JRš1”o¿cKqŒc'KcÈ‘¬stùŸŸŽ£Œ¡êÌô¹ZÜ—¨¤¥AUƒ,§–#bµUw¿0!?¢…ÆR»i‚åÂ&Õ7Äáœ–Á{óègÎ¿¼§ÛOÁî|zWÃîë$ó)tSATêg äû/	×Vã6W'C3ð\âæÁV–å¡?=­²í‰b$cØ‡ œ'ÄJÍ°‚XÛÏÙŽŸÜ›ØÕŽ}Î$,\„—ðà.µ>XÁÄ¨¶™íßH]&¦jj0†ªÂ­uV˜±ìäJ¿™Ä	¦¬±§w lÛ®v/î6œp	Ð¹íöi³ý¯ë?nå^§Â—=ÑqPHZŽh—'i7ÚùˆôNüŽö®ÕO|
+Wº‹}ÖÿŸ{ÅAœYò$qÆÚ:ŽóÈoäeæúÄ&{b‚û1¤Ã!vÁq®‘M9Ì&¥S½¡xm7Ï]³šïr<EùT/ßMóûéÙ=ÞÌ*! Ô”ø¹ê>,§”N'kÙužjýÖ.ÎS5Ð„:žÅÁjpºêÚÙùbbÎ·'´¡ZÃg…Í–ë½Êú,¤±†m6õd­ŒBü{ó<Î£>‘Gs!Îâ€óâ^÷_{®-,¬PÒ¢è‚ œµ-«ÿ •ˆÞœ
+endstream
+endobj
+81 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+79 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 81 0 R
+>>
+endobj
+84 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 395
+>>
+stream
+xÚ½•Ooƒ Æïû¤'¬B¤É.KÛe;nî4vXRÛ4ijÓ.~û±¢ÆþÑê²í`^_à%/ÏóCÁ„€%8„{p—Œf
+(¬H@R,)@‚aÉA2y…=yoÉ#  QŠÕ•AD¹äPÃPhÏ&„8X¼¯Öé|ÐPÀ$S
+&ù6{ˆ3_6«l£«² cl÷ºP<uëCQN²+ZL>“ÒÅlá"eò|«lž2ºã[5Ì54Úó©ö†“2ìƒÜ+2=d©ŠšVVƒ+JÊJÉ²×¡_œH{yÙr5‡\ÈÏ‡útm½‰YT÷fj¶»t¿·¹üaó‘.Ó]›;²Í¸ƒ;ûlý™êÂ¤ ÿ¶àgÊ_Ð6n¥Tü&¥q]‡TWH£HjÂÔgCã‡—OÕG0&: ªÚQ5G$v·(fæ(ÿšcqâŸjö/"=1Ž:b,ºa‘ûØÚ£6_çˆvå˜7plaE¬‰dãÓ~4ãÕrciÛV8Ž‹(;N“›/iÏ¥y
+endstream
+endobj
+85 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+83 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 85 0 R
+>>
+endobj
+88 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 407
+>>
+stream
+xÚ½•ßo‚0Çß÷W4>•­´Ð–šø²ˆËö8ÙÓØÃÑ˜1º,å¿_¥• "S·øt½¶wßûp€ ˜ƒÊ<Ç´?–@bÉA:‚`A âÒÑ;DèÕA$$4‚¾ó‘¾€  B°lž2Á`#’9Ú	X 2ƒjç2Ê gUÆ"ëfNiV«ö¬%Zx¤=•öü¨ˆuöi¹Î&:QëM¾Ý.Š•ñŸW_ù<ß´…'æFT¿†X{8±‡ÔØbf“£âôQÛbùg°˜æ”0¿ôwõ]^Cc“Ÿ
+Oká{³ÏÅ2ŸöÎ*A¥l*ñ¶Ò"du˜1nÏ+©Kmèp$CØ)ƒÉ»ªŸ›ƒá¾ÿ¦ßˆºÊÓ¹£ýÎN%Ï,=u›\WSž¡R¼±b¯ƒâ+ÚûÜ†ýŠ®Ä–ŸbËoêƒU:º¶Q×çË.Ð¡@œáV¹.=ÆýWii¨•Èÿe°nl-µ3WÝ{¤²®žðzRªÁ°É§¸e¬öÇ¬þùÆq,tBÇqu‰˜ï'I~ ¥Ã­,
+endstream
+endobj
+89 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+87 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 89 0 R
+>>
+endobj
+92 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 551
+>>
+stream
+xÚ­VÁŽÛ ½÷+¸TÂŽ!ƒH{©6[µÇ­{*½Õ»ªT%«MUá¿/ìâ¼©vs™àaæ½™gƒ×5x£ù>tÛ;V-è€ X€ZŠÝí7ˆÐ}HÍëÒ5­`]ß»Ï ˆ¬¢½LPõ¼	q»DÞPãCMk¢‹÷}&áÂ…a­‹áe~¹ ¤¶W°Œ—Òš)ØOýÎçòõðóxÐpožžûÓÉþ÷?~÷ýs…1^VÜ†X{¿µ““6Xß—àÞBÙT\fuüÑS"z{½ß´»ñVÃÁ S–Tå­[TUdÒe%ò»_‘%R*G™%”(å¬h,	ÌBG|/xÓL3‘¸‹–éÜLõ…f`—ÍÇÞœµPX›¥ÐÐ¶¢-ep½57i”d¾,»‰¹2G€Ö[=Ôàl"k6§™í÷†Ø¢ÊÜEÔ:«µª†	Íl¶éª-`g,FˆÛ{›©–Tû£M c(+P4Ô½±¾¥w‚ÕmhˆçLd
+r‡·9IhÏõ"ÆIHÛ‘^d„"{?Ë@^"äµ!/äaD1–ˆñ“‰+M9üoO¤ÑQŒã1BX½ *rfJÃÄ{`ž†E×¦æÊäùëˆ:×r¹B”º‚¨ÁìnNÇ_z8«†êM8P"/²£ÐôL­³¥R¯Xwf{ÇçÂ[,……Da)ÇÄÏÊ¾{÷#“ß¾
+endstream
+endobj
+93 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+91 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 93 0 R
+>>
+endobj
+96 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 573
+>>
+stream
+xÚ­VMÛ ½÷W =ùƒ1f¥^ªÍVí±uO¥‡JkG+­’Õ¦ªl©?¾°×Îb'©š„Þ›÷B%”¢²ÃGô¡ÚÜ+¤ˆ*PÕ Éˆd@¤@ÕÝ÷ã/1.8¥QŠÍ'TŸE˜1¢&BJiý§ÓQ«ã…$ š«¨êžë[³DômÿxØëhÛ>¿ÔÇ£™»åOû_õ®~É!á³¶./WC8QÌ¿º  n<4nd ßux¨•µ©ï’nß»QG]‹Û$'wý—Ì Jó¤Mº6îòEÌDÏ•¹à\ñš!¹ ÂŠ¥ÙAÅÈ?ª”2JÇÑ$qf’²…š¼°5u¾CîLìàBëaÇ¯-œ%øø,”B:îe° ê’ºdin?ðÁ{¨FG¦í‡ ç%Ì¬ç¡\Tž :¥$˜6åóØ‚ú›…`.Á"îOY5žE=ÜÁ2Î„²„|jÂ÷­øÎXkÅwìRß©7ž³÷Nwžxë<;ïÝ‡°óÄ-oâ†MWpC¯U]X#¨Ife—Ï•p1›¯g}ðRØ…|a§ÞZVÈu_ØD¯7Øè;[ë;\Ð÷ãáéw­}û³.ûçv#}7ÍÏÇ§úáf¡¿ A…ž¡aÛÙwGÀ”‡ø…ò:—?Âž«¾èÝ<H<Œé
+ºìo©w“g„Ÿá–Üú÷cQÎ¡_Å1dŠlîÅøgƒ‰‚”Ò°¨HYÚ¢LØ‹l«wdûà
+endstream
+endobj
+97 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+95 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 97 0 R
+>>
+endobj
+100 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 549
+>>
+stream
+xÚµUKoÛ0¾ïWè2ÀN,U¢^V€^†¦Ãv\½Ó¼ÛÜbÀÍ0Èÿ~´$§v¥Á/‰ü>’&œqNžH8>’ÍÍ½#Ž9CšGb³‚PÌjÒÜ}+(ýR~o>N¨Ì½*)ØTÑôÏÝª¤t±öÏ/Ýn÷s»‰ò§Íïî©{9¾ŽZŽFÌ%ÛC²©xnã)ÀNo2Á»÷«ÛÝö×Ÿ®-¶?: ^õ•oËÓ_®¤B[å
+ÈZ+÷ÇéD«V4fMiæ+5Ç(Ng´ºh,
+Ž‘mÑ·…ß‹ËøšŸ‹Ð–ï»{ÀñÁ	{_7H\›#±bŒÆu½§kB¥8àRŸå2^	ìðýè´ºMU,z¿¸Ã‚ý@-õƒ¸ <ò<`õ¼¶)›µD6!¥’»ÆÖ¦ÏYuîÍ†ÐS‘%•"6F-ÝÐ1Å*Ç¢!uªP}Ðu[FGü
+ìŒØ|CÜ`íÇ0Ÿã†ËŒQ
+Ë8ŸäÎª,|à\0O5f+C–$÷óÒéD½‘qÞÌ2Cz‚5½)}è$ÈÉÉŒX'¹ö#Øs½<ò›ËÊïÉáˆÜa¸ÿËXŸYÆæ‚eXÌ‡·Æ7À°ôKÑ–aƒ†yj¦â‹[
+Ä¡zcÜÍdÂÈÒîëH˜×l6b#¦–îuÑÿ2K× ÑÆ›{½ÿ§mXm	U‚Õ28‹àCÖÍ»¿_ªÑý
+endstream
+endobj
+101 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+99 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 101 0 R
+>>
+endobj
+104 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 429
+>>
+stream
+xÚ­•ËnÂ0E÷ý
+‹•ØØNüBbSU»lÓUÓE%BBAU9_Cš´yª¬FŽgâ™{O@0!`²ð îÃÉRµ áHŠ%H0,9ço¡—!âŒC.]LÖ.R&‡ïá  QŠµË>%»¯8‚É*fŒz©g¢áß$„ž{<D”K#{¾}¢„8XlwñjP,?L2­a˜â©kõu¿MöQ^æaŒ«ûZä£^6™õ/T²ù™K˜Î\Œ ¥´ŠŒÍØÎ2šGÐ­Ï*¡Ë™qP=WÉ|ÊèµªrAmoî|×êØSZÙ–Óë$y&r¡¢˜•«ƒÖöK*Û~ÁÀ…9ãÓÉºèÖûÏx›,Têž$³Ž$‹Ž$ëF’ù-IÖEhYAº¢ì×¡ŒLÈÈ‚üÿ/Ÿ{ZÆ‚Ôa|Ótåàö°ô¨ZjQ´Ñ"×]j¦³"®þ.^¡Îrd1°±Ùš»pÕ4[ ÒURåNÝÀHP…~¾­_‚U²^eV©òdÉóÿ"å+i‹5V*«¦Î‰Ex÷ry´ë
+endstream
+endobj
+105 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+103 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 105 0 R
+>>
+endobj
+108 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 524
+>>
+stream
+xÚ­V;oÛ0Þû+ˆLÔƒŒø” K§hÇFª";ˆ‹‚ú÷¥Iš–dQ•šL4yÇ3¿Ç
+\àØå3øT_ß) °’ Þ‚’à’ $).¨oÀýCK)kõËk‚ðæ£[HÓN#Ý$ém;›OÈÐT'?ë¯  ˆ¬\„¾­8DD”Ç/´I"¢4Ì¾¤€4Aœ(u\ËÊSRØsR˜xò{Åä¹•ïh@øKÈÁ”Ú­ƒXv¢À'Q=¼DMêéÂqŸÒüÞ—6¹§zá†-Ä!õUÖr—E‚J™ ¡…>¤ëÈ \òôô°†
+HÎH‡ÔÈØ'|”Æ.¨Œ‰VV† º{io\æÆX´=žö;·ÿ²ûÝ>¶¯S 6^Û€˜2¬|ìÞÇœ¹à~ëqÒò²’í>Ñ'’é©;ìÞuˆý˜±TgtÙ­‰°öžï"Äi‚¡úJuàÙ÷=É˜ºzÍ‹ÿG59RÍ¨Æ¨vØ?ÿi/^ÞåKL.œX<p}µýõôÜ>\E‰ fbõˆø¾34áZŽ1ž~×&@Ó figóŠ±y¹7ofæxÆ.ì¼­yû˜gÒŒ¡ÙWôìË#SµïÎ3O¹4ÎÖˆþ#HÌ¨(¨Ø7³Xhæ¥?¿rÒÌ×w"ü[ Bâª4W¸ªlRÙ¢›úÃ_dìÆ
+endstream
+endobj
+109 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+107 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 109 0 R
+>>
+endobj
+112 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 473
+>>
+stream
+xÚ­UÑNƒ0}÷+Ÿ`¬µ-´—.ñÅl3ú¨ø$>˜Œ-&fgLù{»
+›JBnÚ{/==çÜQB)Ú C¸E7ÉÕR!E”DÉ#À–œ€@ÉüÙÃøÁÇ¸R^R|d3.¼§í[¾M½ËõëÛ{¶ºœBRßIîE˜1¢ªæ…­—²Jò¨2÷XæÀÆ|m#ãÐýR¾Ê8—¶`vmcêE“"õtj N4S2O=»35oÀ«´Æ¬ùIYß¬±c³PFÊ›º²ö€$0£‚îÑÙÓ-Xl×­¥Á\T—©Kƒ²´§½ÝÍFñË¦†1š.ôÇg¶Û!íúnû•m²Ï!a@Åøwùûw––bN‹½H×¥d>®™¯\éhø»™ã&ìˆuª›ÁéæÐ¸Y»ÙìÚE ð3(:ÙÏ²ËªñsØv¤èósUZt=ºmùs.ð†VnCÒrUèÙuÓÔÐ5õ¯ÄÐ0ÎóœBä¢G`pÕªT
+*öKÒåÑ/5õËÐlô°-€ÖâñgÐ€®»qN£¾)uˆ<:´FN÷Ð;yh3s~ÏàêÖÐêj`õo†õj)êÿc&$‰Á€V$ŽEÌzv‘\ü ¬áËÛ
+endstream
+endobj
+113 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+111 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 113 0 R
+>>
+endobj
+116 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 573
+>>
+stream
+xÚµVËnÛ0¼÷+„œ(Ù¤¹+>ôRÄ)Úc£žª
+Dv…ü÷¥EQ¥TQnô`HÞwg†kgœqž=dÝãcö¡ÚÜÚÌ2«²j—i`2ªi™U7ß¥_r
+RKRuž¯>g<£ ÌFÆ¢$¥‹Ž‚`Nr~~*÷R&Ò¤v…•8Õ¤u¥)pÉÉÊ™ñ|õ/ Dëßz
+^çó)`Î±±ï³;ƒ  ¢ì¨ê9s¾I¡»ì…Á1vªÉxaÍCkaŽQg’Hž8£—T¤ Dç\/µ~
+è´)úæ»Gµ0·6º#ÜZÝñÝµñMK¥'ÀÄ©?À³Äe„¤yˆJœ`\
+>Ï„ýPÛª.SØÁÂeJ‹ÀŒG*u×òfé¸’¨uuzn®ýÛöù¥9{ÿýÓþgóÐ¼Ì¥o}„†àÄ’ÙÞw×û<µä°ë'@ý÷‡ûÑø€ë÷QxœW Eë¢âÅMM¼gí>eGMÑ®^Tè#¡¬MÞˆ°Êp‘ëtN0¡Îõ?ºH#QÉ¹…2V¯J,‰ÿG+.ÐZ.Òê+O¿šºgw}ZOÖ‡z9=üå ÿÕîÇãSs•›_÷ƒzH[3Ææ×Úv5‚&8ˆÀ¡ÀNåt+¼MOtd½B'ëòmªŽ7„ ·h/©ZDªœ¥«Ú,ˆZÎÜ
+kú5c½JÒ›[9ü%©˜ÑŽ>ËŒéÊ¡ÿ¡ÜVï~N÷·
+endstream
+endobj
+117 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+115 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 117 0 R
+>>
+endobj
+120 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 573
+>>
+stream
+xÚ­–Moœ0†ïý>X;öø¯”K•MÕ[r*9$
+Uªv£lU™_ƒ ÁìFêÉf3ãy^AŒ2†žQ;|AŸ‹«[‹,µ{d85Ô(TÜüÄ„ì¢@a#“ûâbˆ€ ¶{÷£{§ÂxÜ‡‘ƒé9§6|©vÛëÓñ÷ßªÄÇ§
+Ànê+“÷Ž„|õ’ñÍ“¡†Ä›H?YöâÊ(\úL}DÂ™_¢ë»á)™—˜„‰raìó2éÝ›ÇÎÛM	À¤ÅEýRmƒçÝá×ñPâ{y­N'?æ¯‡?Õsõº¡”.f7Ô{Ä‚Ï`è`•œ¶×ýþ9¤µ#*uÄï9½)=·“·Ô.ƒÔeâ,±3:FŸä’1,¼'0Ó0%X€,xSèÈ2iTZ®’å,gS¸ÜÀˆït‘”rF™n"m`*ö»k„Ð¦Ytî_ÂÚ»¼Añ>·ÞÂòYj2Â ¸/hÒT{³–{Ý×ç’<?†Y$§ö${êÖè>B€:ÈAðÖ9dú­2B³5œãiCß«£•Ë¸ÊŠÁT@¾ì‹ý¦Ú‘ØF[ÄûÂÌ·¦å,(y›Ü‡u›H›Yk0z­Á˜Œ`Óæò†µ]¥5%{ìÍ)dû*jYImÿØ$þ³öì•`ô!ÏÎDâcªc¯©h>œþeÖ`åÀ]Ë‚¹–¯nÕð·À•¦¹ñq-ÍóÖ©å®øô0äj
+endstream
+endobj
+121 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+119 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 121 0 R
+>>
+endobj
+124 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 542
+>>
+stream
+xÚ­UQo›0~ß¯°*E2\ûGêËÔtÊ[ö4÷,$«”&QSMŽ´¿%	Ð¤+9s¾;ßwßC8ãœ,Ia¾‘¯Éõ"Š©ˆ$"“‚ø0’äö'õý{ç1ùN8ñ…`ªrN_È¸!¤³¶°{ÇFœSƒá<P
+]øtDbN]×ñ‰õ Sc< í:>”!ÕTÆÚ)_þÖÎ™mi¯©)vy^Øúš¦ÚÑÎ s|ˆÐ3G#¢·†Š>°¡övMöÛllKÿX?mÖšNÌö%ÛípmÝÓõk¶Ì^<Æ6ÓRkbãd\mÂˆ©rï¡ÜSÖnÖ
+§=oæŒ„ßX«i:´cpgCãþÒÎðV—ƒñroºÚþ~É^SŒZ¦ÏÏi;êó¾"$ÜëÚ-éS5AØê!mùÚ­ÄUsàD0û
+åqB«»âl«x<z#È\¢tßG»ê¦=æ½´ÛJ»ÍêO¦Kö½}ÎêzÙ‰yÍÎÕ"}Zeó«ÎA€jû3Tiïª¡6Æ Žæ Î˜C1 8”¿)•}$úÒ9×àÏ+=ðŠóòñBÀ@à;t\*ÕhE=ZÓÔi§¢Û.3sI—Ÿ Uä¡‡$8ƒ¤½ß4§‚ý¡”acôÖ}÷:˜‹çZsu‚ß|:²dŒYÁgE®ïÂú«-ÂˆÅYQ,Ž‹Ú`å7I¾üˆÙˆ
+endstream
+endobj
+125 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+123 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 125 0 R
+>>
+endobj
+128 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 574
+>>
+stream
+xÚ­VMoÛ0½ïWèh'‘j}KzšÛqsOóEç†¤h†Áþ÷£EÅ‰ËÉÖæJ%‘|¢IÁŠ‚<‘ >‘åÕ­'žyCÊGb9³œP#˜Õ¤¼ùžQºÊ©:s"ÿQ~!¡B2×¾Å5‰róˆ’»3æœy<ió³RÔÍË+-¯Q6³¶™ÝTYÛ,š*ŸÃd&æÝßé”~=Tš1åÞ’Y™Î©à ÁEaà:›SÉ•Ï9Uæ*®«N¯‹ÌÄ¹ˆö.êîà!UæŒ¦­2ˆ"§¼€=sÔ©ÁZ•·8–Ýp¾ËÛÄ)Ü$U¦›Sãsé;‚k‚ý¹ôM¿q”¨(”Uà[Âa„R¶/õ£XYêíöy³Æùçõïú©~Û¾ê™˜f©šd©Ù³Tž04¤<°4Œ:¦Ò¨¶ÞÏ€¯rö°Ù"4—g~<N‘ ª#®qà…8ƒê±ð$I¶ûŠÞ÷0£¦]^‡ï¡š€P_ðÐ´Íòz»ùõ§®"š‹vq†ùT"
+TÓÏævû¼>MÿTn{LõT=&özoÈr€ó{Mª ¡@ý!zwk ®J¸`Œ‡°êáJCi.®Æs=ƒbÏxï*Ü`’0…#;„”÷8ÐX¸;ˆÆsÚ@ ‘&\£†œAzŒ2ç¸I„ò©óXÄ*AÆÈDh„óÄ"ÚÇª÷U"
+H	Hë <¹oª!\õ¡Ô¯nuÿýÁµaÎ_<s.Ü!ðE_•þ½úD
+endstream
+endobj
+129 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+127 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 129 0 R
+>>
+endobj
+132 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 522
+>>
+stream
+xÚ­Ußo›0~ß_aUšdvŒÁ¿"õej:m-{šû¬¤ŠT…ªLü÷s±¡Ø4­):ÌÝqwß÷Ù@g¾ƒoÅòZ…Åˆ‹ N±` ¸úº‰PÆƒæ›1Ê`cÍŸªÖ°Ñ‘]!kä4¦Eè¨ÞFë…{©?'%ŒôAG¥uä)žÃÌ¥Þ?(M±MÑ}opv#æ'å/-4!¯¦vÑ>•+ÛÍºyz.ëz_ìúÇáoùP>Ó¹K_;Ôxï¤VÎwë|ÂÚjgmJÅi#Õ}I³Ü¬.V±…#¾ÒÓÄü‘{ÓE`âÑØêŸÑÓùM ™“Ži„¸4­dC¢†u“bà}¢…¶WÊ±Ú|Rñ(ïÕÓºdÚ¼9ì'³,fX–g°\WÿJíÈNÚ$¨õóI —Ž»Íþ±¼¿A•ñë`0ÐCZ‚1ö÷µFÃ faà¯bgS±ëAî‹Í±äÛxî`x‡Ò”±uÏ«XPê5n|ºv¾í$ël~D¥Çô¨0=Šœ¡Ò¶Y]Ž•ÊN•Ê?¾bÌ/t6)‹m.H§_:ÝŠTn'§Ë×Òh=™í½îê‡ï FMémhkQ’û¶V€Ä7wš¡Ë8—×l¸ßSÆ±†Z…¥ì‚©½ôÖÅ—ÿ>³ãÚ
+endstream
+endobj
+133 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+131 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 133 0 R
+>>
+endobj
+136 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 553
+>>
+stream
+xÚ­VMoœ0½÷WøR	ÃšÅƒq¤^ªl¢ôØp«sÈ*$Ê%%=À¿ïd‰Ô½Œçã½±gY–f{b$®ÙÏje™MmÁªGfdj$F¥†U—"!n¹Ð #+½<=z)Áð»êË˜2µš¬O5äºn^ß¼ÑÅ/]ÔÄm“Ü;_º¨mvãÉUsBüÞTƒRHm>Ü[éøò1!M*j14¡l`ÕRà/``J–sQ€µèEäRgÑ1`¬evô1/Æi$^Ü{1µsÜEßk.@fY4-mT¼2äf9>”¥ê^3Y)¸TUà%#(ûMTê-\_æ&¨><;J*`°åÁqD.Ð-Äp(W¢3¸¹líÐë!À,ç,Ž2¶
+ÃN›W è-fé+ /Ö»º'·óNµ`7ÊLa—÷¡	Ü-í
+ÙyaôbÃO›]£³¤‡kñøsN8¿Ucþ‘^Ç»¨g0Æœ <@Ÿ3¢—YaZÕ¬œÀ„À„_‚m¿ÖEó´ÆU™Ñ©Ú×úÂ'uÀwº~>½øï›—¿õSý¶à0nòÔžøì€(¦Ã¡‰]—x¢ºA_CBøeƒ€Ø¯qÑ,Wø…;'!CŽvÔ06<ºáCÓº•çG¡bòÐRLíÉK§ƒvnÍW¦ßÿ V(Í)Ý_éáÿ‚ÔEZ<lÓ²¤Ó Éá¡úöØ^äÙ
+endstream
+endobj
+137 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+135 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 137 0 R
+>>
+endobj
+140 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 443
+>>
+stream
+xÚ½•Oo‚0Æïû§Rimm©É.‹ºlÇÖüƒÆÄ¨ÑeÁo? Èuf;½­}^|}žŸPB)˜¬<‚‡°3Ð@-A8ŠÅ –œ(ÂÞ;Ü®_‘«IÄ=éîÜØ8ÎGø(ÀŒmE¿\ñ!fB	h ö’gaF…­ép¾ˆ&­\q­a¸[G].àÛr¾Zš¢Í%„Î%óæ¾ÕkoÈ=¢ó³×üÌ·u5µ•qU#ûýÊ
+º÷¶ÆÈÀ‰#í¡qPo¿K=jP~4FñYoä9Ã¸¤ºgìô;“o¶#ÚìºmË0Þ8;»ªKF'›Çyó5isp¿^?^o¢í6IÐîŸ–ŸÑ,Ú4Åç7Ä'.ˆ¯L±º…bY·]üÅ¢bƒh°A6Ú ()6eŽ²Œíò@…G·ß‰er{Ì×	Üé4é¾ryäq®Ù3v|ØéqÑ^}0Þÿ5® ä7äW#—‘«+ÉêäË[îoõä«²¬âCpé®ëèÛŒqŒ¯Ýá9÷ˆcJŽRíI»:Q¼L™$PÉÌšA&â6Î~x÷XƒÅ
+endstream
+endobj
+141 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+139 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 141 0 R
+>>
+endobj
+144 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 573
+>>
+stream
+xÚµVËnÛ0¼÷+x¤$“&W¤HÈ¥ˆS´ÇV9U=¨ì .
+éïKŠ´¶D»â»K.gfWFŒ2†žP7|AŸËõA†š•Hqª8"P%Qyûò=ùU~CÎ©6	g’1~‚W	‘ Œ[+­¤¢¤5VØè*	‘n\¬Ä­¹]7'~–*iÃdðÈ¦AÝQ!*_>šù¼æ“¥Aà²}­7>|Û¼¾Õ‡Ãó~ç×_wê§úm^„ð­÷0úh„œš`ûlÆûG?rPç‰´Íææ°ù[Wxÿ»†Ü¬Ú•{Õ¥gÞf/ìØîY„Â!—ÁÁb!H¨”9ä!Fe\f8köwA…³/' ÌjrDàýÎrW-ñ¸¢”ÎC»í[dÓâxžÃÚÞï67½²Ó¶!MšB•¤·•åÝÑœµn‡äig…Ô­ÞM}€Ü&¼¤#¯Ô‘uƒZrnqUa_Örè	¬¿qKªÊ‹.ˆ«˜³eGè\äØ[}ã¼côÎÙØYÄšÌIC¹G¶ðî"gsn³*¸GÐ!à£‚}v·–½_Ü€Qõ	Œœá8àúKˆ /°<ñîÒ_¨›H•ãõR—öü°î
+;RõüÊªlZñ®˜=H]¹w3Wò$l¦=¤Í»‹ÝˆÉ×ùBGà=ÉÓj</²¬¤‡hÇÿ@žxŒ'øÿ­`ÃÇv}'ûI\T+{¡Zwá°mùé_Ã¦
+endstream
+endobj
+145 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+143 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 145 0 R
+>>
+endobj
+148 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 514
+>>
+stream
+xÚ½VÁnã ½÷+8×À˜H½¬šVÛcëžê=Tª­TÅU³ZÙ_´ŽHíª¹Ì0~o1ÊZ!g®Ñj~e¡¦@Õ3ÒœjŽHT+T]>`Bng¿ªÄáœš#NÂ%×C"ª@1üè,î¼yiW5îê™Ÿ{Ó{Wâ¥®1g0¬âÌnIö~Ûk‹q­1z89¾1 “Wýk³ðeÜ¯·ë/»×·f³±cïþ¹þÓ¬š·œR/réól…QÔ„àÝGPøAû ÷‹nŸ¬±ø¤Å…·uYße—5î»ÜBEì$ƒóÇ¬;¬#ðŠ$…`Ìrl±—Æ`HÈgDv-„í”+6í…-*\nå´<óÑ¦“?®g}Œ>âM¢ÍN@
+wx<è:	B’ûä¡í‰.­[Ž9Db A(8ŠDÀ6@ Ó”] ÂFâK÷SäˆX¢1†ÔyŠÍ=ªwLªN—öì-Õ%ävPhb[h|Wiò ÒÔ¨4Q™Ê)Í¼Ú¼Ó+Îš‘^@–WNL¡ò“A˜ÐšÔD¬1b¬Ç”ñ?8“‡.Gõ…Ë±ï›öåoSöò>?Mâñ¯ÓB±£$¸§ìt<GòTôõJœVJ{|ß»¥†èüJ}þ-àª ¥¶TZ–.J·Ã²:{‚Çæ7
+endstream
+endobj
+149 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+147 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 149 0 R
+>>
+endobj
+152 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 540
+>>
+stream
+xÚ­VMÛ ½÷WpÄN`a"í¥ÚlÕ[ï©î!R½«JU²ÚTþ÷å+Î:ñÇf›\†Á¼7o‚e=¡`>¡ÕÍ½A†šUHqª8"JP…ª»ï˜o‘ 1geì“Tö£ú‚"œS#Cøîg‚7öù%­n£…Üæ­ÍïjÜÚ¥­3â&9,6¹7çÇòuÖYvNb„d¸ÈHQ*,wó¥Ë¬”Ä"øÝ2œ±`Kó'†3ùk3\caã´5v÷ÎgÎ½ˆ>±‰¶Rgmœ¦~H¢)z‡$'âC„9ä©ñ¦ŸxSgö‚W#\*ŠÃð˜ý¿~#y€KF`fŒÁvl¯ÒnoÕ>7«ø‘kÇ¢f¿ÿµÛÆùçíŸæ©yÚ¾>r4­BAÍ)Õ$Ë#a€¼–@à0ò$^ÀÁí¨ÌßÇbyÂâÈÚ“7BRuHB9çäKœ!óKÊì*©)„ô$¦µ«Ûýî÷ß¦N`-[Æð/xþ²HâÀ{vB`Bì~z¸G¶iqz™×¸€×ŠW¸<l$õ<KJiÿ½Î@ÒS ™·ö˜ï¾„ìYù¼?íÎ—	·"‰¼ô"ïÇ••PšAXø÷›ÂL3ÐSÍ`¶jnŠ7‹Ç>PØ~0\R½óÌ5zÀ˜ˆ31!^WãWoîe÷—…Ë’jå¸j¨Ö!BZWþ¡á ï
+endstream
+endobj
+153 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+151 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 153 0 R
+>>
+endobj
+156 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 470
+>>
+stream
+xÚ½VÉNÃ0½óVOÎ2n¼%u%.¨-‚#„æ€DŠª¶jJÿ'vÒ…¤¥âefüìxÞÌ³ƒ"Eè•¯[t“ö'
+)¢b”NQBIB$‚$(=c€G$“˜ÒÈ‹©°Ä{IïQ„€R¢d	_¼eLp^ÛwîkÌüÆ¹ö‚¨öü‘ÆÖÍÖô«XÀü<0¨Ÿ«<œÆuÐ¸RF˜yÀ©P8,wSøK •‰ÄºÈÓ|hd fß¹ÍÁîÌÚKËÀ¹ÚÛXk
+û³K|P¡Ü`õ	çšÄ¼{úÀ’8Ý,³¡]eœ/WÙzý±˜[ÿnþ™½g«¦éãm}Ý(ãDÑÃêÓÕ_/f_™vMnÂüE¬ÊBk{Ó×YöÖk%ƒ)µKÆÓÜð ëi!!¤ycãm²;T2Áºê@´ë tÔ:0p¢€Ä)”Ö;¡¸Î@|a°cUç¿ìÑ±ÿãSÅ«ÊÁÿ±ÿùÑ£@t€Ü@ÙØÕE Œéó6ø,0õ( •bÎ;Hv‰d‘a’î© xlâìÔñ#ºÝ
+Â5© hWIvÍÿ>üE1ÚŸÈúG€Ê˜ÓŠ%šÛbœ^}ï$ê
+endstream
+endobj
+157 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+155 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 157 0 R
+>>
+endobj
+160 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 598
+>>
+stream
+xÚ–K›0€ïýhOÁÄ?‰´—j³U{lé©ôPiÉj¥U²ÚTù÷l‡À4M1Ïão"a9cÉsâ–OÉÇrõX$E^è¤Ü&†ç†'ÔÈÜ$åÃBé·U çÊ?ì·A fñ³ü’°„ržÊ©ö¯êŠìŸj*;fMµ+QúõŸBÝ	)WF‘ª QÎ#wÛ_/¯õÓÝ´
+Š‚”Ç·zícý¾{ÙïªÎ,Ëó|:°Íù²áD^IèY>t‡ (®ïýÚ¤é±"ˆe	)þ§ñûÕR¤§í²=Lá6x=Òƒ–›,H†q¿7Ö­«rÝ!ÇÈ ^úÂQµ8†‡‘Š8™9oA¨ã.ñm“åË¸ÙÏø¦y{¯L»ßÞý®Ÿë÷Ùœë¹œ›+ªÿØ¬ïû Ç oI¢Œµ9VÝZPiðÒ2b„Q²à>|{-ü©Â07ùÅº™+4ŠÐ–é¸s#é¼¢‘Í\RíIõ™¬1€ÉfnzÜœ›¸™hà›rß·±QêËC…òÀ²Mpô Ã)ˆå"åX¿‚;ò~Ø°W!YÄ¹sVàs¥$Ìœ"'ÆšKY¡Ï#c\êZ:u9œ0ÿ3"´ói–‰e@¦Bßi©£!‚³>Zíìg
+3ˆðµv– Îñ!BlÄðÒHK{a#‰°rhs--= eÃÅT($˜»=j=×v iƒô@«µš‹ÔÏîÕ£ê>d¸Ò¹5ØöEn­ÓÜyØ”þ>˜
+endstream
+endobj
+161 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+159 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 161 0 R
+>>
+endobj
+164 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 568
+>>
+stream
+xÚ­VÁnÛ0½ï+„žÛR%Ê–¬ ½M‡í¸z§y‡uŠER4Ã üý(KvlÇNÓµ'š)‰ï	&œqNIc¾’ëòòÖÃŒ"åšhÁ´ TÓ9)o~E”þXPÐdQ¹©—šC­ìËk½Û=m7Þÿ¶ùS?Ö¯‹ßåwÂ	‚™¶|å3„(ÚUÌ„Å»vÑøí:@ïµ}¨!Ó>ayåmÉØ&P-â*ÚW‘­ð²±¥7m$uQÿÇØ8$êØ¢OæËþiªk|¢™ ™2&¼•Öy”6·ãÎ×²±3U¹v=`ÿÕ=Ž©•ëÉúîo°=eïRo”Á×v°ìŠZŒÆ¥ínMy8Ä—zÙº9(3­o†É7aRŸÌ$s‚IÀÏ`Ònûü·®¡Ò½#ÈÇ	F	¼Cöb}ÿô\?\ÌT€¤L‹Ÿ„¡êÊRÆØðbc$°Ùb…8WTÅXT*nU’8$r¬§DÆEÁ!?ßÚ’"÷Ò‘I—IÁ£:ÜEOBj‚Íž÷i/§dÒ®Méæ·†÷ôþ)RÀŸœœ¿Çpo—W}9Çrø¯!Æ‚]*o•kö­g C[Úù§ªšâÔ¤gÞ pÙ±îfð?C†pj
+òlÖxI%Ú¡
+m«@Û©ÏŽ•÷±7LÎ1ÀÍÑ=ùçÎJ…%Yc³þ¼¥ÀñäÁfÁb~‘qÇÍ/oóî·CäŠñ3¬(šÃ¤ÇtU~ùÁy K
+endstream
+endobj
+165 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+163 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 165 0 R
+>>
+endobj
+168 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 662
+>>
+stream
+xÚ­VMs›0½÷W09ñ©HB(3=Ø§ÓSz*N°›Çö$™þ÷•„ Yj§=	V»ÒîÛ÷< ôÖž^>yóüúNxæå+#À‘—08õòÛï~’Ü	á˜úfuPùt(üº‚A
+ý¨±>%õ±	1lŠ`8„9ic ¢5ìxp\÷‡)ƒ±ËÀùz	B@X©§Œ+§áM	}"\Ó ÁL…Gœ5n‰™cp+#‡a¡Ú›Ìº	ËÍxª C‹ ÂaÐo8Ñ	4ôµØäFÌM†…P«~·ÐÒ+6(â‘Z4¤šdw»¬¨6ÆDO)áô =¡UwØ{`Q}'¦«ìL`bÙGúÌtÒ)tRrµr*ž¢Ÿ”ïfcJÀ<“	ç‡}uÓx.êýKõúú´Û6ïŸ·oÕºzjä¢Mª«§@˜Í¯í&iv«ÖÀOSÙ=V˜ˆÆáæcÛÔ2¬Ã¦Øh)Ãm„·…¡K¬Ìåfÿ«4>a˜FËê­Åh`˜¦<•J˜Â(–Í%Psœ¥ŽNM›BÞÑ´ð—MMNWÊÎÚË@ö×–±Ýe]í¸dTñG»Œ€÷Ð€º4 6Ëz^w›ßUaèâËªøK?hØÕª|ÚTWcÓ‰«Ùfñm+q(º° 0œØ¢/vBìLEPè*bÞ+b¦#©)c{p’ÌÃu«†è§¾…q 2»äYf#§Ú–Q´.ŸŸK™X¡ÿÖ	6>sSI#5GµÄ¤ääï§Óß‘Bs¤¤Vƒ³rv†ñaBŒ…u}§„îøÚD-¤Ípý¿Î k.'ÓõîúŽv?sˆ2qÉL²LŸ”6ó{‘ø –D^
+endstream
+endobj
+169 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+167 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 169 0 R
+>>
+endobj
+172 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 248
+>>
+stream
+xÚuQANÃ0¼óŠUO¶»ö6¶kŽˆÁÌ	s Õ©"EqÔ Ôüž“zòzggv4‚ž;¸qëË­W‚‘ÜH`¹Qàn_c”¡ÙbN\ß†kÊ*RœÚcèº*6éß|„C8ÒW÷ ˜”ÜŽô"MHÔ#ŠnÀ§4©ˆåoc¡ÕÅú3x÷•Èúìäé|HO~ÿqq¡É¤2Šøï}g1&…dU¾UuØ¯.0Ð µó,ž›s~¢eœó¿ÆI˜yr@=íÚë%ÍÓºêÚÄôä½I{½SÓÍ¤Ò|k€å˜sLÉnòA©pW_n§v
+endstream
+endobj
+173 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+171 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 173 0 R
+>>
+endobj
+178 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F10
+/FontDescriptor 177 0 R
+/BaseFont/UOSAHW+CMBX10
+/FirstChar 33
+/LastChar 196
+/Widths[350 602.8 958.3 575 958.3 894.4 319.4 447.2 447.2 575 894.4 319.4 383.3 319.4
+575 575 575 575 575 575 575 575 575 575 575 319.4 319.4 350 894.4 543.1 543.1 894.4
+869.4 818.1 830.6 881.9 755.6 723.6 904.2 900 436.1 594.4 901.4 691.7 1091.7 900
+863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8
+319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9
+319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9 606.9 830.6 606.9 606.9
+511.1 575 1150 575 575 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 691.7 958.3 894.4 805.6 766.7 900 830.6 894.4 830.6 894.4 0 0 830.6 670.8
+638.9 638.9 958.3 958.3 319.4 351.4 575 575 575 575 575 869.4 511.1 597.2 830.6 894.4
+575 1041.7 1169.4 894.4 319.4 575]
+>>
+endobj
+179 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 192
+>>
+stream
+xÚeŽ±‚0†wŸâF¸öJ[©£QLM7Â€Xt@1€aóÙ¥`4ÑåþKîË÷päÎ0ÅÖ–¥Hb,ÁV 	—
+"-|ØM\åZw+]ævÏRö¨D“@$šÈŒò!þaH¡4À§û%Œ)èûûŠ±a°ìðÆ"ü(z×ÖMDƒeÁ~»HŽé·èùW#¾-®UmqdÞ&‚“ëç¥©;œ?¸Öv$‚HI…frÄÊ°µ‹y|Jè
+endstream
+endobj
+180 0 obj
+<<
+/F6 31 0 R
+/F5 22 0 R
+/F10 178 0 R
+>>
+endobj
+175 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 180 0 R
+>>
+endobj
+9 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-33 -250 945 749]
+/FontName/NFGNHM+CMR17
+/ItalicAngle 0
+/StemV 53
+/FontFile 8 0 R
+/Flags 4
+>>
+endobj
+8 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 714
+/Length2 4130
+/Length3 533
+/Length 4681
+>>
+stream
+xÚí’g8œk»†ÕÁˆ¢EBÔÑ{I¢¢afd3ŒÑ{$	‰Nô=D´ :Q"e¥3Ñkt_²Öþ¾}ìõí?ûØÿö±ßçÏ{_÷õ\ÏùÜïËÇmd
+V…¢`Zh,!*¡R¿o"!’òñ©c`,Ò€`aŠ 		ª·HR$!«(%¯()òÔÑþ„ËC,H@]ð·K¤êÃ œ!(Ð}ö!ÌýWˆ3	2E;#`XQH‰™üÞâ2yÁ0>0¨((!‚"œ± '˜ûÍ¤‹‚£ArÉPo¶|`¯_\ _œ‚ _”P4
+é‚Âà@1ô¯Ó`¿XþÇXÿÕßÃµ¼‘Hˆûïøßsú·6ÄôÿÚÝÃÃ€î£¡0êïÖ°¿ØîÃ o÷¿wu±$ÂYå‚„Äÿ’^Z?Ôu~‚C^°?u
+úwˆ_sûAÌ@KÛ@ç¾ð_Ÿô¯¦Âšù{ü+ö·ûÏZâ?ë_ãÁ ü@6â¢ââ¿Œ¿Ö?ßìþv˜&ÊE \@¦X
+
+Á@ÿ%ü;”šÚ/,%KÊˆƒ¤e@rÒ
+ÁÿÕgŽBxzÃt5@2âââr
+2ªÎÞ…ýó/øußÖpÄ¯éÀ`~0g`zÆ5±ƒÈáÇý6<ÏƒÆÁ#àÇÂT™Ãæ¯½ÛÔHrÑQ×§OÜŒöÇhNÖŒ¢SŽ¸î<{r_)¶íÐ¾ÓßŸ½|ŠY>Ðl3 X³þÎXkM"Öº	‹þà`ó^8G&ÐžœnzšƒõhÙéæf«;Å
+i‡–[·ô½_|¾ÔD¤èŒ×ôÕ‹Ît8¬ ¾¨C­Yý«$ƒÝI=¹0ß»6ªÑq[°èÈP\Ûb9bˆx·µsbžO8&þIHêg.ÍX“.¢¬äYÎø²½DÖùÚÃ›WæÉÆ!5T»÷Çe•Je²4¸0êjd$#OQa<öÜ¢RÌVX&Œšâ©Á½N²pœäœ‘†¤iŸÐrc•{ªf%™q‡‚Ÿ‡H}Œèì˜KKªIGdhõØÔôi¥¼wÓÛãÐNÜ|bÏ“!/¡®¹Uá¦}/Ö;Üä"|½y›‹„Ãc$îbÛû¸¸Tu†FI¿ƒY²–S¨ñvd¥i™)‡wD‚?^ÍêØP*<¢$ñøaiöƒÙ®¹2¿Ê^I•"Ô÷&*¯Ä‰:®öŽ›Qü3uÌÁÏÊ~])ù1ë”î¦ˆ1
+poýYýÇfÀð±2F4Šrô‹2gþ'Ú,ØÆ("ø]ÐììÕ
+¹aR:©! ×9Ì&@ô˜”_y‚Ê¨Ñ£Ý‡Âsé=W¶ÜðÛ¹a8&Ê6½Ðàu“o/¨V©Šiþ(”u§O ¹ý°ßtÃuÀ÷äŽ¾Ÿ¡ˆˆbÎÕ4éñ?ˆfšßÞ•[l;ZHÍ–IÖÓ§X	³¹ˆ¾¶Ý¶¶{ëë! NÐl{|Í}&Wwç“ÏÐ˜´„kP·¶Ëy
+~Žê‰þ^qþú‚—~ªY­âÆ0†nþ|4B6;:·ã”ì™ÑŸ¥—yÞbõº!2×ºÃªräòµÌþÇÅø®ÿ¥I‹©[GuÛDk´_y¥9’_›.°·bZ‰D(œ…“ò¢’ÚªÅ¥]nà.CI¥±ÖvTP·:’@3RC9·lªiïÝ H#Ágää½Ú×:Æn‹8e¬'¨õwqòÞžxik>ç<ØŸÒþj®G'^|[Ï¬óbw!Ý‡5ø‚7¶•ÝÈ¾»—Þ»¿"ÀB<V™	.Oª`Œ;“7!†ë>èZV‚t{Âe:^Ô9—¤ÖZY¬[GÐåËLµ^³/‰þ ôßdxñî¶Eèð aüD›E?žÙ6«¢È	.ô}çîm¼‚ÕG¶ÈzHnèvžgA–©DðÇA£zšäÌYÛG¯ÛøM²Ö£Æ¦ðý¬·“§÷$§Êæˆ&jøÏaÆÆYØz)‚Ž"xy,¯jù©á} (þî˜ó+ÀsŠ=âm&5*KýO¥ù’ƒÝeØ”£@ÔwP¬ðR:žœÙéy"h<ExË[Õ¿Vö¬ñžþ"G{°D‘âÊp“„¸sW—¯$ÀÇbkµküî²{ˆ—)[ÓQhÂiÍ¯¼“§ê>~Òqí¼­¶¬u‘ÇQŠdT6Ž¨±ëpö½±†»8ÕMJHÌmåIb»ÞBBàjkŸá<!Ç¸6¦þcÖÒ–LXŸ)f_¨Kö8æRp,Q—)½¯iÔI·þ¹yë]YÞÏ¢ÜnõÚIå/ÍÒªJ_&\¢UÙTZ,ÅâcY‡ë,]Ö›¥ÒCn:®¹xPÅUSeeîÚlMû‡ZÉÌ™—×úUÐðåpÉUvšÛW*rœuÝ\ ÌŒ9
+˜q /–RˆÔ-”MUŸÜ'ÿ¬|§ª^DóíÑLNnKØÆ\à¬NûÃó¶ÏÙX—l6ø§*±ÁÆs:8Ç:¡3¸#±HØ4„Añù+¶ºI
+Ù<üÎ™`i¤¡¹€|§çcQ* £Âh±{¬5Ú€ñâž¯üý|§ìqøhõÏƒHé.ÜÙžøþR=²;IZ»sIz-–~~"£º­?åãƒP¸nC“Åõ÷­f¯lö»Ë^NÇ	–Ôöòw› ¬.èŠ8?] c jØç›»±³âg½8îŠÎˆ¿q’ªç#DŠ¦Ó^
+…6%ùÈøßw1û%”œ¬¤{ªo¼5b;Ò‚v•ýrx¾¿Œê»…à>Q/Æ™³Æ!çr:Ñ‡R½p,¬_+ˆŠjûê§l~Þö>¸ö‘"‰3hU—”±µ¸h×RSÿê{1Œaj#?FîÊÉçxYZ–Û÷ÁõØR¯7½–ìHþcÖô‘­­ÜÀ‰úó¡HßÁÂi‹Ðöû‚ŽÖ-c†MQdÊwéÌLÂù:’¾)IöXo¼®øül†w= ª&?ÏÏXÐïû±&{»õÚx	÷µ#ê5ÀâpÐ«Éø«l6^¯¢¢æÀ0hïJÐŒÈº%«M^ö{éP-$i/Žü‚@è¹QïU½‹8°ãÂ«WÄpøÃ“·>)!/ÉÍ‰D5øµ4ÀöÚ¸6>‡=ÜTçL°±`+;Å^aò.Þ®gSÜ_xúül€š¬yÖ^¯ˆ.ªÍ¤jdaž#°«Zô»Žnc‡Û-½ÆÝÃÁ¾‘2(†ŽŽÎÍê<>pãžÿhY[““)± ­b1;‘Ü‡…úÔå'J#tÏûÌ„dú•f=ß¤ùÍ[^m•k
+jùí6ò"ÜÜÕ±ÞOóHet=ŸÁrØÐæòIh™©Ý^ÕÂ@‹áÕ­Ÿƒ=€ËeÛôÍ+ØÕx#BúÃöÊI¡ú‚ð´Ñ<-Wƒö53•ÕõGd›(ç.%‰ùUýøÏydIÖ‘ó†(^ÚÁ¬$Anúä•AOs&³dÍVÃ¡Ù˜\Í\Àµ]Ùšûƒœî*€ÃÌ¬è&ÿI©ÚœGrÒùMl–!ŒØ“XÙB¦ûêÚÒòœ&Aû—ÛYßÜr«mâ	©àLo6×¢õÀ3SFü1 ½»}á×-…<¾ƒúÞ+”òÒÏ[r˜y¥Í³é™JF	§(›íÁ%±+õ’WáÞ ˜TîNÌ+U…XK’.E™lØR!7k–šÖ°äLÂÒ|}••6ö¼2’c™Wèh¤“]Ù¢Ñ}©¤ G‡Ç7~/ÞeÊ[=USû0>P$•tIž”‚“ê'úNô•ëìY„´ÚÆ|=ßÌÞBÍ<™f7lŽºèÊB(ÖLåù 'S\®ÁáPCV2]GÅëßX0—ä#uko(+ÝîÿÔY\™Ç1àpS¬›Ž}³½G‚Ü>Ú©§/¨cPn£‘„˜ø¹šIäÑ/Wè×Ä*1m³®,"Ö¤®šä–ÆÁE	!Þ7ÓGü˜¯Ÿ ¬0¦4´•-!EŽ˜Oò„¸lð—„ù÷|gC~W>+Š‰Y)³Ì§&àæI’XÔNj-¶#{€}36še?@/¦ÓLÃ~øÎ/ÙòÇ¬I÷+®ž8&.:µC.ÏÞƒüeµE(›è°×ß”ŸF+Í;?LWµÿÒ»þD”N?zÎ_²ò­4¾“N„oÕÊ1‰GàMö(,¨ 9ŠÁdû^Ž•“÷}Íi&íþ¤øoWO^%$$?Õ^_ì(&òÉãCxó÷6-eu×ÌÑSqØºfïë~#ïßiK9G-|­OeËNäÚ=H4I/ 4ržœµ¤MFk\4¹&Š;àžç	©úZÀ¼Z÷Pât%”?_ä¤–XEé$–’¦Ç®«n+t WƒoÃÎËU¡sÚ«TóºèwÒù	Ò4…N6E«qÓŽ¶ú¸£Pz¸½óMKWù±fË’‚‰µ]Dø¶ë&Ý×Ÿ¦úÔ«uø0Úbhéå…Sš'¶Â¥ÂkùŸ|yyÂ¥½ªè™Ã[ÈcŒöí`^»nBÁ‹‹Y]—Ñ•ŒÍvo–h$e‹qh]£’bÇåxXmì6ˆ&ä´íHxiÄÚxc‡Ó
+N½l¤ûL6¨ÕTbâÍ	Õªæ¡Úÿ`î\¶Qé¾R“åÉ Í=†"»R½nz4{¾e¥þSdp?Â“v‚öëÏ·	‘'ò©›àáªˆÒÐkôW“)Ìô¹ŒœÀlàK×íoA'}ë;ÁŸ+^×A+TŸF—¦Ô>¦èƒõB¬Ú#‡Ö~¦TÖã²dg÷ŽìQkÚ^5.]È2ù¯¿T)Nq»å¨¦ÇöÖ®÷¼÷þÉƒÇæÕ¶ûñ–üœz¶åÉÛ•Ôlzc¾†EŒî}û‡:D7ÜôÍ¸â‘Z–,¶¹ ž˜¢MV¥™ŸIŠˆLCÜ)ÌQ{
+™¹Æ	FžÉŽ¦©ôIæ+Åª]´hf+‚Š4¿‰ÏÞæRì„ëD6›¥îº.Ðû¥U~zƒÜ²V™·eðf±†%Qø†¸ä“´@xýðù !Ú?þp±GSž9-ÈUlJmª¹®IwVž¼àÁÜVÍ	ðŠæÁYTUL³Ù›ÏÛ”gæžôˆµsd‚uVUž³†»”~§0m»o¥hVºV¯[U%ç9qÃL[ø’Xi9mGÔßÊ\†Ÿ¤ Èí]J¥ñG5}þ*Ý©ñ£ññ*®=ˆˆl€ðˆü<Ë1¡ö«±ôDL¿öøä•éb£‰/l.&LsÇïÇ˜Žñ˜v0ÝT!W¯ðåøä;¨æF jzÍË+¿KÐ¸Õn+	iŽÔDóÍêÀàþJæ{.aLk.ê$h­ë‡Ô9á<$÷’”õHÑ™‘—…²#á·L|ÕPw-g×
+X_û}y¡Ð?T8ØWgß¬x’%p#ÿ ´‘¾£µS|ÚX>Ôð¼¨möa¢Û5¢Îé{©†^~]ò­Â§aÎ«Ç/Ò“vz`*w¥¤.ØkOEƒ¼P	/nž]c} šNÎAwF\÷­C±»£‘&æñøÓÜ4ºýmcõõŒf±¤&5oÏæ×®kzo–<_0—5‰Ùë¼k*ö¢#ûj>¤æÂÆF„~6ÒQóæHÿÑÚe/¼gY!lÂ=ú™@L—×d7,eü&«Û®kÑ¨Ë˜aOÇ@,HçÊ!¦Z÷ø£ÄrÃëµ´ÃïíX9žO‡à—ÕS±%êNÃNöÇöî¦éæ%8sŽ×‚S®e
+z‰ºF‡T¥Ù0÷Þ‹»’¬lŠ1†~ÕBíÏ˜}º¾?VQ|7#Î%WîxÍbÎ¸$ tIÁš‰íl“¡pgÃ#OB£wŒÈlÉÅQziB³–F$¹Ø*÷fÖ#†q"’#ï´]I8ÈÚ`Ï•g-ä^·òÛ]Ùß?!|ñçö°é™KË; šò¦Mgë§t°Ä·úàè·œa}'¸Û¬pd;¾¥"©[ªóRýRò€O¿÷æx¬GdælêþF‘>zŒrËKøô1×cæGšQãVV&‡^WÕ‘~nUJ–§Žjª<¼!ÿFý2²-€º=|6–ýŠ}ŠH–ž‹áÒcÖs­ Œ?óyÒB7#TI(ÌDÃÇŸ¸uÄp|äO­ Ê¾AÞè%Š:V<6ÚÀàòq#6Õ0+³/²*ŒâxJ[üù ÿ?àÿD€3Á`ÑîŒø,?dÙ
+endstream
+endobj
+12 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-34 -251 988 750]
+/FontName/QIVRHA+CMR12
+/ItalicAngle 0
+/StemV 65
+/FontFile 11 0 R
+/Flags 4
+>>
+endobj
+11 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 714
+/Length2 3898
+/Length3 533
+/Length 4442
+>>
+stream
+xÚí’gX“Ûš†A‘:„Þ6%i*¥÷"=$)CS]º)
+A@šÒ;Hï¥KADA”¢ÀÁ½çœ¹fŸù3×ü›k¾õç{Ÿ÷YÏº×û}üÜF¦bª0Œ\ƒÆ‰ÅÁŠ u}°,.	àçWÇÂ!8­ÁÁA`0HÕË$%	ßT”–W”” øAê?,ÂÅRþí’©¢àX‚éCp®pÔe‚™b 8ÎORE"A&¿·< ™ÀÀ±Þp˜8  ƒ`(äwA ¿™´ÑÎÜ_2ÌËãŸ-o8öÁ%Hè’StI	Ã ‘~ Ü a€¹<~Éò?Æúo¨þ®å…D@P¿ãÏéßÚé÷ÊÃÇ‚ô108ýw«%ü/6}8á…ú{WA" ªh$$ù—„x …ð…ÃŒ8¨+È‚| ÿS‡£a‡¸œÛŸÆÚ&÷TEÿú¤5 4ÎÌÏã_±¿ÝÖàÿ¬/ÇƒEø‚l$Å%%Á—ÆËõÏ7»¿¦‰†b`´ÈAÃ XØ¿„‡RSÃø>“–‰IÉ‚A
+òò 9YÉ€ÿê3G#<½àÚ YIII9™?U¨Gãþü.ïûÏÚq98ÜdÄpˆ:´OñX6ŽLZò·ŸÉeßõïP!¯Š¿w‹w7:˜¡>Ý2ŠM;âRŽ¬Äë+%´Ùwùù±–, Eœ‡šmVKã6ÄÆèk­¯H´}ƒÇ¾q°©Í–}dõúâ,çÑºÛÃÍR÷sªß:+±m˜©þ½ÞD¤ÒôÑMÍt8ª C¿U‡YÓ3ûUHÑ B¤ÃÏÍ÷UÄÌ'jî¹ZUåÕf‹³¬æeoÜ»wKéÝGÿ€bª‰Ga®Md­:#)o™íCuáˆ§±îÛ¥JØRhgbÚÄ¤‰§6hé˜©œùë_]³Ï¿‡É»M“F’7Ÿ®Ü¦JY	U*ù{?dµê÷»²c†ÎWÑP9…¤Y†v¾m)úÄÎØ»±çYC*åA°¬MÕQzîÆõëšiuÉì˜ëWEÁøÉÝÙŠð±cbd&EÄm^ ˜T#¢Ùd—«^³=£°èèj}¿(/«×vfµT„`[œ"“Â$Âš¥2µÿ$‰O=Ÿe1õÈÄª36óBö øÙêQ¬´ó÷]ësZæÙ~ÍŠÉ“ü+`8sŽg±>šÛã[	å‹úïZ[iÁòú9§]ÕôJõÌÍAâe¯"îãŒ#÷œ«9®áý8 ÊÀíäs¦\nè†^Kê‚]…ó^>ø6*RË‚bHE‹~eÇŠ\q‡h½åôg[fvûT»ˆÌÝ½‘ŽCXp§Œ€­À¸D9¼e¨¯‡óÇö²(™`bz²¡2½cú~,´Œi“ÉÞ¾Y…Óeœ5k“žÐ´ßDoÕG_h¥^Ž(e}”æ`zÁ3¶ ´üp„©<gŽÛ"”¶7Dµšã6I›ŠîU9¡ƒàõÆªyƒÑdèÚùe$‚E“u$B:ÆþK^½GE¯—Zu¾RêÂP¾¾D%ó6µv´C¼.Š­²2ž°Þ¥üö‰˜OŠÈ,¢ P|æ5¸™tpãuBJQó•ò+I7.A(P†ÏÈëÜŠ†ã¯û}ŠîÒdu¯ìF0Ëvž^ða¼·7§ä;ÊN²z²GÝÊïöõ«xºÛ‚y¼Ïõ½.o¨9×â„*Ô?Ýz(Þ˜ÕÒÍ=6»x«P
+JÄÿJ=ŽÞì%dŽ-Z3^lN·ùDÓ/Låg·³Ø¼¹Ã˜^³á…J}ôËS¿NwJLy2NôÇyðöÂ£§Qî#®í6î¦Bñ¨¢n´z-±`.³‚Þ3Ðâ``ýS@¤´¬ø6ÌR4€x¦^gØ7nE:“Qˆ0™ÌlZ•²ùv¾iÿÐ€tW«ÇCò&43úÇÞRþâ÷z~ £—KÊ²èhr²+i}¬¼Q³×OÁ°È”—ˆf×ÈŠjØö¶¼_Ü÷TŸz8;Þ]+Åz4–jØoDÙÑ¸²Ç¦ñCbÞÓ„óð’AàñòÔ·{ðg«1×úuò¨X^|t©$0#û‚†W«÷Ð3ì=ö¦ÐCÀñ”Æ§zÒ½>tíÜÝ¢¼úŽ:\¥YP¾©Û)í®¤Êk~ÖÒ,õ€3ûˆÁ‰ü"n$¹ßÕºp­%–­¼ýl	ªÖ=¼»Z>£·ÁqüX‚º¹ÌU%ÿÄÒºö“–¼¼BÛjÕŒ™õþ½W©UòF(«&¸­©”–Bt»4Bë=àÚ³”ë?õÂÝ¬²*æõ:l›:ÊýKæ5otÞé÷[®;‰q÷•ÂiØ—V'Bãäþx"ä%£F^àCð£fµß/ôt7mI5{>Ö-~SÈò`}sMëÊÅˆ<Í~fªLóDý6}7ñë\+19~pSÄåW”­º°¦pekò\ž‘Š0¸úaŽçK1÷'áÆOmÿrÕ¸kò6Ù|Ë6E½1¥Ý§ûBûeÖ½ßDÐár{€pu’l¶qáõ<ˆóÍƒ¼íäµl£2g› £f·" ôçÇaÂÈ²ÙÜ¬®Pmar%ôkbË†tÿJ¾‰Þ&Ã¥?Gª{9(ÖæE|­9”ìixù£?ðx×ÝÉô«Ú¬¾Ú@MÁ¤i#QÍ8º1Š®f?¿¾œ R=2„ò±géïð¯W’tž?œ[¢;3ª¤gÚáz¸ÝÔ»ë#·<zS;V%%aè\&Lsjx\¨êàÌIªƒ(eîšÑù÷åìÄ*9jwYîõD½—âK~J?-9ü6k–Ú}`5éÞ_
+ÞY	±\Åél7&…ŒWsèÜÎ»ªI
+/˜ÿªÂÒ¿+7Ù ®;Ÿ^Û!”-5|îòÒR9Œ¢Àp»ÖmŠnšX³Ö}"Ü¾ù`ìA«ÏÍPÇ{Ä±)ãsÑPW1þÈ¨/™Ýç&)¦,ëÑrâ^°úëWgÍ°^¾7¬18Šzmuú³´¼,Ý¸4÷est¯¶œáóPÕ(êâ‹Ÿ6‡OVFÇd¢	q˜-„m‘
+ùŽeïM#8Õùa ž)V0ÐÎÇÕ+“ S(w“ÍK2—a÷ùâÔRÓÜ~§Aq€Çèç2m¶hŠ!ÁNÖþmÏ#ÿÅ¶;S„câDDžÀj¹éÜÛséŸ§€»nXwë.¢P'Ë„0ÕZã3\·1‹õSk\Y Älør¥,Å®RñO¬9È:	’mŒÎ"(¸t{o ØW3ÐSÜB£^GCô\k´W ¨L»>òÙGïw´™Î¤ÎnFk—Cã”÷^z“}!ô{öA1OòÇ©³€ãöà9õµ„nºà•bÝER§mÝÅõrl[xÏ]~Óë§æ•qe¨«¥Á‚-ÖÆ&ƒ#]ìó®Ÿ<aVÖZ_¢Ê\Š©“êé?
+ìÒ˜]±š
+}Ù!˜È’\P×§å<HA 	%«M@äi¹ûÆµŸ}keµ…÷Vl+xt©%'íÝâ;‘ª¿E· $Oy*Ì.v¯@sí[E»¤fÃWâ½Ã°Póúo>òÊu4®½HÌò°‹ŒŸ^Îl„ZiYW[zõCOš.u‹yüÆw³œ^¬¢Æ·{.#-ÅçªsôkS‘Nv¶y°ê8Dáü'GXQý<2vdÅ^îbv4SµÂÜj¦lÁœÌ‡¡z[ÃvWîgˆ¶ÌáÍAÝuÔþxçššTgÖ(¥,²ò{BNÿ’â€¿'~~Æ:l¹Ò¨Q£]¿Šæzj@»‹Yó-‹W€19ÊwÞ;<,Ö¶vXÏî±T.ia&øëÙzÝ\áþ…¹¼ÞŠr¾lrwÇ¼Šgg‘ðp‡×‰g‡PÒâ¡jÓQÈn"6(#gs‚œ7Œò\9O`¬JÔ¯äs<ËœŒ\Õ×;Ôæãe.ÞÓ&Éé™ñj;Ý	"&/Ê£P?x,Q“•]ôù¶w9š£‡ÉŒäf2ÇËW;J©Ãèéž¿dß’íNt]rš9jiëš'÷jºU€¯$Uì³¥ûÞå6¿7¡¾bÒA÷>Ø’ ­ÊbL™d…Œ—ˆUIÍÝ¼Š_*ÙV˜ö™²O;Y$ÉË˜Ô‰ñu±ñÕšºß-ê¢øåÔ|vkëy Çž{´´ÖØùÉ¹íO:ëIÕ Õ´ŒRšµô–ä'‰ÇQ¡+ Ïsë¦¶UíØ±=X%T®Ÿ…¸<üI…”Jk{lk–V'5¨‘UUZØ­·(kEÓ"j„LÆ2¸Ü¸!èíòñ¬Ø=õ>¾ç'[Å!ÝÂÑlWÁOUrj•>sã|Þ{bƒ½Í{'€&û@ÏÀçÏä“%_lÁî”Õ¯<!gºFæÙ½£-QæÑj#z/Ji:³æœûEÍ¾àLn··_VÒ,¶ìUjõho9ö*ôŠÝ$óõ1˜èçÊ”•Ž_¬®9QqhZþ,/|Âi_ð² Lú+4öÝAÛ}æ9nmo´^MëwšÒurÈaF¾J}E®Ý<QºÏ|ºi3qÕ®WSâ«n!…W¤øJ‹âLuŒíU×·Rà2™=ñH½5› iä9“]2uÊKÓ’º4sóöx%¯4jä¢Ô¿n20nÜ5{ÕòðÛ–«ÛEçr,†ýlx÷È®ß¢Í7'5¦ºü.{-r1ˆ³ó ¼nÙJ=LÉìyF ÏÝÉ:’Š“ü‹ú^M´¾«bäÖÑÌµëL‰mâÝ2?®”µŽžÙ. ¿âÿè¾Cµ-.DK ïŽqÝ©Â”	›q9Cu‹o?³Ä)??XÇ\™'³Ž=ò‚e›q11âÁ­® H;xö|¬RæQ.,Ñüõ†þÏÇ¨˜µtxÚôÈ×ZØAl—ÐõoÁ·uý8ßÎr^3Ÿà†ê¯©jn¥&¹uÕ|oƒ	Ur!Ø4‚<ºìág›8…_ðäXXì“Iáz/¶cxA»/…©f+b¥ôgÜ‡šHÊ‰L]¶l*›7ùf<¨èU,ï ßD21›|9lu0TE¢ÂZkq„‹TÒ‰´ä3yNbÕ;™ê»Ÿ”«ºŒž¾™¬¹DˆÄÞ- v²®¡ós¦~1½Z°ßtÒÞXö³æñ²™šh}¬u²díò¾¥Ï1. õ2„êxv¸‰«:j¶lwé˜Kš,O9*½Ì16è_Ä$ø :ýr–yñ*{ybœýÁÖ9Â½W®1úô×ÔKgÂØG{n‡Üš¨7Ô¢ 7R[Éªž E¼r·˜Þð—s´™-ä?N%z©Ë7ØÈeFs¦ÉéØŠÛñ[±=¿ÉÐsOÐ7šy[ Þ³­JË\PäÐÌªcŒÂ0ìN&Ÿ]":g¼Öf ¨j¹š™é‘¢ÿº·9«o6—Añ±”S¢Ñ-ýž£Ò(ÆÄ<aßkß\ƒ7dE`)
+­‰
+¬A¶6éL±1NÑ¬*Ýåz¯¾XÅíÅ4¥Öž0ŠU[|ð¼"Í"oëå˜ÞýåÍry™š9¾Êèë9aËË¼'(ˆ<×iÜ]+Ð‹ë‘ï
+‹#)àñ{I|!¶qàÙ’a¯ïËê&uõ›ªEcnA˜\òŽ©vÁó=Âò—iZTÎkímÈ:~¹¬¡žò“*õQ¦€RXºg³Ð÷”D!˜ÄÉÅËµ¯õŸËþ`eP|ÎÏ²¥…~KBW¥Ð(Ü‘o:£wMJåtLÆèÍl>v¬¸3ZúdëZgƒ>™dI'©äÿòüÀÿ‰ (Áâ0(Ö ø{×Ý
+endstream
+endobj
+15 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-58 -250 1195 750]
+/FontName/IJERUK+CMBX9
+/ItalicAngle 0
+/StemV 117
+/FontFile 14 0 R
+/Flags 4
+>>
+endobj
+14 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 713
+/Length2 2095
+/Length3 533
+/Length 2630
+>>
+stream
+xÚí’y<T{ÇEi…FRYN!!ÌèŽeÈ¾u,Së˜9˜33YêfidÍzC¤l—D”R–Æ¥¬•]I^e‹[(ë¤\ÕsïózºÏ?Ïëùïy=çüs¾Ÿïç|¾ïó=?ù8GC2Í4£Q*(U0¶1rÖPªH¸¼¼1$2(4ª	‘b ”¶6
+0dú êH ¥9ªQGÃáò€1í4‹Nññe ‡¿º4CN!©€‘áúo†ˆàH#Q@K !pøúJ à ‚ô ¬
+‡£P ™Bb ^ …
+WûÊ„¥zÓ Íï2™yúÏVHÜäor*›”dbdÐ®fKÛœn²üÇXÿ†êÇp3&Ùý¿ÆÝÓßÚD
+Äú‡æšÉ é€Ò©?ZO€ßÙŒhÐß¦`DˆB2¤ú@ €ü.QÍ(! Ga|o"~ÓA*ùG„Í­}PÃZš:à­”¿ÿÐïM‘Be8±NÿûÕý­Fý³Þ\¸ U‘HÔ¦qóþóÉí‡a¦TL¡ú Ž"•L¤“ÿþedD9£‚ÖTÔÑ›¥4ÑÈð5â©” &ˆ5ÐH$RSCó›JbÒé •ñíl~ðŸµ7es= ’àÙ9»)[<ŽH)/y.6õ<Q×5€ƒ×¾ËB/ç‹?y</mS<í‡[ÚÁÅÅg®–Ñ¿Pa£“Ü´ìÞÌbí+Wòîxàòz	s#aJåâ6W­ñ=ÏÃ¥Z9}Æ}›ðËä|Æé†…–{ï|êÑ0L.'(7´UÇMÜçÁúMƒ­.)çz,WòS»É„«RîÿóÑè/ø*øÈÞ¿©dÑgK®2æÔÉy÷ªžöÙC¿8W¥9ˆfVïZïî‹‰ÔMªçÜ=´ñ\ªËÔjmè¾ÌÛyS§'ƒyíss³eö5EÉõ{ô½,À>™¿í—‡Ùxûtô€+o¡’ß£ ü†_|ë ÙïJÞ²%®„g„ë(È¢îžñŸ÷'Ü.{»Ö].‚È&ÊYˆ½Ìã¤¿3zv»K”3ÞP†º,IpRùOLü„©}0?ß±kÔŽÛU®n!©Öep,Yõ²úvA¥å®Ô=×0F×µN<«^læqKÛ²À©ëLÁŠ¹°Ö\s¸+×Ð·‚'	ÕŒåkS‰»,Žñ¢+Æ7À–ÁLŸH9–7ËC$²W—ë¥g…z{*”,¶Š
+2‚ký>ÑÝòÆ9&?+ü°-QÄá¨³ÿˆo«ÆœZCÞþ"ÝÂxnq¸DÞ·qççÆa–¾ fŽé
+îÜÀä¼AÄ¤PÉ›9Ówû¬k©@tÕO­v_½Ìk¬æ'‘Úõä}9å¦'‹òšÕfMtˆr:¦°Z›L3h×óÅr-²}¿HÔcÄKwÙ¿ªàJ©.CÑ÷2ËÔüÂüs m”fÞZˆZ¾‡n=ÿÖCnâl™u;ïñ|d0ØÕ¬T‚±µc—³æƒÞ?Â½1£Õ-ÙE«ÛÁí¶ÖótrTÔÇGŸYoÕ1ç3Á•[F[0Mž•Æ*‹öåóˆ6L~Œ8¤þ®ÚÐæÀ*6ÞåÂ0Öçôµ´Û*ßÏHÔÐtE@íØs§,7©®íÈ´µÀ‹v}³½Zœø‘ûWŸèú½M79:ãÍ.‘v‘0žòÜ¦¶<1;2njÞ0q›/Ç®fNEûÏ‘Jp­žÇÓ‰'q5o[RiŠØé¯ÇÜX=ÔÈÙsÝ·
+>rÒ Êß}ºp=_è¸e¢Â¡ôÔÀn¥¸¨âž_çkƒN}l Øb<žR=„Z¼Êœ_
+‹ÒöœÓ´R?š²÷8Ãüj4§gÖ~A%5¨´ÙW=á©•‹…~›ô†”Y™U%O¸ø§huÍ¨jŒðI^¦+ôu£›B}SÆëï†Ú8b•™êÒˆA·I·­$XŠ^Ë-ÐžÆ×ÕguzóTi\¢Å-/Öªi~ÈÆõ}N¹s–ÿ–Ó¹ ãa!É¤¨;CÈ½Çƒ>ÑÒÓ¥ü„šÄœ>:ûBì¨º22±ü	_’\ƒz©vb>'åv%‡'Ù|é¸ F9-åíû9Î‰­sb.8,u×Ÿõ_±‡;e×MtÃ—ÄÇ2BÂL³MÛM{‰ú¤:ydÂ$;ÚxŒP
+á±Cc±h9Ñ»¼ÂãÏÃºS üE¯¯§t-$wB“£Á|‡Fb	¢Ã¶ÐU³8”…eXP¡py´Úz£ÀÕ
+Ä¨»òÍ:¤#òìdhßhÕÚez_r3V§xG&Ö:Öq•sâÐ:0Âr‘/î&½Å‰L¢ØòûÏÜ}è¢‘-,ÓJøÒ)àî})lÝŸÛ»– qïôˆõš[-vH“Ÿ~£„+˜<ßìH»¡ò³œe«¡°¦÷ªKùÌø)½È^däNìò¹d˜a^í³!'Ú­”˜á«äÝÔ©Ð™<.À0"DOÛ'ßgÔæ´çDQ` é³=¼õX%AáæÚÊ[ÌòïÏgFùRvˆ6é¡Z©»#úT¡£/{‚«;ÑIôÃ)WÎÁÐP~‘mOúmnu*vz6äI8»PR(ÐÚ‘AÌÙª÷+l°Í¹}ìèn]ú%û®yzÅ%¾DÒ“øú¶ã•a„n¿{ƒø>¾üíZ/ôgOÕõZ­ì7ï~ÛVlÙ*ëÄ–í‚-úÕÁ„Ø/¯¾²Ú¥núñ¾°à­ì€ê=ÓµËžâ{eê³ð^Î:l¸ÍZ·2m£¦Šçá”ñðùy¥#ô”xíQm‰ª
+¬Éñø~•ÔÝa?)w¨ÙÑ‚æìCÀÖLÅOPûóô–	ûšt!ÃW³Pg'‚äK-¬-þ•‹5ÿÄ“!fCbÍÜ<f5ølP3£¸“¨'vdßÊåŸM_Ò‹o¶ýBGCçíó¤ÞaîÏÖB¦ÓÖ<ç‹Ø<ÆÈ»Wêí£9µÎ™ù
+¹—WŽÕKË6P>þØýôû ó}¦ñÙ¡þNìß[’Ê½œû
+æ^až-ývÑLqØ0íÔÉ8˜€µ›dÑF‰ÎFRXÿe_aÄÂŽ=Ôy¯G6ÿÆozãÄrC#<3¤å‹ïÉ\dÕ•uFg§ ªžõEéBô¾›¥M½´¾õÄ÷{¡k{‹.›'ˆ]ÐÄ¯=Ý £ãx"¯èÖ±g2?Üi‚Iè˜ïÊ)½¢"@]7òJ“l_=VeÊ‹,^Mœ†]©aê‘“LÙ²[ò‚'®¼i¼ixaE•i¿§¹¶ýÒÈ0Qß.ù‹éoôŒ›q8Ïfs]ï'>Ã>Œ>Æ³\jßÄ”u«Ùò_ˆ	Ür¡¤¥¹+—s$êvÏÕA¥ÖB©ç,DOå3T»=¢èÓ†Vªå„Wò¿¼àÿøŸ A ‘Î ùé~pø¡RÁ
+endstream
+endobj
+18 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-39 -250 1036 750]
+/FontName/GQPUBO+CMR9
+/ItalicAngle 0
+/StemV 74
+/FontFile 17 0 R
+/Flags 4
+>>
+endobj
+17 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 712
+/Length2 7662
+/Length3 533
+/Length 8215
+>>
+stream
+xÚí–UT\Ñ¶¦qw$
+—B
+îî¬(   pw‡àî‚$¸;îÜà$psÎé{{ô¹ýÒ£ßzôÞ/{þóßÿúö\ëa3Ðhh³KZÀÍ!rp{v..!€´ª– €‹„ÅÀ í1sÂíeÌ\ B .AA.€¤«€àâââÄÂb HÃ< VÖ. fi–¸ ’v'(ØÌ jæb±û6ƒ´á`(ÄÅ“ „Á ZÿxÅ q†8¹A,8°°¸¸ P°ÀbµÇâü’¢½% ð/ÙÂÕá?[n'ç¿\ æ¿œ,€¿”p{˜'Àb‰Å©ÿ»ä/Ëÿ1Öÿ†êßÃå\a053»ÄÿÓëšÙAažÿ£·spu8Tá'û·êAþ…¦
+±€ºÚý{WÑÅKÚ[Á  Ð¿$¨³Ôb¡u[,Í`Îê{‹‡ø;¶"pÊkjèJ©ÿ¹¡ÿêi˜Aí]t<þ+õæÖ\ÿ³þ;'¨ÀÄqý5þ½ÿóéã¿­%k†[@í­ Ú.föfNÿ%üw&))¸‡7; €›ïïñðø@¾ÿ«Q×êè
+Q”ð@ Aîª`W''ˆ½Ë?ÁßïýÏÚúw:ˆŒ••M
+E4a£Þ˜^wÏÑêµŽÏk`uŸ¦óÝæ“M_`ÃP9lÂCm5®q5¢Óî™©Å#jýT…ã»oû<=_W®’±ZŽ¶nÝUÅì³O7 qvA¢[Lëù|ÞÆ¨økWù.—4OsC~K•ÀÎ‘Åú¨Ý6!ðœ¬»r"0Çä¶Íþ‡´…1¹g7±¯]Oè³î/	v]ÿ™o
+Ö†k€cÔ¹ý^"3îm¡%¯Ð0W¯Ã_DÉ½ñå1_ºZø,Ñí‚ðX˜]O^ð=TžŠ¢Ž¹)d‘m?FÉ˜&Ï ¼«±;-„^µLef=>èÄ`²^LØÀ ~aLªßºÎr±åb^JÜ÷(Ì	‹ÆÊäø££ „é <aßÙUÖÐ†ò¶NùkkÏô¤i ›VÊæ^.O9Ê'¿¥OŸ~|Oøu|úœ)èŸÊØb0Œ«ýPCKº¨$ì]h<eôWCŠGòA]x˜^UÂ5al”pbÖâãÜTì¤Ëðš	o]éî&üÈ¯•aHöB{r•—²)HH'ÎÌ4„Û{ˆÀñ-¶íÓÛ:M‹@)|F]Îkyv—tÂ+wkRÉÉãí¡¼ŒÜŒ†î+Žê6¢%÷ ÚŽ„º‚[V7I…*íî5I*%ŒîÇÞ^rðRU“M€ØhHo¡96$2¤nq£ìÇLØ‡‹‹äû:„(¹Y·Ô+¼Â@Ræñx¼Oü4™VŽ,ñ„S»ª0’zž áa	¯¢õâ‹¼Á6Õ²¢a‚÷ fÆžd¢æ#yÊ¿FÜÔ0z‰&@Æ¯æ¾rù3<ì®Œ«ƒÖR0å`½ZÓ«gôžsÕ€ÆÍ4«*“ÁXÊFšáóoöP='ß]ÛH¹±	ˆ–Çô‘³11¹v:Û˜õsäsþf©§qÙfTâ°l»-Šc…ã›/›ÑJ[„—X¯ØL¹pžsŽ(Ÿ¿?oü&BS¸‚êÞäÅ^ät¹’ñSî+0ë¿Òš$Ëî
+EO
+Ÿ< d£íçcÆÁ$°‘*N~Å—XI»ì­Kæp÷h"	“òà½áê“½â©Ø!šÐFìxºÑ‹h¿²&:¥ÅÚd—ví[í™&¼|Þo'úRƒºsó’ûùWÄvŽÍˆõwŒÆ?Ü4Ý4³º™‚vR*$­d)ˆ’Yhz%™3e‹ö1¡¨§oÐüœtT7(»év™Í×väšÝÔÜ½úz
+?}q#!êEÉº|xï—È!ÛÑ*Ÿúœ9çÜvÑžtµCß²**é¼­u.(š77^­ø‚èTfÊR½ÈÒGª½¹¼•6Öº3r¨~ˆNHß4 ÉŠÎ:t“úÔ·ø7#¾ó»ßë–Q¾ã)#‚z‡Dà-‡íeé´#à™Ñâfá|ÞŠ(,„15$ºÂx¯y×‹u&lM¹*ZLÓö¨¨	@i
+«¸™»ÐD¼™á½†¡vNÚý\›|Ãuœ‹øè^ŽàÛîQ¦uúøÖiÇ	ð¤YÒÏ{™SØ†0Žô¾hS‡ÜñÏ¥IŸ’ƒ¢ÓñEû¡2ÍÌ’£Ú]ä?ßÞ¹û³3Ã—DIåÅ°f3ØÞÚÛ|ùå9 z®kíAdþ»SÞñ%n(ât_‰2‚»ÝseZŒŒ– +Ubáó&¬ô—}³Ux ‡C'²ì®#r¹„h!›2ùÅlmx˜#¨Å(ñ›x}2–8[›[uÄ _©îð„'{Ÿà6Ðâ—'ªâ{V‡¨í‹>wà#OÏÈLL`R‡Ô¦‰Çæù!ð'ÉŠéj”Õ7ê˜â4>yûÞµ‡^F#º|Œ‹;(_šXYK!Í%'šôÅÈãX“ÂäQHDoï›¢Õ"ãDZ1ˆ×¦"6[Óæ#Ž¾«RÛíøXN$X¬!Ó‡¶ˆ;uö¬˜´T[d{]+šb3ï5´¯%—@­4><h…ZX°ŠËü0.Èðmìa§ºxz£mÜ$ý]\ùH ¸%uñãqv®­˜*éÅ™ÁÖr;ç--„€d ÚDárzÛlhä{ëu1Âï®3'q˜ÊÙº—¦pu¯E*z'N½äòÒÐ¤Ö;‰éEZÄQ3¿õ ×œšgqÞ‘b!8o¾E$Yü47†Ž1çµgÓçâ%Ö\	 }µ]2Á©})¶Õøzà ïõ_º4Ð“søµÄ<q”ªBéÙ±TŠ8i‘¸µÀº:©J€û˜7‘Q×ÂêMtÜ¯×”…7khR*²~âÓ·©°•œm-H‹ZÍüÓÝô§¨Í#Žßfq¯ƒ«W5ˆ”Ùãáv‰êiÕàýYœ¬qó+ñZ\r1²càîÈÜhaÁ•ø$:Ê² 4ÆØ”aì—¥B`­˜sûŽ°î›ƒä€)+^ñ–)ªéè»		¾F Rí-‰æÕ›öý—ø$Ï¡®Ô¶¯SË*h•GÖ ]é«‹æÙD$ZU+i†§·8[0«ñ4šzçoÃ×Çiih	Ý³ˆ9ƒùû5éÚfYÕòÞriÌ-ìò~¿ûÚ¢~d‘µ¾	Ê¾¿¼aú6ãsH9¥¹îMþåMª’ªÐ^Ó& ‹kÙä•›zÒò0ËªÄ‘BUtñ°/’ÒÄÕÏeqƒ8FUõî¸*r‡m`,Q…vÏÌÞ$î”ÆEí3tsjÉïƒ—PÞ'|Óú,bþ @öqƒ†f€øížŠãIš®a~èk£¾³÷ ¹e8PY™í\ã“C…Ýë»O8›Wy£iU€¾ÇÛoo{ÑÈùÅvp…:;¢‚b+ãÉ u¬¬,~½£_@YMC«¯¬£ <	bŠæ”çp:·@kîÔÐo	újè>¡¢/­ÇµÉiÆ>Ãuc#³µ€’ëÜF'…ýÈkÜœUd4mdxFÏ¹„Šúss®®º·ÝÝ5 Î> "ÑF dìb×€Bæ“­{^±Iì$——È#0ÝFÿ‚ïå°!ZÓˆ«I˜+½MOoL‰ü	Y³ÂFé„‡;<ÍlVé^8·ŸiíHVÀß+!n¯Ìopƒï©3?jy ìiÂŽâÎg†Ó2úab¦&æV.õI¥!Èj<V#Q$F B„úšBwÅkFY“›EO•ƒB‹(þðFU|@øæÓ’3Ü!Ò2N9×6Ä
+¨)î ¤½”çŒX·çØn]©T½¬–ÚŠ\6øzµ*¡Ô’•úúZM»"7þÀ-¦`¿o53ð	(Wœ%4ÏÙÂ±WukÍ!$…ÔþSk6±ìkE¡È!àUóB×øðÙÇP©v…Z‡ûÔº£“™ß—óUì°’¥—¶D'ÇNãpý©þ‚™{`ÅQÒ—ø]Ö÷¿¹}Ži‚Ã¹LÛ|åå´HÞd §§\ål$µuÏËa¾÷ðc†M<‚µJ,þûõA“CÏåtpuÑåe™‡(%ÛÜ„^†0ƒ®\/°…âC½W’Ù½žã”‘¤¸eíÒçåY³¬hºû¶–Ëù«Ô;î_iR˜n±¶û«
+=Áìx±ãš+’GûsLFÂ3×âGä6(+1h¸¹ø¤&ò<CÙ£,Þ‚~*=´¯ê
+‡1Ù''ÞcRÊyÉòÿÉüÕ Ggq=øÕû+'ßÌ Ámd<¬i6Ö@EYòÍDåÇ€9 nž¡™õY´y¬YÝNI"ìÛ¹¥‡~à3ÐøðÃNˆp„"òª
+Æiz‰$Gcu²lÒ†fót
+‡ét=	ü Ò;O)¹î°dà2ÍN :'óÇ¯¯‘~åsa¢ùe§ÅhæÒÇ?!ËwÁ=3¯š;À3|ÈˆTú	ßJWÝ8°ýÌê.è§®mý‚¦þ¶š¨Nsg´ÜzéË¤:Ó]-nR_Výåøó—ºƒ‡g£)næJÔ]MÕœql<´“†h<Ï!LÝÅ(PíÀ­°ùfPö^5W>§(`ñOe8ÈO6†Çf*ýì²jê%-ö¡³ÁøÉ|I`¡Ùýdšø*A¬?½ó¸“¦ŒÙ™\úb6Ä=Ó$®´«0|ìƒ«ÓÐSuÊÛ¤'Û“OC¶Œ~fAó$y‹u¸@ot¶©<ðÅ|ÑÜÅBLz¡ªÈ×5s?Þ¸Õ8u»Yçü¦4¾ûs/RåüÉà[ÖÌ(?óâÉ¸f2ñx¥äC¶®ð2ÐpÐ®°{¬Ý¯fYðÁÙæ.”'8¨/¿—<tÉõ!ð0’/,6Ùº¹í–®E ÷:V$dW˜»C!'hj» ô¹÷”¯øD5)¦}ŸÕ5c*2¼aN­˜àÒ+BØ,sÝ	¿ÿžÚE^ix 2An`fŸrÆ#7¾=ª’0½§òçµý ×m•K­‡ùÛÄ|ük‘Z‹ÕJïÓ	ƒ[÷-‚¦o]… ƒ­‹) 12%ë5‹¾?=¾mš"ŠÐ
+qó÷ÊŒ½n-èæ:’$º„S•·~`èˆz£ScÓ¡0rlçqSŽë3’®3^Ýsþ9Ùi¹$§9‚÷nd€ópáü”¦@ÀrŸ`[ŽÃx®-ãÔw^oN?S‹6yoŽ êKkœ‹RM«A²i ÏðvIs¾À:b¡Š›Z¥ìí/?©ì÷ø«^&}ÐO:&ñä“h^ƒUY3^`].å-ÏXj®¦ª}±ˆ0U#Naò7Å”>{?Ë–G”ÒtŠyÞmT;½rúày¶*zÅ~p·;ƒˆ+äÀÏÆßÈ^öHy»âòžêdP-…žäD IŒÚ…=¤Î–ÊÈ¢Ih·Ó@Ò ¼2Š35WS™K5û<NÅÚÓñ/SŠÊ¡n®V^s!ŒÑ×“;×ð½br3Ê#š0ýBÖa×z|ÜÕÏŸÿÈ’B—¨kT\¶Í}ëP§¦ŠÙ[F•
+Oêœç´Êú¼)…£OHM}k™Ü,ŒƒFÙýÄbˆ`úÙTï‹^‘›"Jé¼=ðR²ôZ¢£Gx¦°¼sIà„(TI,¹ub;\^ñ²3W©P‡*Ch÷šÃ7Ú3 /cÔ©²sŽO|;æ³^·êî¿.¾h{Õ±@¾Káë¶õmœ ±•²Ømæ¾®ºàçWºóÚB£xµñÑÍBÂœÏ>ó¥©–GÉF²æÁ["†*Ø5Á¯ØW~€ŒÜ 6ƒdi5³øW˜Ž¿&'´wÃ…°RáÒvSÏ´UçšXu%ýÕíœ\‰}*e<ök~gø'ð«V¯
+óóH¾hÄô|û§DsE{$©pý¢”‹j8Ýµð­JÏÌ(}k°=Ñ¯÷NbIö}tàºï$¥€$Ê´.#2ÄA¾K¯#Ï•|í*šMßˆµO~ÏÕ‡ÈxW†íÕ¦(>Ôq25¤„ðh‡ÑAÐéÿ`R9›?|JþC¹ÍÂ7ˆXp6®gÃ¾¦îöe¿’òì`É¤§¯ñ³^›''À8s4Ë³+6n¡&xâyrH6*ÓRÆàUˆÓòZ¬@¹ ³nQzÉœ$ñ'Ï+@	Y»¤|ü¬\ZÃøï•Â\hðî‡Åpî¸+ƒÄ"i*è":SÑƒ2êðäã åhýdNõrz*ë‚ïªgc"òP÷tÒ#_Zo0åœr-&ÍÇŸlš­,ksÆ‚.sEÂ¿;Ô‡è_´$¯¼°a‹øº“ë@ãæ
+N5&nOËÒ¦bìÃ.±+õ(óÎç4£˜6¯¦œž…ï¹è8«Ì´x
+öŽjp'Ž¢ôÍîH”ÍYÕ¯ „ßÎéut….Q…óÎ5˜Ú{]¢âG°seµ˜l73tøÝ‡·^Ÿ·œàª%KŠ­³ú¹Ó#˜do»âÐÉ¿›½ÉzHíûP°2¹¤Æ)[,NönœR>%IíÇkOŒO¼¦ëÚ	øÖŠ)ïT@ûÎ>Rz°Aè+\\2mX•%£¢¸;Åä»çü¢”§m7ç›—’òÏ¢çpÈ»\à4‚“„BD£še©D>’½ýBRxÎôÛ¥khiHóH!È4Ï=‰0Ïb=b‹<f»çã¢ˆÇ0ø[$ÏóÓ¶«æ=$³NØKö­_‘ükëäÄºÏ4·¢Ï'DB4…y€!$ã×y°«³·òþ;kº¥7´€ò£?Õ’ Óh-(Üðª¾O¡­Ž®krkýg›Ôõu€sŠ¼8cLÖ»;{³åß—Ñið"Oƒ4Çeg(’~7Ú+ßñ[$oŽýåó)?Ãú“<ù©+óyÞÞ8—zÉ ›ge‚qÉÂè6“‹†éöC´ïc_	Þ0ƒmÙQ¿u£q“þp-ib›7“l»0r˜úÉ¢c*Nð;"6x×î½æÞ”ÆÁ±¢	¬žCáåf*ÑÔ7Üþ–p¶¥Ûðv×~üx\×1¯ø ­üÄåy,eßÜŸ}Àý¬Çùó'ÇŠ´¼QÞû‰ýjÕÄ¯åà×‹³.÷9	‰5ºÙâ˜¿¿xµ½X%œØ´N;+Ûái gú¤VP½¸ö£¨jÈ™ï7êy=éP¤•ß¡cÿÌþBšaúsÝeÇž©mµ nÙ
+EÌê«œùiP_©7£³'šÜÊ‘æ‰q›i$Èíè%Õ_s¬Æº™ßÌ¹C¾ÍUˆYzš·.ñ#ï&wåqy8o-T‰Úõ–„u_÷4N¾êÖí<G¶¸Ö|ŠK§9¤ÅSÄ"‡±Ó]>åÚ+gžxUXMiñÓË!ÍÊ¬²ß€e~,FÖ^{ãÒ”y-ÆÌÕ›9P¿-×­°–î—Höõ$\1.n%6Daì™l?ÓûÅá4M¢wHü aä±†§²8Ç7¾Æ[€ýF°ÌF4ÿ‘Pr½þãªgÂ§$ï0hva¿¤ÀŒQìVˆ+ŽÃP4ë¢1°)å·löW‡Í]gÎ7µÑßv” [Ro\‰Ì³[wŽŽ«`Ñ˜Í§»àôö}jàWú…ÕÚç‹™ÙÁHô¤ZéE3ÿÞÉƒ/Ä›¡¡h ,ÚkBÈen”ÜX‘ezCÍ³í`ñ£“ÓÚWÿôé6C:©l™ÀËU&éÎ²Å| v¦u­é
+>*’©ö£*cRëX²¾³Br¾òêLw´ÇŒ PQª:ë&ZQ”äÛñ»²‘HµÕT¥ òH„‚K³fôž§#ÕñÔ–‡™T>¹¹Œ'Ø,tjÿþõ6?=Äæé<¬Î}zóÅ_‚„WEžFágæ¡ª–Žô)ïˆ‡S¹ ¿˜ÜôlF<çäs<@!É{@ZÕ¦òî²·kq,Â9íjœ,‚ÊA|Õô»½bÓé¬]ß#aÇ:¬#5¥!ë{uëwåáb=òS/Äéñ¯¢sð·ŠJ£¬a¤ê»1{>^?S:›ËYï“á§ŠV1¥æŒUª#•wyB}ÀGfzç ^Çy0IbšD?h~UòqÁßÏÓ[buËÈh)*[ž†ò[Ë)8fJ€‡ÛÑÕ=KD5I=·³¬®›˜º¬¼!7¬¯úÕ‚s¿ÑÛ±][:vïÂ­wëŽ5<c *¯í/2Ç«„ÏÊôÝUÒ8ÐüûCûg+4£³Œw^ÜŠå¾”w?š)½UËï+µsŒ)º’¶gÐsÓÁœD9¶DL‘‰7Ñ8—Ùü›•·+|Âx®œWÁ}??tHÄ=âCÅA‡¬+¢Ÿ¬˜fcTZãKöÆ=Äf–;ÈûÄ¥4Wq­)×'ãKBÃ	’ð™ëv"èÃ?1»Å“û	$Ü±$*ûÝÓ¨èD×Ÿž•CgÀú·GwëÌÏJ['&_u0cÜo°¿T5¥€K¤ë	C¨&ÄW¼/êxÀÈ,hðšØùÕz.ÆÎTãU;o‚¨œ7oOO}Ïòün	ó—òRÆÓ•t[bú~ÝÝK>¯12@ieZæëúUýË,•—LŸ‹Ý{wU´¨Q»ƒhhü=¯¿î÷yJsFfÙ¿lâ¦¬Âëû[‰jß÷Œ›J{Î$ýr¦Ç#TJä8_6’”˜ù²¸Ùä79Ó×½Ø>ÒV"²E~.Üs-Â†GˆÖ {ª§Æ¸¾¤;÷büÑr4V„{	E¦ûº+=$¨j”ê$^€¤ÓœDqø›9i}?s.˜„M,?‡€”l	‡Ÿí$K¡ýAnïéy+Ê6%iywò}¨µ^>êî]øwVÕßUY2XøPñµ‰/ÖOf'N of|¨B³$½Ù˜ÌÑÆ;W'j·PKd3’:pk<òÑ1ëŸâ™Ë7u0o¥¤¾³C3A%LRè,f2niå°|ô}ë††wð.„&÷˜F®àüÔTÌŒkÝà(Ðh¢?fNïç\­ÇËÄå™rWÞÎ’D&lÿaÂ›!c‘OõÅu³@šE£OZÏd“[hï*´}®€ŒÇ†O5ì|'<Zµ¬€e —~³Ÿ¢ë:~},™ØícG&žâW)p·%-åÄ&üàËŸ)àöú[¸Éu­gsÅ6:†Ë«K4\ìG—¶ÝÅTI…u§;yÃ«ð^¡\òY3cFsf‰e²t‰ö!Û²àîÖ…ÃøkÝJ ÚÞúÙ/¸T1÷¶EGH1Åd¤Ê'üY;&ÎÈR1,ëF=¡),íN¿HØ·û9m‰M¸7b€#ÆÞ1ò[‘µ¸<Uòí³	Úzx«>%Áo—Ç6£t¢ÌàÙƒã4ó3ÔÄF§åÝËÜÑQgvF_˜zXkqÄ²vûeñö5RSÂµDÑU6‹¸£=ªÌ´yÅ±‡“Õ5#o¾²N' èU&ø€!vb¢@Þ Òz¦vGe©ŠÃN‚WSÂ-œru–íïb/+ÒxMM[g¨zàß‘N™T^Š¸WJ%JG­ÁŒ¸l·«Këü˜	ÓÏs’Ö}g¡è¬ËéÑîþ!”e'?“°<IœQM”Í^~0“ä—²6D¯0iMJcjEŒóÒ]ûÅ"ÚÆ
+¿³:ŸgË¸ñª/WÚ*yÈoýÙ{Ùg9ÒIõÆòr4iá,à•¿›µL¦f\  «U"FP ¶Z²ˆZ·±Å$ý\êJŒó{º¹¨{ñ®Ú›ÁLP#7þ¯‰S^Ý)‘9çe£û]JKH+L‡ê‹béD7g‰‡ˆî…¸svÀ4^²«tt4DL„ÊkùaÆŸ]HöúÖwªËyTÄÑzñ¬¸{Km™Õ\{LþÓIo‰5R¥¤ùyÒæSv[Ø(_iàã/dTXhX8¨ÙD™†ñMæL 
+@Y…VŸc]ÝˆØfêFñÜ[¬=Õþç8Uó:ÓÑ‚‹* ÓÉïŽç.mÑ×îSdÃF*$\ëÙ´Ê<aÊ ŽOË?Ì·\ë„h† …b•Å?uóÛvYÒ“~ÖcHÍ
+ûÕõÛµ}@ýH‰ÚhGÈüw½§bâÊXˆ7
+“êu	pÎ6Wã'wM¸Ñ;ÝY`}í|Œ8›Od°Ø&d!ÈÜL%EJºæà˜š€õ4tŸjÏÅ„Coü\2²@CEÁL’Ÿ?ŠäÇ¯q“c·T§3twœY|gP·Jév>Cò¨FG­D_|\†Ú>÷oô¿îghŸ€50½¯øØ%}ãôDâþ1îÛ6@~,¾SÓ÷s4	­ºõ‹øªŠV¸_{à\ÃèãáÝ|]H³„ÿ…øi2ö§^üp³¯ ÛWÜõv>cÇ¾5"|õY€Y‡`@Çm”kÍ¨õÜT÷ÞØ·Z„‡é§5?–pá›ƒ·_½>ößªê°Q³lÀm.H‘IœOeA¦¯[K<[h]†V©·dN¥þî?óý§JS…¸p&pÜëôå ™”©´¾
+S-¹8I•ÈpUzæÍ¾Ój&â¨ŽåËeG:››Ø.zŠå„®r>2str…µJ0BÎa2Áa’CSéC©Wìá
+~e.nù<öî„JÓ,Y”X‚«D»º‘ó@ÚìH°Zœýcð,Ó]ÓÃ°j dŸQ²7Ðešà¬§eTÚùÚýJÉÑø-èÿòÂúÿÿO€a3'¸™“-Ö Ý÷2e
+endstream
+endobj
+21 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-251 -250 1009 969]
+/FontName/SCGRCL+CMR10
+/ItalicAngle 0
+/StemV 69
+/FontFile 20 0 R
+/Flags 4
+>>
+endobj
+20 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 720
+/Length2 4401
+/Length3 533
+/Length 4955
+>>
+stream
+xÚí–gTS[·÷)PéÒ¤×„‚t¤C“’ !¡(J'Hï]šô& ¤I•^‘"]@¤]Î9÷yîxÏ}¿Üq¿½ãÝk=Öœó¿ÿë·æ^6Ð"¢Ç: 4±¼X,PÓÀ¢ *%š;ŠGb1êP<B –“h"®&W·¼”¤¼”8%%@ûø‰;ÒÉàWøS%PA#Ü‘0( Å;#ÐW&0(
+ ÁÂüQ @…<üóà!‡p÷DÀE))Á` 	ÃNH¥ØŸTÚG,@æï4Üãñ¿JžwÜ€ÿ/RÀ'‹A=ÀŽ”bØ«õW4ÿc°ÿ×?Í5=P((úOû?{õßÊP4õä?Xôc<Â …#Ü1ÿ”š#þfÓGÀ‘èVµñP¦‚qB!  ¿SHœ&Ò7BâaÎ G(
+‡ø+ÀÀÿ	qÕ¹¿Ä jªé	ýýYÿ.A‘¼É“Çÿ¶ýSýWþ¯øª=îHo€èª¿à+áÕø×Ìæ‹i``X8ã€à¡8ÔþïÄ‡RUÅzûˆˆKW«sÉä¤åžýŸJSÒÍ¡­@2reaîîþ¯“pµãÅŽÈ«þ Þåsˆ±>ÿ6ÿGF£])/ÀÄYaØ‹ S™”âÇ¨Õ†ä/¾U|G½JŸê\)}yÎ¤n×Ù};,;½ò×‘	HŠžx¦°©ý±u .èéw3*eƒ_´’U‡s©’g™Tö ÚÆ‘³N¥ÄhK±6êc‹gœæøÐqã³7üaõ†ÜF3Ê1“‡…•0ãU®ÀŽ·ÔÑŸç>¥_†xë¹þ’M!Ó ºôp!Æ‘køú9tŒ#É[%I–ÏîÙ>#DŠY}¿@/(âb?–ëØ3Ï/§	E#…Hä}©£f­é÷µNRþÆ…ßôzæDivõ_Œø·D®ŠˆúÔ¹©’ÊÅŸ¼{	¶lZŒlÑÁ‰}Qh[e0¥¾ýç«‘fëêÿyã]š×¦©’s§;’ÊÁ:§&ê]”^–­ÿN²‹™Ñ\f ­¡zzFŽžA¿ùc®Ä¼´ø½øŸÌ©›äUq]«¤k+ÒKÅ¿¹ÌQá RÅ¾N›€·Ç—úe¿3LÚ¦òJîT\$µÁøÕß¶Ä¾e°¸“bSçÊA<`¿‹ˆ±¾°½&úqâù¬”d—2•c%"Zp3AtËœ™‚(Wz»h„~ åö]AP«‡èdšË±’Aæqi3½L‰lX’^ÄÙ©0ñE“ë›CZœ´‡¨:ŒÌè'Z7 o2v–ÄlJô(/õ1`ÐßJ]ô•é|r=Ã/r—?˜•wNŸ‘>—É÷‹žDöœlZu†•'”‰#Ø.ŸqÌ–V•™×ÕåvR'ú$uCvê?®VžÇæ£ã£—r$`DìAú;jw÷wÑ bÁM–*î‚‡`S2ˆuð<oÓÇ=ÔˆÛÏ<ÇSº7n©w9¬µË×8ä›ìÆ/ò›¨ÜŠéÌÊôè»±ì¤¬;·(¿K­w§'ô„Â\(Ð¤ ‹ÑvÓ/B(ÿ«Äs ø/ûÚ;17Q5ã¸ˆMÊÊ§Iß# ½½ÓVüáÍ>©Ïo\îZå¤õÓÓªù|Y8ûÞRàDer/I½-”w´ƒÈ²µ‹¹ñk œHì[ÄÀÂÀ&Luí˜ÃÍ—<ö­¼çÆˆÀ0/O=í ÏIæÝm¡ºmÂ^CG^-W9ÔG12)ø\}˜saË Â(_óå‘&ñ´‚_Êsv/Íj^ÃñÇô×Í)O§>]x™‡Å>mDÂRü0g"J©¿Í¶+à\æ)Íüc†bVöÐX·±à€Ç ¯e 1AÆºHÁ\H)YØøÅXˆÚðàµ˜Ì O7|Í»¾md;GöçšÞäm§YïMý}\çïãE~îË”šÕ=˜|§¾é=BÐdNóž†Ê}k5EBñÛ¸± 
+Db¿•N€ÄÉƒ91ì‰aû¹EæžðzÌÔ ðQ#Dâ%.hÐ¹ƒéÉmJçö\ªTÅ—¤t)~.¢%Â´#³²k%ZEYèÅÃß_rª¼Û’CéI›º$-»[¾Ü/×<}N„#6©xOc¢§¨½ï)=ÒÕÌ«'e¨Å´w‹•n†HdÁù(´™#q¯ü¨e÷Ò*Š“~Ç•ª+\?%ÝÜámrÞÐëTèø™A£àmø®g`ôWžøú‰)ÿÓî`H†Bì©ÀÜJE'e‰üÎ²ëd/´U
+Ê›]òþÜÁyyäŒ< ¤ê—£oYÆM=Ñ;(yè
+Tëe *Ê­Kþ™ÂM:Â’»š¥—Ø¼ÒU%iå&K‹lØ!Kç;¬ò.ºcêÓ«Ö!ÈAt¾wNzƒTôÅ"X5‡üÝÎ—–L3¸rË¶ª½€õæ‡)ÝÑe;×ÌÙßÝœ÷†pL^_ÖÊ*eŠ˜"iÛXw¦™§v#¹©|7ªG*§®±¼óü|§4PÌÃˆ(¦ù"ÞÛ-Œ{cLg­••fúêXÙžš'Z¾ÂÃÉw²í/®ß_'9Cg:ØfEÇÏ|ŠM2^R|Î7Ÿ Ø÷2†ÎPÃ¯½VÈ) 8sùAæm#æ›Eâky„_:(°„œ_#ÌÀM&…¾¸ØÛßº-W-ÛEtcªÈ/€ïÊ´]Ÿ”½í~¶×Š¯³ýG„aáÈ|E{Ohò;‚\h7×ºôý)#ú²µiJºƒ2À”œ¤þ-ôÁàjÚ£`ÂòmR¶´™ÓÆ®ok‹ó9å¡üb>÷{(új*G˜¢šÅhß±evuŸƒ%{ò>»bõ<¶SL»È‚üé=ú9l_·{hÉ|$9ùæ¼usÓ=ÁÁ1'U6€û2˜®×L¬”àÎßEn'+±Ûß#ì€pÎœ2Ì—h|Ì+}:ëkó¢ûÀ›14Ð(ÓNÕ¬÷i°ur~$ó"æË¤¯¯ÄF9—ßÉ> $n{}Hfã©¬¹;áBÞkaZÌ]ÏÇHh^,üàéëM»®¼¶6?)¯«AJ\¤fiK4øAßh}"ptÖ¶ÁWr”6.zëD2U¾þ*f,=Á^Ùz±!}ê#,ðôÈ!Áâ®ëËÄ£u‘­ý‚q*ÚGûá,ë±´ “B·°}¾¾×Èª[¸S&
+» Ó±3>¯À}Ê}?ä¹nœá3¾êñÅ.8ø¾Â{ÈÁÆW“´Ñ¦ýØs­Íó7Ù„–ÈØx‘©*NÄÖGRÝ=w–¥d'r YˆCOóïb¹ÅöÔ¬lçÕî5½f
+|qNÈºŠ$”4Än¯*¬ÒÄCcÄö‘ž”óªÝ°ÎúÌµM7V‚ÕRÐ¡\¸³„èû¬òÛº žAŠŠíwÂ7Zù*[sï‰¤xÍŽ	¤ÆL—<GC§èÍ¯»É €Fé‰›CgîÞÁœô‹×ëEi™ã¿K…µìŒo~Çñ¶'w¹ãm‡ßfKÊ·U¬~¯ø ’]p´¨-»Ç–ÏKÃS$Æ‡ÿ:°±“ÙÜ"ºÏ× §V“½ü áK¢,<š-1ÏÕ”¶J¢›wþ0³¢Ÿ:‹‚ó ªÏdÐ¢"­7O}Õß¾`b!Ó—ïÏh>r´\ÇÒ.{³¾¼FƒÓÐíM¨VEÉ[47îIÚ€½ûFÙ]yÛýµ,­ïM G9åª$W¥KçÅ·”eÏ–4î×´ÍvM:P
+æ~l½1ŠÙhØ€wÇvU¬X=5¨ðš‹@±;.\8åf.œµ5Rå7‚!Ù3ÉG;}/ï<;¹!•0uÏîÂ‹Éïø¹Ó‡ñ›4©Ž]Y…eR£Cêá—/ètSzpó
+”iò²ÎOß¨Á"	sØzA'ôô ò(t<`}X>©¨ÎÜ9õw<¬_š[Í)øƒú0ºYbóS5ŸÜ«òÝ'Æ"Á¯‰å^Oã9˜ò×3¿,ßZéÍÕqkÕÑÙ&°¸6»6~¨0U‚Yæ+:ÄO6G±gBƒÓ>â~EzUNFlæ«r‰Ò2lßqÑ½[ŸJQèCáÊK«$P¿_ýHAš<L•bU08áñ§ñ‰ í—NŠ'}ªµB6™ÆZ³‡;?? ž>æù™±£¸>Aª2ÅÚ´tC¯¸ËÖôÆàQúŠáÑ¶go±´¬!‹’Ùã­tÿXÝvv&šùSÞ¦iY!•OS0]˜ø³ê‚ª¾^•Ü6ú¾îôÐÁEãÑ.?°î£èÃÆúœ@>`÷”c†ZZ
+òôëü¯c3…òáëK+ûÐcÀ Î"ãàÌ¼’v€"}°âq~v(DT†ý®r¨æ6äiÍ¥š@½`Yl‡à–OÈXRWt”¯bø^>»8#•V]z62×
+7[O„É››Û=æóCp÷eXƒ·Ù¢RŸqÝ²àÊ
+©æ€º"Äsö77Ms*‰Ú~ü|¾À
+µ2|U-~cWµü¬õÂ±DEGbÍvç{íÏyÐ·‘Mâv:õìÐÎ”2·‚$Ÿáˆ3
+zqÐ¬‰ùZˆ¯S«âj²p“UQÐC¨É°‹âÚÔÃJ½Jª^âÞµ®Ê£Š}†uO©ÓØt0irWº^§ztƒ½¤ÙûHþþeŽKâdQŸÎNïHÅ§|á¨+2Óà‚AÜÁ1mÚtz:~´·{ŽN€e½“\<rH˜Žêøª^~ïò•³¤p0¬fŸ30D—ì—cVLvÆá†f=Aðún%ßTZ™7´ÕÛ¬ò‚™òúw¿E4ŒüÖÓ=t¤Ñ_åwƒÖW¬%WæÓCy§Ë¹é:Øôí—v¹s.·›„•ÍÍõ=©³ÛoÕ¢›6Ñ Ú¯GCãÉ$ÉÙ‹™$^ÇIûr$ï¡ÅÚÃ]Ï¸ºm††¯½ÍøJùŒÔ‚ +ŸbÐ!›ó¬¦ÝkÍÝl»6Ø#þÜX7†wýŠƒyJ˜÷²ç…¶ä%ugxÕÄ€]h¼›²^Ï?µtˆfƒÖöøôv<ï:­¼ÌQ$ïœ/ö˜7tE§Òv“Ó}L·ë~]«Yj¨nÍ ²Ö“¬äl.ç}$@=\Úñt‰ã7EÅ@'Ä’:<IÃäU áä¾~×i)Ýš'S2ÛœTt»Œ÷ /óÁ”4ô‘W‡pè|¨Œîp<“µ¿©¤anQèXC»?Ú>!_{±
+Þ‰$6à4ïÙqéeGKXì¬ ¶*â×Ê	Œ—c.å5QÍÍóNu¸³÷U›á—o2%1úß•4ÖdM"é[ë¥´)ßÛ#&õ¶]JµŠjoùHÀâìD[¨¦GK</†„Œ»÷»I7ïÎ¡,%:V¤:Êg?[Þá¾œ—ó£Ð6ó¦ƒ¤Gˆ•?÷®³ ¶ð|»$@Eœqàý‰ªÓá‘Öã³OµœqíáCEëxT€TÒ3Êv¹>tÆ‚u ,«ç®”G<„›ë”*«Fœ-^fè%ôz†âÚÓ5ãde¶]cÅS¢ŽêžE¥Uðl\¸JtãsÏVz®ßÒ FEÆ™^äk‹2øaº™ò>>oåÓéëå]á«ÊXÀX=¬	Qn01V¨EÄŒ°ðJ÷Ì­z®ô¶1û,Ä€ÿ•mbF|HÇQð™¥-G7Õ,ºšÙKnº1Õª±cø­hRz«Ô¹²ïòþ· æ,[?1é[ù²EÍOïbóÄiö¥rO¸I‡XmÌÈçM®‰;¤$ü>—n:Ó·JÛ×{i¢à­áb(Qs£".³4¾•e\mÿeyGÒ0c¤f&ü3Ü'ÓO´bÅ¶Løº5y(rÈMùuÒhkFvÄ&øVŒ~åBZV;pÒ5T,r73É$·yçÀj8|J±`¥3qxô¸>	4¨Í}+–ï­EÌT±Ô°tÁ(|oýÞ‹Úo#Yo'ãÙ·½7B§&^ÂÄï%ß”»±ÐØ™ïüÔØ|cQW|7RA«8òB§æ &t§q`IyÔgÞTßfäO¿¿›Ä>°9§uÆi­î¶5Œ7p‰Ó×~`B›I›Àœ¼ÿ¤Z`¡~¢KžˆÌûúRÓQ\Ý{R^¢L¿ÖÚð,ýlqŒ÷/“lî†f|èùý¾	Kv¼Êÿ:@…4•…‡¦8Up7ùÆðÑ“V!Gšì.ïùH;¥­eôékFÃN»iÈÍñî‚ê“¶x:ÝÓ4Š[öß*£óÉR–‹J&S.B×ÃFƒ`ºÛ[ó¯žRß,})ÞX|èvõ‹Žiä¹p@ãéidÚ’ÇÈ…ÇáVdÈÙY­‰›ÜÎ÷±‘ÚÄS›ÂçY*…Â<Œ¹Œùó½jU¤–Ò¿î’c	yß‰[iÏu£Ê$ß»6SrTøÄ¦a™ïÛ’ˆ£oÚÿYfML@Ìµ¢e‡õ#y„{Îrb˜å¼@ÿË‹òÿü?a C! îx,êîJIùàäñ"
+endstream
+endobj
+30 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-53 -251 1139 750]
+/FontName/FPQMFZ+CMBX12
+/ItalicAngle 0
+/StemV 109
+/FontFile 29 0 R
+/Flags 4
+>>
+endobj
+29 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 716
+/Length2 2541
+/Length3 533
+/Length 3078
+>>
+stream
+xÚí’y<TýÇËV&-²dIƒìfLÊØ*[–ÈÑ`ÌLÆÌc™$Kƒ’}+;E&e"KbH
+õ	KñØKY#k®êyžûº=÷ŸûºÿÝ×=çŸóý|?¿Ï÷}¾çHKXX+Ä]AC"¢W†k zfºöpU ®ƒHKë‘A4G$è£)  G"áÀI_w@Àj Žh¨@¤="‰JÆ¹{P Y=¹ï®cÀI/ŒÃ 	€šâzm…`ÐxÀšˆÁª2 œÄã«ïG| +Ð$ûXe°8pÝqˆÊw(c‚8öSÆú’þlùdŸ-.@v‹SØ¢Ä	x*€Ý *æÄ­iàËŒõo¨~7ôÅãÍÑ^ßã,êo}´OýÃAô"ùR@2`FÄ‚dÂ¯V;ð'œ.ÿ·1Æ4‡9IpÇƒ ì§„ó1Ä€Xã¸¡ñ>à$`EØZÛ CK3C…?>éÏ®G ØPIå~·ÿ¨áÿ¬·ÖCÆ Ž0e¾eÜºÿ|Bý2Í€€!bqwÀš‚&`Ñdì_Âß©tu‰Jj@IUÀá$pLô¯F[ÎÛ4ÖÔ`0Ø±£È*Æ—L	”¿ÁÖÿY»á¶ö‚ ’‘)€Ûî¬(¦°èò¥¾[Ò®úÕ[HmÁç›jK¹‚í/fwá9•{.D†{Z|aí^²ˆ¾±,+~üjée3Íøú%§gTªÈýAy·¦ãð¢FqÌ„R_…›Ê“i0ú±³c™B®Z çÞwóØ\
+©n®QB¸r­»ùr]/ö¾ƒBÝKVÙhÔXÍ6L·¿i¢B–óR	¡MëÀ'D-Qåò
+C„³]8¡dÜYnä9ÏÛ±ø„q^üa|Ö©ôÍoS2iö¥ÉV¼7Êö¯·uEkÅÕ²ïê`mö‰½20=`~QäFEÎiÜŸÍ2++úV¤ž&Õm+%mÌXØ–ŒJ{œV˜9aÄÁðÜ‡~1Dxë«€Ð‚¥6áÈÂõÒ|Ê’M©/Z‹GÏ†Œ	{_{½¼Û9ÅII*Kl·†x´ž-aG>ð0JÝÔä óùÎ¸ÜÚÅŠŽ…Õc<§R 5¹ŸtÆ°ƒ’956>‹“­¥­Û­?§Ñ?ÞÊÀuTJ–Î¶¯ÛËí7òMÝÑËkÑÂe¹Ÿ›4CÑœšÑ_b$®¶5úÙ§e^ŸwA¸p ]ëqN¢UAÜ{ööÝ³@; Êm×ÆLÔ˜³wÓiF•se±i‚£µÓ"»ÇN[?Q¨QwLÆú”!j"µ—G›Ç=67¥‹jbòùã(¦YœRo[ÂB¥aV­(·…9ærÁ…ãå†íYu0i?«¶!5×¨Ïƒ,YM‡7¢×ùCŠ¥X7o@^äèØhŽ<Ë—hlÓ‰ú [Žß.ŠÙéöòª‹‹GïhêÔ¢hY?`À¹®ÍÝEifÏ3K¬ùv¸–Â[†¡Ç"èèlÏÄ%&´š	1»ö“|òã%•8DÜ†„eö×y)^M‰Š#=eç'Œq‹Í÷n¸;Åâ¶K>[ìGm¨‹°]}S¾YUçkqyNüü¼+ÀWígÆD¯¡wúByB‡¨¢Æ²nÍYÇ(Éu›Á¢ú'y™ùë
+kdêªœújÆð{? ‹ªe>Ä®çª¼–¹Ý@öQnÆè¬¸8í}¢Þ­gi35?ñé•)\åÈ§²^ÓèÌë¿:Š[ûÔ}ÈñxñÆ!‹#äû±î7•Ç¯L¦¨#f†åað3ªÃµé¾qòµô}~BÓËsHÎé6¹‘\™à®B²÷‹d‹Ê=`øÞˆÔÑá!æÓ^‘Èw_3^>À—ñ#{°Ë¢÷
+–‘ò–|aïK"RÌäÍýìc›û‘Û7½i¯Ýü"ölÙÇ´< 'HªL§×¥£z›!’Õ“ì/Ë°ôpGDœ°ìA#q¾S—/ÚQãïhœk Çˆß$¦-[iAs»*5a)sÅÝKbð‡O†â#«ueŒ§´cÄ‡«´ì®GT­®FýÔ´r{êgîÙNF7¼àâ)zÖ…ó½½*X«?®\Õ©=•PQ°ÑÝ8g˜¹PžS$P ›^ãZñ¿z»Å+¸|P5lÜ[œá©.È“òþäÔ™éŽáOºœç¦%NÌ_€¨Ž<Ó!Ÿ5‚6•Þ®^äS˜‚„à5”
+Hq[í‰äpç¸
+‹f²2wÍ‹£%:ËO~M¿0p§: )!9TMXå$<Öt™¿n¿æyt¤ª¯6óÉ¼§}½7Äp=q=öÖoR—Õv^þrI–%ú™>gáikü4!dwcÛHàTšIó,Äf»—…Ù°™\ŽïàÀÎ#KRÛëT®\øôeÒ½!›èÂ·™ŸR[BÚ4ê¾£À¤÷Z°¤„%çR@…©§âý4Ý·ÅÂAê+%}0?ÕãÈ¦IVè>aû„FE
+vXfÜ$n8ÝŽSÐ£I\h¿Óóìqeè¶Í¤«Ù0†Â·nÐ HâKàâ1‹‚<Ê¹¥ÁÁªÕÏ®îi»0ÔË©¶Xr®Š—;^Wz„¾w@„½^J5uÎì€>Œ`é¥¸ú.¨¤„;‰í¿ˆ˜AÊê<?Ÿvz‡ŒÝtaE}mëŽž7^±ÐyÏÌ´’r_K¢I6‰üûôB‘‡£O£óì‹UxÓXC±éÁž¥šûë¨3:(çg×LjîŽõ›Êý~1‰î!²GËÉHþi[é÷G$ŒÌŒSÁ|VØÛWl®ÑE{î>›ý$>òfæXÆ>þÀ*¢ÂÞvùÄúæSóˆ™ö¬j£w'%¯7Ì/{Ñõí|m×cŸ‰)ioéO»›ÆÔ)MÒ/ýy„š9üin.yòÌŽºÅ{‹s[u×ñ'ÌÓY`èÓäcl»j×u‰O‚hÜ&ö]#Ï1M7FnK„•q( &Û8;P]©R™Ã(>Í1Ô“Kw[¢I¨z3´¥òê2-¤24ê—ÄdÓÇÓ†ŸŠÛ²²Oð’æ¾Nƒ£892‘PÝlj‹®³å¿}ðò›‡™Ãwm“Ë“>fl³cÙmÏ’ñQ}kõk­Ó~VæŠJÒ@µ;s!’C§³ZtßÊzýPš&§Lš#ŒÌ~éU"~åy±†Êµ)’¹&å Aƒ%kÑ	¯óÙ_ú¯ÛÓ…º|÷åh„¥k«•Û®èÈì†¶ÌÝ>‚ž—Ô'Û¦«Iª›Î\Â‡M¥·¨›]Z&
+ÔŠ›tvQÕI*T±1<•ÍuãEÈ·ÓÁ˜2«#bòLéßvä®*æÉm$°¾˜÷Ì¡š€µWê)‡#[Â#^o¶Ö‹”&’…§åQ¹ÂV±©v#œ¯«½ŸKž?N(,ù´ÏÐýE!!°&Ö}-»Ç.êÕÉ€bÓc’œÌ‡ÌBÒu3xg,5—Kf~ö)ÕQ¤M)¼7F;¦·ÝwsŽQýxóNU¯´¢è0+ZÖ'‹òþ‹:’6Iº•ýÒî<qÙÍÐÏ#õÆAsü‘wß8–2ƒõY«+­¸Ò~î(PÅ1{]8%­}ÈäbÚÊ92¯Élý_SóW•îsÙa7[:?³%÷-sxìÄg´VËSÐ
+ÖžÁºô»þåþÍ{gy¾´¥×¤ö-³ÈÄKl¸:44‘nVvÄ}gºúªÆö= “T¼U°4DÁ*NqÛ¥uN-íQÕ•¨¸<ÁŽs±œEò}I–"æÕª$FRæ™kË™b	Ž§6xão>ïTÂ¯Ýu— ùºí#;
+¿e•„Ãó"¾$uÂÖò'Â¶Çê'šŽÚŸ0ÑHàš{pó`0ñÍ,ûi¢¹ò>1®fÍàÞjVÿ®ÞZáCÚ›]&ÍÉBÊ’Z¤EØMpîÀššNÜÐP¨7#Õï…¤é¢GE_mxNa8?.z–ò<WO¹”ýö_^ÿüO`ð šL!z¡ÉžÈ? 3ÔF}
+endstream
+endobj
+38 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-29 -960 1116 775]
+/FontName/YXHVQO+CMSY10
+/ItalicAngle -14.035
+/StemV 85
+/FontFile 37 0 R
+/Flags 68
+>>
+endobj
+37 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 724
+/Length2 924
+/Length3 533
+/Length 1450
+>>
+stream
+xÚí’iPgÇ	¥r( V*‚È‘°ŽH@³j÷! ˜˜]ÂB²	›­uP«§ÅE¹¤ˆ Š‚8#Š”†CêV£ã`K‘FÐ:Å~éô[§»_öyþÿý¿¿÷y_Ó€`Š,ÜŽø
+1‚Q!àÅ
+Ž€@ ¢‚d/á¨óæ€œ!ÀCÂ G ¤3h Ã‘N&[ ^B‘Gyq°ÆËê‹xår0€Å!â*„ËáÁB.ŠR* xðù@Ð»_Ä@"Fð$¦’ÉÀ(— ¶#<#Û½ƒÚˆÅ
+ú\–ˆ>HI.VqkTœV€Šb|) #±d;?¡j5DÅò±þ†j~¸¯„Ï÷ãÞÅÏê#@ùÒ÷¡@$!`	aÇæ[Ã‘98£Á|u#Áá£\ŒÇG 
+ä@íçTì‹¦ p Jpã€X_ŒÌöž¢ß,ˆ]Ä–aþ6ïvNà "! øÑ>[CkÕ˜p4ˆ© ©Œª÷ÃWô¼Õ|0®F1Lp0˜ƒÃ6>¥òô¦ì¤ÐœŠ³“êªA@§;îú«1C%ÈFoÀÁµ´9J®ÇŒ˜½ª¨cQÕ”$á’óN¢¤m¶_ÙŒ±G[n›…7´wõŸ;nyZî×½''HcÐïhtW×Û‘SiÇä
+“~Çž“©.ŸóÛê]ú¯º\öE­É±¤J{÷'Íûƒ›÷©¿P+Æˆ\–fÁ­ÈÑbYX‰‡­‹Võ¤2qç¢`jÇ>vó×‘¼eçn¸†ëûô¬>Œ'k€ESƒmíã¢ ”lÞgWbÛÐê0ÑgôÑn­÷ìëç{ºœ²\÷€6Rºé{ko÷Nï‰Ö²·Îaç*V¦lªj›~”U¥tï$Ù­!ü²l»}ÿ³¡Ö!]y‚m|^c$ý·‡3~o[w,ù	KE®O4é»-ŽèŒ¾Ø[›Gª”9w©„™åÁÉ…©9îƒ.õ:6'gNO„òj&Yâ¼d»,ž_˜Ä¡íú•ánN0ÞÔìÃ'*¶4eš
+¦ÊÉû/õA™eÛÊ†]Bî†:"w¼Q‹)•ûý*m9›íÿœ¹;2ÿâÐ@KZgj¶Ü_É\ÿ<£7wÅ+{6qi³×¢ã§[,Í-ãÝ¯‘H2=¥–½¯2¦|¼þÙJÝ#ÅEqŠ{é¯¯;$Úìv„Î0pØ„º$ß°1õ‡G¤«zo§¢ôF_^ØcŠ¦w0–Ó	¥6Û,PÈrÍ
+ïC¾÷’:¾Y{á<¯È­ùìxù´—‘¯N<ß%:º­Âq‡Á8¬„5°°ÚŒØåê¦4ÆE÷k¸Ù5¹KÌÚÁoV×¦jäSÔê4w;XYÏ¨»¯§¹&ÇVTflNVÃ¤ßs‹¯ßáÝ“åéHÓm¯Œ™ê2s
+uåF?»'ïÕT†§É—ï/¸«ôd¬aÖuáø:uZ§y÷&Çö¤ÊCunõÜôÚ(–R²LF2Â[µ§¿]R|«@ªŸVY¨9¥ˆ~0Þ´˜VŽw¶Í(Ï–±ÖÌ¿›ÙÀÏŒaÛ%šk¹ûP³o1§­šŒ“õ*†µÍ¤V
+<_r£ÌÔe]5ôÂZùäÛÕ¹ùxÓ)b°uçXyÔ†®ø‰¶ËÍV®Êˆï“Q=“9äÈ½êÐÄŒ¾”'¾¿»¶:«·†É?Xsñl1ÎÎ-+½g¹uÂ5áõK…­Zc²Óè*}áK&»JæêãÙ>Iº¼×Žq¾µS$±"!þ{[À/{KQÊÒ†ú±§ºe+.imíÉ2Ÿ9‰ÛÌÝMáË²âììnêÜaØþË‡üÀ"€ËG88!pð2ùH8]
+endstream
+endobj
+42 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-163 -250 1146 969]
+/FontName/VYZCRU+CMTI10
+/ItalicAngle -14.04
+/StemV 68
+/FontFile 41 0 R
+/Flags 68
+>>
+endobj
+41 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 728
+/Length2 1814
+/Length3 533
+/Length 2357
+>>
+stream
+xÚí’{8TûÇ%aO¡¶°µË¹¹DDŒ0hGÊ˜µf,æÂÌ˜h¦˜"[¨\ÂDîD"*¥Ú•Û.e"EÛD”â‘B)—3iï³ŸÓ>ÿœçüwž³Öúã÷~ßïzŸõ]?M‚‘È‚œt¶…µpxo,À¢0{„ŽŽ	Ù0ƒî@dC– ÖÂÂp‚‚Äñcijf‰5C t #,Š	S‚Ù€>ùÕµ°£AL˜D¤x";¢‰‡ˆT€À Á;
+ vT*àõõà± &Q€0‰A˜Ž@År¡“À¶o2ög‹1Yb.@™	ˆ9A€vgˆ÷ƒÄ4ÿ1Ø¿áú~¸S•êN¤}¿ÖßúDLúÃÁ …E°!&€g€“þ½uôpíû®›H…Ivt
+Œ°[Q˜­ßt˜åGB Ì&d"•-ëüžDœß2Úw¯ÎËÇð¿û­ëA„élï¨0Àüe_®±Õâ”˜p$àÇŒÅ÷Ÿ«€ïvs¤“ L§ 6‘™à?…¿SÙÛ3"¹FX3ÀÈØT|Ü°[Í 3‹Ãÿêô¡Ãá‹`ŠÁ`ÌÍ—UR“	ÑÙËBüÉÖdXœEB$DÁ¯?®ÿL£| BWÿ¨p©{¥n:w-fljÇ†ËNÄ/fE©”ÆŸY­;»³W”8…Ï²yô¸¬CÃ¨ìiÜœê†òÌµ	éÌ‹<“Ã!VÓB·—”±ñk3;¥¦Nš'¸M_T2»ÑyÃºîÝÃ·¸oŠ‹Xò‰ÎØÅ½½O œÖ…åpçØtN[µ•äìPÓ?Zl°ðà×éëþ$QÃÉ€v¯=ÚÉbJeÎÍiî¨BTDÌoÁ±WJO…µoÚ=³ 1‘bñj:fÀ’s‰Y™³‹g­¬Ztkiè¸´9Uj!³.å·]ï–Sâá
+øYArý5¿ºç÷d2Ôy’?ë‘>KŸÃùZ”’8vÙÏ×ä|Lò”¿Óç)KÃµT˜¿†&ÍŽX²”­Vo¨»éœöÑÙ¨•ö¡µÉ/ùÃI}Vu-á?P<§§.¼1¤1›ÏêŽÅ·KIØÈhn¸Söòõ>¡Nž­°cf{K½m¥\”P<¥UºƒËÿ)Ýÿ3LÖLx€—M»ß<¬åWÛ)ö<ÞŸyK¯„cªäž¾ÏTy·¿Ví(\åº´IÒO†óˆ1qã—bk#ðW½àçkCó¼U_žh®g	^0ð®ùìËJF÷lÿyÍ¦üìQYjö~îþð‰{‡Ì9àUF˜]^ªÈªsqüƒž¬”1û>wý²RütäR¢%ÒO•`vj<å–€üŸÏBˆ)È©¡¥ÑÛè5æÞ
+IÃG¾Ðs³kUýr®:î~Ò:‡F§oSÊˆ¯Ø«`zÃ©Ä!å<+'M}q®AòÕN\ùQ½ÑsÕ"tf÷Ÿ8\ŽÞˆ5ƒùŠ´ãÝfò¯$Ÿ#¦ôç½YÁ;Ú©~WÞ?SÛÆS³þ¥ð<±–aKÉßó!@¥Yý×ƒ"i•-	m’Ì!”å¾píûzã÷ÛX©å³VW$¯ƒ9ó„É´í
+Û­.§þñ¶cò35=‰×¸Óö´–ÑÉŸ­VïV5²5v¼ûˆ¬ÒÛ´ØXóJ7· é?rz®kó3Åråc—:Ë$¨“¾Æ·75¨õi¹'xý^ÏsÌ(Ü6âá×‚SùÁ·cS ÍxØý«E6ênlwÙô5¯"‡œÒb‘¢ÜØ™§
+úZz(ø¡û]Ô=<å”KOÅÞZ?'.o÷åZA¢›æwZñ€=-iTIø42Ùn’Ñùö¼Gë9yÚørav1Û…bØÖt=Ì¶›~çôÃbBËÒ¼u¿Žlz´.-ÅÇó‰°Ö@Oî³œÌ ?îD4Æçï¸¥ûz­(È>1¿DÍjl;%1óFXh­lÈ\ìIŒ÷s³C"µô}òKŽ³’çL£…‹Ju©*c¶c’û3MÍ*ø·9»ªjŸWôƒÂ•¤¾ÕW¥‰.Q¢)ûžf§jÞÉþO®Õ[‹³ÓÚáá·…Éå™¡g—ãßé”õ¬Ùh$Ñ>˜5Ùµrl‹|íhH0ÿÒ&ÛÈs¹m:&Œê¥›¸Ñ‡_†ã®5ÄUúÚYNZÞ9mÚuW¨zæzâ~o28±yw=Öƒ—Ýã-"?åòXór²Éa >º§È5«ZÓ	èQvUìµepñƒ<¾òÆø EsŸOº"ðBßÇâNµ$EÉ¦O6-r²‰´öÚ#R¼ë/®‘³h÷ÚYŒ°C]J¥ñ¢]‰ù	ÅiŽ_z¡UñïKÀ¨÷6'\dìxúf7‡4`\9’2¾§ÀÎuƒñ-›ßÞaï®ô–'iå·D ¾£8¡uú€ÝöÏ¬9¤ZþÃ†ñ3¡
+JóÈÏ\Ûkš†¥óŽãòº¼š5U¬M ·uE$#“qÝ†M‚ÇC!ŸfÆƒí]›¿ì-œy˜4
+œØcžÒ.ÊúGw˜ì·^y é]'·ê,OÄ'Tëîpm'1¢’“c‚¯”EË´5 ])Z+ütÉMÑ*½ršJnäN2¡w•‰ãŠÖËV†o†çzOgÖª¿yÃ—ÓuÇŸ[ï?Së2ÓªV5c[†¼ìÏ=»k*n¥Ç)G&U^hˆmû-a'4YUºý²5zÉ¡¾ecj#Ù+/BçDKg} 	(øœ˜)¹{rÝs,‘”õÞ€_9üöËúÛæz
+³3 ‹ž¼uo‘–ñ•åÂ3FZ«ÖVßpð¨7X=rÇLûµÌNÍ¨¾ŒÏü:¹—™qfŒCVê;su³Íæ¬{=%¦‘JqñÝ­~.éíõÎ—z¥—ÞEúƒéCæF;wŒeŒ~|óÉdËÄª‹Wï#lÝügµçúßÊÌÔ±õ'yÇ´,å&\SÝ*:*ëœõ„›*Ú¡ñ@ºâ¿cù])­¹{3rx5È‘YÿÓÀÍëÏŸŸ
+µ½ÌÁü—âÿþ'¨‘ÉfÐˆÌPâ®`ãú
+endstream
+endobj
+46 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-4 -235 731 800]
+/FontName/MXMDUO+CMTT10
+/ItalicAngle 0
+/StemV 69
+/FontFile 45 0 R
+/Flags 4
+>>
+endobj
+45 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 719
+/Length2 10115
+/Length3 533
+/Length 10668
+>>
+stream
+xÚí²UT%ßÖå‰'î®wwwww‡ƒspwwwwwM ñÄÝIÜÝI<ûïW_õ¨[õÒ£ßztD<ÄZkÆÜ¿=wP’*«1Š˜;šZH::¸2²2±òÄÔÕYY ¬L,,¢ð””b W £ƒ¸‰«€•—— â°qXYø8Øþyàá)bŽN^  •µ+€FŒö_*n€ˆ½hfâ P0qµ¶°ÿÇÄÌÄ æh´põb Dìì ªÿúÄ jábr·0g‚‡ge˜Í\¦V@xæaÉ8X:¸ÿ«mîæôß#wË?\ š“Òþá4wt°ó˜[XÂ3+:þ³žÅ?4ÿÁþ\ÿi.éfg§hbÿ/û‡õ¿ÍMìv^ÿCáhïäæj(8š[€þSªeñ_p
+æ@7ûÿœÊ¸šØÍD¬ì, ,ÿÕºH=-Ì•®fÖ W›Å¿ÛæÿÉðOrÿ&`VÐV×P¢ÿçú_Se ƒ«º—Óÿ´ý—üß5ëÿ]ÿ“è	Ðcù'`Ö„ÿÜÿýfð«I8˜9š¬ j®&æ& óÿÙøß©DE=}9 Œlìœ nvV ‹ßÿ*Óp :»YÈˆ8YXXxØÙþÝ5s,\ÿýü³ßÿ®-ÿ„caáia¨¦¢@sI³Í‚mTCE¼øQÌ¯Áýe'°Ô™±çÛHýôKh³ÍÞ—òƒ½Íèô¡öýïT€,cpÖTÂ¢ÿ¹ÌFïDr¨÷­&‚°â4ŽÆ‡õ,Ž<Ec Z×l§æ PZ¿.sò‹¶‰–kD.›¢ÊG3Md‡–òª0qWâÒCEƒ™J¦(YÈÄ@û´¸ýæä:ÖfÎßÈPEOyÛ?<™ëˆ¤n6à.0’š*—7ÕÓß2ØîhYåÒÉËÜ‰‚$ÂóÑ‘’¨Ä#}ÏýYš4Ý«(¹óø*‘†À‚kªä„³‚ßñ#üc¥Ÿ‰˜6úõR×`–§T¼ë/õK¼¶À‰/$ä/køÄù#}µ©£@œš.G_©~-Dæ‡Ovü~÷Túšâ†£|DšiåPÄE]âßö¦;FÌ4!K?¡ü~×7ÏmØå#§¤/ãËjŸ~hE°¼&‹i—ï/X{@^3{>E™EÕ†:õš /ÀÝ™¢Úgï„ù×YXöµ³ëAÜÅWÞ´"CÆV×kËßŸã:(MRl'AK—t£>euØ$BÐÙ[>†‰Ò¬„€~	É·Sþ*>ÎÌ|‹Ap7ëÈ?Ô]þjãÈãò—¼àçe¿ÄÝÄÃNæ?Æc^@s^¸ybèiˆÜá”~1»6í°y)É¬l™ln2•¥„`Å3%@YvA‰ê ]ó·‰½ÁVIáp„˜ðˆ†¾Ï^=Yu|ŠâÉâ®ÝÃ™Mä¸ëö¢\ñ-ó&Xd“E¨„	¡‹ìæ€û§+ÉvÅiÏoD§!nÐµž­G¢®Dð©¿˜«ô7CÒ-è…7÷n­»;Ìü:r¾)KÂñ÷œñØ¾îr¾˜s¼7+ñºNç
+øzkª¬MÀ”gÃwîÂJò[uæXráB—ß‡•y,ÖåbúkÔ1HMùÑ¯–ò™9Øü`©2í4ra
+×hã6ÐÝ!´ÌÈ›ëÏ®Õ+µøF¯–‡ü#Ë¥·¯ 9-ÚŸ{;ïŸ=Ù^R²ÙÄ™Ê”0æ eÌ”‹ÃåD½“¨ªm ñà¾ÔÞBÍ:…>Õì²r/ 1ãz(ú!ù®A[ó:÷§åhB¢N\3º<LË½©kø­·ñ½¢cG=@M²]ºË%0E{ù/š|™iÒ_#æ.‚é.éì,!K¶¨ö-Š¬--2êKŠSrôXØ~u€ÚáÌ‚\ìòý.64Ô |ýLLPC~»9?Jy¶^¥ùB‘ªs•Åk(å÷v¬Ð3|xé¢“µòä°ºðïfÉþó[É5–6LÞ«×xÛy	ÕH‰­J?»€°ä
+—$añ“y,w•Ú«cý
+•Ã8µÚÅPb_JÿTÇî0«Bƒ:µ| dåÈ”ÿÅ1åOB!uhÁy@(–ñd
+)rÑyDÝ,IM¦ioÇd¹Z*s_iá|»ÿôQT¹îËIÙ›\„Ý²‘ÖjÈ¨ýÞ<1<vÏ%<ðË<‡‡÷¨J‘GãÓwSKÎ‰ÅñPêo°ú=“¼JFÍû”Ç{L±^Ìzþä’‘Õ	¦Þ’NìùæfY¯Ä©¢¢fGÌ"$¥â2&ÄUžº€÷
+ö¿tžÉóæ$!vKÚSÄ"+ûeõ,o¸Û™’u™xäÆò^9ØU^“E¨â®=¿‚°OµZ[·‘-“1ÜQ‰L‰I
+!oñÄ¿
+I(=ÎÆlæ˜%]QéFHŽªpíøñ4Û8ÿ­È•aª)l¹ôª¿¯¼µ~&¢~hìÐq¡õbB,¡¬µ-ž}Qš)8åÒä«ÊZîño˜#ñ‚€½ù“yÈ§²~>)U~#dE¶@‹ŽåU/xâIÁÀL5ç2ìŒïúDûëˆbÝ—~ß3ÙªñSèÝìÆ8x]Þ»2C­àG&FæÚNôwI_SSfhë{
+'Ý cKýÞŽÇæÜ ¾ºD%v"ì…„¯–¿½\×aÒ ŸG†^¼Eù“’á ¶ÏÉnµ‰Ð(bƒÑ\»QÈÙÀê²|Næ·û0f=¿ïa€<)ÀìÛàÞš¹\óAýìYÞ´ÁÁ)î;I5Oì·¨÷ƒ^‹**î;ËvlzÞ‚_7/¢ìm×T”Z/
+nJA¾‰p›Ë¿uZmOCýHú¶œ¼ò†Á¥C‰ö_°_Rë–/	î
+T5¢_ŽÚSÂ!^0·Ý¥>EÐ]uV´2FæÙjQp	öÑL3^àìàÉŽ›±a=óÀªpÏÄôc#æ!…Ûl•°Üu£ûñBÜ¡6óñÿÀŸs)á(^àiÝ=zÌÀ^xBØÎ7¸£2X›bÙIA!êüUŒzá]Û9JG÷n…ôÿúCqŽG38sÙZYÚV¨£K×B ‚¦ é™jµV•ü)XðÙª_hð)q"bjÇ|ÑzbçÙ\g“ÎÍˆ\/õfkü‹°%Þ˜Ã)ú°ÓåÎ„IœïØC†¼›h¦‹WBã“¿àUv_´á¥å½ G‹•é˜´³gÚ‘Ú’á˜?£R%ÇŠpS•sð³zGŽ´–§^‹ÅÖ{Ùin-Åò/•oúŽsÔLÚ5ø4j"=®êñµíÞh®½|óDp ©)|ûØÂaDVú¯Žªè{°OôŸåÍ'cX™7Æ˜¦ek¦9òëB¶ºÃ°ŸºƒK^­R¨äË\"P›B{¦xõ šytúö_ §VÙJÓ|xyfgËßÉvÅàè|û›Ä³nÇ›8±‰íº<cƒ¨¾(¶?/fæ½óL<žL¡º;#½ªð­`ÑÐee{¤€ôdkƒ¶¦ÍÀ'!<²…êÍ¶æ%jÝŠ†a=S¿ÎQ	Š>20c\òäß¾¨IVE¨õìz†S³Ÿ—©xvMæ‡JÅTJ~å¤üƒYCs!t­MËG‡àˆŽŽ˜ÑŽ¹ò0ò’‘ÙR+*­ouï„âfÙÆaïUÃƒ.6ZM¯­b7+M)n	ÉÐgÕ¼âçÎäqµßá²jQEB¢Øc lçFÈ¾D`GÁ—H-CÃ)¨äv`¤kg1Pò^ñÂÖÌRQ¼C&"Œ—åBTâÞžÕü¦§ä×ÒI®H™ Ä)Ì[ÿ» §‡ökÂ(ÑÝ±@û]/Î%9]þ²žÆ%Ëš(½¤ŠR¤A‚hƒqÉÂÆ ±÷Âà>g¦¢²ÓòZ:¦‚LÛ®ž’‘6Â•˜TÕ÷smE–v(ógKC5s?EíºEÆã1›Nl<ý.kf}oûžÒ*¯£‰¤µn__Í&ÜKIÅß~¾’äC±tðn rµPx8â¢›7º]ƒÙôw™“w´íô`¶‘AˆD¯XÎ(åj'9Ã·™ênã€®ãÉ …ä	En*ù@^ÕR9óWS¤YdøPÓÛB>}‹”ØÞÖPê)¥`ø¢Ò±ÂdïbÊÎøÉNañÊ€‡m³7ÍD|Œ ’oï„·—º_ûg]C>O$å¼FËE˜¿õb±“"×”W	—øÁ÷FK#€ûBŸ$ƒ·mÕ¬³c ¨M)jªóGüT“ÁÏSy¤Gf²"¥Þ‰mþCÊ5ºè1oFG}pÔœ]ÜöXbÓte:ñìyˆ¤5ïÚž™ï$cÆ»Êà¤®:ýë¬7¨QL…V¾`£ìM›<ê¿œ‹êðnnPH°Â±pŒæ â pÆôö*<(¯ÜËÉz/[{ïöí%x:Ú°UWÝÞÆß©É» ö(Ù¨3‹³±†™ì˜f_Ðú¾ÅœORs;™QWŽ…–]Èæ>JìŸ£ò¬Äx:¤¡OÖ#8þ/òæÖá‘C@9húqE\žøøZ:ÿ…¦î­©F2²7ûŒ„fF×Tõ?Ø9p_ÖƒfK]ŸŸ¶ æˆŸC‰„êÏ<:ýCß[Ü»Z—)©×WÞ=«è?R'S3
+?½°yUÙJIUêŸ1rä6pÊb‹ÚÒWgn¾ñ8w,Ûª<h7h;gužè7Å<ÊÞZ­e³Ä§\XÚ¥WÄ½vƒtE6§òKÞ/@FWpØVñ¶tøJô‡m®>ãm¿ø!ÍÜÆôë¸’POèÆBN>Ü±æÃµ£BŒ;œF¨çŒstlí´y7>š•	aT_¬¤¥«lYîŠowóÙë´óõÂ5«TOØ$«*¬ü(
+±¢ßöâŠ—§R!·²H-…\%ÆJàm×ãÛ×Þw4_ö¸•=\µÕ
+’«zZ~qYî¹w¦®Ši=è\Ä‹ù¿jGìªñ¥Sb,}7?Ñ®Xœ®/RaÍK :m,[ÊFjìP¶j}÷ôWôË„ÒË	š	Ž€žß¯#ËHÓn–77+Ñ¦-ÉÿRè›H8¤ï˜®:‰±U–ä	å½@-ò$¤µáMG‰ŒÚ6H¸ÆýÊ²ƒ”7¥´L1ßÝËbÛ7ºÃF*ª•@’áº­O›&{9Í°½†¤h;Tsè,Ì_T-]¬y.E¢U>€“ihf¶{Ø˜å'…A¦?\ýbÿ^íßd=z*Z
+;ÄÎ¦J°Ð·?¨Ïñß¬‡;Æô½‹`á›0\ÈóÖ±Ðï–%—RýÌsBK$îvuJ¨Œ")™gsÚVø½VCŸF•ÝHäF æ¨£’Í]&r¹#Öñ‘±·?±f‚LœEC‰_í‡@0ìbÊö‰ëÚ}[=’e£±ÆG=v>Ò(µ(ÍÝ*”“TêµeŸÔ"K.J“±ºuÙ­¸!“¡ÛEI¢¨²Q[Ë×EÌ¤ ×(*ß^´¥+‘Þ€YŽ|ô"£Ð6¢Ï‚£„™XíšW¡_Â•±=*MÔJ{×wÿˆ‚šnôò?vž¥õz}oDÁŒ«~…0ÇŒÒ5%Ì¦ñ¶ØCŸ]ò6wît_„V‚RR»¾ý•¶À•@Â½µF)mø”	t²)Êgßn\[0Š¿¥ìnÖ¥áA,rfì)DÉƒ+Í;¦jîØ4ó‰ÓU/´ñd#ò®Vký’Š•´“ªß¡Á‚v”–¤£÷ÿ4eÐ½Bð|Î¼M¨ûAÒgc¯¬Ö„vYÿ!I"0ß #Ìƒ“È8¦Õ¡7	·•†¹Ô_ÂÎZYëËÍˆæD-s¥¹—*h %®Õh%ˆ±´¡]üQ9ùÑWô·o}D&Úô¹^>Ft)O¡¾#åN¸L³VÎ/|°
+`&çÅ-YÉŒ.)×â<}àMb‡Üÿ|Ùai µÐ”âAC7XJ½²ÂåY­€þñ-”=F}ÔFÆNNa1<¸"àåh;AÍVÄ~OLko~ö|)Ë>¥ž\ˆ(NíÓÀ¶QÊÍ%Ãƒƒæâs=8y1XË Éýl…D+ÛÝ`NéSX‡@QFåÎx:x–Í´—	OÚ1håø#(ùRçí!èÉ_m¶=JëR ]{$4KQÿÊ˜ƒw±÷
+;ú+' ÃÝ7ÿìòÙûXÇ¸³HÇ´RJ!¥IªûJ¡limS©a¼÷BÄ2KXò’XŠ˜½÷<:8éLˆòÙY–„ý¦¾¦FÂØ@WÃï±¾{@EU¢Ô¸½wã³*D9A»_¢µ§[(O¶lV9|Ÿ›¶Í „ªsZ†e0·Ï³”Ø²¯@‹öå	ZÖRd-747êMm+ƒˆË«:¢bKª)ÏïºÔ}…œÀo[úÔ7Ý3¦/…™î¡Äˆp7s¹¯¡kTÎ¡˜,§%N˜FxÑ$ÂÍ7¦³<Ð„så(VjKõ<á7”Ý5ðÉÛ†Ÿv«ÿ4S{vš’™6›ƒd—….ëYÞÄ»Ë:ð°Õóñx2ní{Xóºô	wd.OãÊG|äYE(N¾Iƒ¾©Ò*×ñ¥B§~¼÷ó]ï‡Î¸uÛó¥j1„ÿH‚Ü,(´€ýŠöz?"vÅ;õL€¬â‚(nDCß·ÌŠQÙK,œrø*ÃØqÑ7–LtñŒ¨e&Ð)sïŸÎoîŸ„,}ídë+­D¦Ü²V”Øòm?ÌòZùÒ`ºBÊ´ž³VH>ç~ÙQ1;!å›Î#>ãªÈãU¤ž®Çœ<§2¤W¤Ò5Ûñ‚ZY^Þ¢ÊêäÅÀÙ†I{…¹BŽÁîQòT4Ô2”¹s7®Ôy0>ãþaQ½ÿP±YÈ‰9ß¹ì>é- í‘6Ôÿ|n¸f„¸t1àN„Åú­OFòê9û—¶Œô…3yiÛªVÛ}½ãÌ¡Ž_†Õ×¾.•þjýg\úa÷^ÙSG¿…kn«l·ó)W ·¦K ~‰I<îÄìú¸7nÒù~U*ã`ÀpÂº5sã»[îuºþäSâVpÏ(3ŽU×LæÙŸ7+—8(Éc[{°Ã+t	üT³Š÷HB&ç»§iOÄ«Ÿö,á.î»›x’BÆ‹ƒ³u˜VÊ*ÏwÇ‘•ŒÖ.&r¿&½/¬nE³Ëâõ[qžÁ
+	‘¹p	dVMµT·#jšù&.Ð	I6ÑÅç¤á†Ï÷Kv/%c)ÅÚV,½
+œ^)£À‡cWò Soˆ»9ƒÝ…ó®ÙØE,ê˜P%I4r03Ú3êá‡ß‚N•ö¬ßóäzÓ+øé!S÷E>ìñ+n×©fÕÂóñJ‰Z(•ª¿ž…O )ƒÒÐC¹!æÝRðÁ+Fß®n,—¾{üI;2‘V%å6¸Á¯ôô÷R´ñN¼þ®¸ýJ¯^„!“$£øçWmÃC­qŽ]{Û.ø'îÏSÆ¦f	â…ôƒ_q\{U	”ï	bš‚+qà=}ãðÚ"a5ê¹£?åIÉ¢9Lg¨úp:Äõ5¼ìX=Ím¼…æ³¼ú“\9ˆ‚—‰o„ã'®`uË Ùdô0SÈÅŠ1–æM
+Ï¹¨RF€Zô€¼Îœ!^~ÅóAj˜mYh”¨ÑÉ'êðÁùY)üo[’˜=%‡a0
+˜{Aä:C5SwdÊ8è!$úz|øÑXmïþ(&Ž¾70.Õ4ªüí
+Ua­=øDáZ«tÇ/ÛÊp-b'¶‘½È§‰OÎ»á|â{”0Û3³t§\ì×`åèFkfäªž3ñURbG|,0Š E®	üe§Ie_ £åJ.ÍòÊa¬^Ã´cUfã'‰-@ŠÉI»Iï˜ì¨ñ\Ô	a_”’e_ª¼<^JªûŠjÓ¸ J¾T˜£È
+Ty4öï”Ñ¨ØÁ7Oãð`FŸ_çâõGqH"é×=ÓseRäáÌÔ¾á:Ç)¤
+~ÿc *ÓÎ¦mHvó°\CÃçÓ	ï“p±9<8ìêì|åiX&Ãþ:‘èÖ0ë^.õíkÉÒô“xKõ¹èîZá>¹ä`g¬»ÿY”é+v@ÉöƒËˆ Ë.â€jZ·&Ò:GKîIa=ÂI¿I¿’uvž<-ˆh Ú(¬]OÜJ@+B~ûÔmt£šc:½­,S]4òróÇ9X/]PÀU,ŸÍ¿¶Ípl³¦by! ÛM£ tç¢èSÛð0@£@ŽSŠÞ¦À ßšr·Ìs³v<j&Y}íæJf=Q÷ÐÀ÷åHÌ ûlœiWâÛà AAóu'ÎÅaý`[ÔFþAúülA|üpãŠ²n9>&c)6]OÙDñ7Ý®™™€2=ÙÚËÐâ¡[´v­æýv/¹.¤èÅ
+ô©.8F1í‡ÊÊ(_ÕlôKîVJE»,\Ñe¿€˜u/º½* î9ˆºÜŠ?¬	@`­Né23{àË¡°”¶Q%’íü—1Ú°%ÒÏË×O¸à^)ú%ÏÓÆW‹c•¬0rqÕyeh›Îë%I°RüYñYÄŠb€XxÔ8= ø…
+©1¯…`&)µšœt¦ÒÝlô{ˆš|u¬Lõ]XÅÊÃ÷qÑˆ#¡åJC´Ò
+—[lä‡Ýdè·xp&]DFØD,ø~H’¡UÞZzÏÀÁ™©¥ó›)Ûp)ª4itMŸøLHÚ'~Ä»Ñ&‘ªm³ô(R²#ÍÍd;)7àÉDkã‡Võå]*+ñågþ2;ù¢µŠÓÜ¦ÊK&d‚Š9YMÆ.ßÉp]#ð}*¯AùçŸrÉñ¼ÐQ¹ÂFÁ·J!2oâ1aÜQª‰ß}]_/!2¹k©¾¶Ï@èÍ2Lxš‰R/Ç—øï‹]çã#J­¨Ñìùõ¥‘“î;¶ô	Êq`Mì•ÆŠ,¶äòKÈãƒ¥4(µè˜¯m©†–g:3s†øÅÐÏ}óçùkpZ‚hÊc²¤a¦wP]FÝâø?ä5¥JØ?Výbàx6.ÑþyÎ$þ´ôƒV9ÀsÓó“¿
+!‰\æWc¢f,Y}'¶3mìÚ|ÖÍáÏ5©øìÙ$#iæƒíuµoÖS€§~Ššxî;ü‚mWPÜ„æ»ÈLI+1æ3šðñ·˜ºôÝÙ¯Ä\Š‡¨6YÛôóüoøoŒìÃqi\Ç¿iîJ „ÒŽ´³B²ŠsZžáwç)p†þÛ%0ö-™52®f~šqÒ8ÃHKQc?WN!pt.%Œy»Ú¿!·åµÛ›B¡\Ê¥@®Î¿§Å¤P.Òû¾=×Ó+V¿oÿ½›H&—‹qJ÷±Úå‘Â[ïÀi¢ÖÌäêF´4±ƒ)RŸ¼Eôzª–Ê³•3;ï%éÛþÁáè¨2øUô5ÈO!SäÊÙÒóÕ˜$xïþùGƒªtWzR/ü7z¶¸™¶¢Î{×ö·Ö$»£8¾Äm	 Âe—Ó!&Ó&;¤’w–›gŸ&\òè}p¬¡œ÷{2\yÀÝÎ-ªcA-Â@•qÆ¢eÚ¯Œ¿ š!rø
+8âÓ¥…ç&iLë—Š`CÜ,íGl*}´ßîd–µàA&(¨dÍ3‡cô^ ¯u6ÅÉ/t³LÞ‘Þýê›ó×Xý)[©¸¼§{˜<˜Q*¤S—Ï@º“1¡[¹Ç¾‡ šC#â®ž¬T?ý«Â¤Ÿ)|·g*¾îÝÔNè·ê¾µ5ÃëÕ+Gé‚Þú-©kôAï¿é^º;ˆ1è¡<ÊQ1d~¸Ïär³<¶—Kš§m¬­®Õrº#B(ÂÖ›?£¬´K¢@Øÿ”f‹¶BÂ¿¡IÆŒÿž£$¯nŠ>Ç†ZY°§64²•Q 'åŒÎËv­á[Á›ƒÃ²[;²
+ ~‘duFÓ'áœ9Û9y½£üõ¶Š‚ë%&%;0l‹³uÙ²2Ýs"^¤TçZw·	¯£ªàkiÄS$,²dAƒ=û7”ãÐ”4eAa¯‰ˆëþ×	ØgJu¿1>Ãë©M>‹íZ—â lÑœ2FO£›gáGƒÑ­‚\Ös{:[‹Ë0Þ¯ËG%tœbdÜè†!ËÛÓxàwôèÆÕ«áó_Óð®AqBM‘^EãÜØ%H'«UÙ›:YGð’ÉžÖçO—;D™Ž6†Éñ…x‚'È\¼}i™.„5#@Â$Ü­vÇ±ÇÑôÖìÏžT¡ã…~3œìž HÛ2éÚW¢ÕÐæÃ$§ŽºCd¹ž&*«“5*(ÛÙ°$j¤ùùs[—Cm%–GÂÕÓ;& ¢w‡4§î7“ÎÝí}´"’BåMOjSàÙá7yA)Z5ÑW}à®_áoºÄEfx×>Þ¡öYx›[DÄÊ1ì<{»IK”>'¹OäÎ·¤_±ùÇ'fW+þÓüËËÊûR¿·z>G%}†º"ñ8:(ÛT9™%IZ;êœ
+ÇùaùÇ¸¡w±Dq¿CUÅÖJ(”R?Íô€0Áòê&XÒ{i¥ ¾™LKñ
+¨­v*ÌKöäßŠ·øDÆÜD‚èD0‡ëÈ3À›Õz 2utg»]B²ÍüXhHC?ú–UˆaõÞyû©ªqáß"I‰ÁÃÓ£Zj*ò…áºyo±qT©æfÉ‰.ªˆíµ±
+à'­S<17ëhâ³;PZ…´`0z^ÊËÑ	]ê|¢hæÊèM9ýW*>ŸVDH:~¢LÙ«œ¥Ìx…6kï´–¼Ø†‘^6Qœ¬ÆrAÓYó‘nÖÜŽÈ!:Lã¢-˜WˆI}˜—û"µ•†¥ÐíRí.ßs0¯#¿V„)«zQ»ƒ0ýù“rG‡‚¢<ZùÒ	ž¬Ø&?õX±‚PanŒ1ñSý]s‰sù(6T†0¾"Mg,k
+œeïF˜#/ÿ,ûë9~T¦ç@æ% W9½§ùFC$b¥ÛnêÛ‘•ÂæàÜNê*K''À¨|QÈJ®TµTUÎ˜vÀï¡®–”BNêé},Ô!@(zgýÑµ¶ÓRÑKGW%
+•¡u –z‹qƒA‚‹.ß^€¼ñ±Sò2zøèï«¡+BÊoh%P:x7Å;3rÈbåÏš¡¿®(U‘»¶™q}kO9–MðËòYnÉÓiÍ¢§òÈãw“-Ø€ì½íá\Ío¡Ö¶I\ÚèãzÊö|1kt‚´F_šÅ²¸`[Þ/‰©KÏñ~ïQlÔfi
+›ªÆ		•"ÏÅ6nYlQ¤îš^»	èâ·7!ÛbMƒ®Õ§´Ý¦üêÈ9kˆÓÚ%˜Njc$»Ÿ 2„émD ë}{éüúÅÏ¶²¿¸š9ç¯òð÷º‰]‘+2.o°¶3'¥ç8ï)†«têZƒ3? ZWË!Úèèæ^MÔÚ2ŸOõª˜6}¿‰Üi¡çl-@
+——Úµž~mM­ñÏ8ç;w˜¤ ëß¤+Ð/µ¿qícauoÙ‚7CÐd ú! {|äíl»*ì@=ÉÎ•ÊéÞ›ùÃïs+ÝŽcwy›º“¬éyÚLS®œ…[:Õîty©Q6Z¥’ qœÚ•q¢Ý?¡À ¸cHÖØPd}}Óû®¢ðÀ­ÿªÝç{`—îesh‰[®´7Þv°ðBðÂ±ºñÆŒ+-Ž½-äXo¢0ÎœèMJ÷›%òàÓl¹V µÙ•bÃç``£	«aæÿ”óÑMãëzùs`¶"Ï^T-6“"ÿð«ÀaÉI\ÒÃkÛ2µ@\Á0Wwñl×«õõÒme‹xI Âu×H·*ÐËß­á*x…ÞÂªˆºµ
+ø¢¤ÀŒMÂ$]ƒ¹¤½-’;\<Ža31QIôþ-Ü×vxEE^ö<}*cßr.3øŠq-Åˆ_XGèû0ÔKÖïDG{ j»’µþ}¨¦Íµàv„1€ô ˜›É>]¶ 1¥ÌCvalå–¬¼•ta¦ƒôgd‘zxvˆ|LÊ“7­¹àL‚q_&Úª”-dr®œ›Sl‹-°«Œ§J©!íu0îŒ ˜ÏöùÞ4ËKµXZ:lÈ2Vòõú(ƒ$Þüs6˜SH^G€*ëé’[Xú9N¾£n~Ùß ï£rp³dÌYv@Ì@$­ÆÊƒjgÆg®wÄÉ,™ÔpÕˆ„Lò:Ig{è®öTØ„®½žTêþºzÄ©w-M,4Ñ°ìFªæß;|H<øv·×K±Oî«ïÑ0àB;/H­}tˆ3ñÕk—øí~^mþÀVà¸8Sü%±™â=öæq§ˆ\² Ëµ»ìkHK‚P¶ö4#œ—s,‚#y0:iÖMô îrÉQàLÃ¢š_Œ;špÄ«TéƒúLõS=í9]–ðÜŽa´âÇ£‡é$ÓêV¯-‰“GGd<C«òd†¸Ùóc_V7ë3äo¶grÂ0Ÿg‚»¾«Z,ý1ÌNâåÃ;=07žéÒ¡•ñ“Šþ		d1á{Nt^ÈÀ`Y>iå®—ñ?8=ùêØZ±m}Î}5[‰•	.©ÓÃh9ˆ¹œÃÑa¸püèööÊ‰OÚÿÞkéïÆñ²ðÄ”Ôgt?ÆÁUM™$¢ý™ÖÏÑ™_%kØV2õR©?lü1¬âz¥€T›;Õx3Ú˜qËuˆ¯þq£€É?³9›ôõaB084Ÿ^_ßÃ1è#à6v–(‡š‘³c)´¼1†¦?Éœæ5nÁ¹ŠýÎS¸%.,6`tÎ%t&¤‚ß–D¹NŠ
+ˆ]ˆÙlS_cBçßó¦Ll±f´QCOÛÉ÷²š“§*³õ¡¯LRñÑ©¬êº#	QByà)â?6i€a±±ì3KB!¤÷áÛ<ñba‘îÊ©0æsög3³°¶ZçªHî±	YƒÌ5(]]¥´uF=îñP©šÞÝÏPÕã¢BX0<Ë±»ÏYñ¨º`®Ü¢ÅKoÅŠ7œtáDùØE¾4G{”‚?eUãÊ¶6„ºç¬¾—Î¡"Ê¹‡±òÄÇæDôLV®‰A¤9M’~—_Bäýrfj¯ˆ×¥)qŽà†z£¿‹zŒ!#¾L·±öáDQ3dPÔ}m¥àÔ Æ:tµ¶âi/}Ò1Eè!5è¬i‰Z!HÅ«®!~ðð²lûù~RLl¾oµ£PÚ´Õaq)¸š‘çUŠ3Ý²öSÕáè>Z¯É¿esŸ¸Gi¶N
+gŽB¯
+Œ _ Ï:ÈèxÂãïŽ«aÝ×Xt–êñPí¸+‡“jYJâÈÙBÁ&¨Õ·Œß.Ìfýþéj;I=\7Ÿœäï—7'ÉÛüô=¼[WŽhÈ™ÉŸ;C¡ï1!´ŽhÑ/Ü¾Æ\:nüÇÎh>cœC…çt<˜ÈÀ.TÊ/0I¥$æZU³5| ãF]yžÄÐ90ÄQg’nb9aÿöGæ»ø	Ýß0ºŽ#‚Sâ{=è^™×ÅP¨ñQ]4‹”ø‘Š÷N¦ÔaeÞó øNBA5œlr¹(ÐEÐ |_ëŽ_É8¶ñ•láÌã,|®ü!Ë˜o$7°ÿçF±²Ï¹:ûà¨ª;Á=Ž0ò"¹|Š´ø³1e[¨ÃÆÉ^jå‹‰,žWûVšúÕsËM &{R;5Y5]1Œ„„±C.Ù¶Á<gª¨ô±E¿M ò°ÉJ×²ãˆ‘Ò '^’‚Çˆ¦üºËFÊ% €7ŽÉ‰ã`ª­DòÖ8ªôe0ŽOmEF~´66O”Õ½·%<6Åýr9hPPBA#ðŒ/HJs·h‚ìßca~úˆ3µœË×š Í±ü¿¼àÿƒÿO˜ÙY˜€\íM@¶ððÿ]„ñì
+endstream
+endobj
+177 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-301 -250 1164 946]
+/FontName/UOSAHW+CMBX10
+/ItalicAngle 0
+/StemV 114
+/FontFile 176 0 R
+/Flags 4
+>>
+endobj
+176 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 721
+/Length2 5063
+/Length3 533
+/Length 5612
+>>
+stream
+xÚí’UT\Û–†	œàÁ)‚îîî®EQ…)
+wNA‚‚\ƒ.	œP@ ÁšsÎ½·GŸÛ/=ú­Gï½ÖœóßÿüÖ\‹IßˆWÁî Q…{ yø$J:Šæ@€ ¨ˆÇÆ¦„€€.pe"	¨Bî÷Ÿ¤ˆ°$P ÷ôC¸89#œJ\¨Ä 
+î„äÐ!!î÷&``»@~| €0üã/€!Ä‚ð8òáá	 ]ÀH€ÄÉÅÿ,( öWÚÑÛóŸ%ÂëžÀù')àžÓîó8B xüºðû~{šÿ1ØÃõwsUoLäþ‡ýŸÃú·:ÈÝæ÷ÜÝÓ	A tàŽ„Çß¥f¿àá°k£Á\À
+N0 øWÊÅKÕÅâ¨ï‚;  ˜äÏ<ÄÃñï÷ƒû€ßDÏHAÝŒûÇúWUäâ4öóü—ïò?cÿŒïÇƒpñXïç+p/¼ÿ¹²ù[70ÜÑÅÃ	`„y8‚ŽÿJü;•¢"Ü÷9¯Ð½¯ Èý=H‹þW¥‰‡ËSoˆ†2@Š‰Šÿ™{#äŸ7á~ËÿŒ¡.÷‚@|!`¼#ÎÎEJ ¥];gØ—ë²˜Ð0i±[˜ÌbâVKæZ@-Çù ÜR£^ Ûµi£ÝÎiåÕÝ§`MqÞ°¬OI_¥÷4;GR#ü˜âËë^×ž.d	_çâëÚHZ'ZL{å2’¤-ù»ˆ.ÍÍÑ9‚º×õœ1Íz¬úsò­ÉÓ§e5`ƒWŠÌá#=McÊîK£KÙw1º¾Únâ¯0Tð	˜¼]x=Tå1•18Ø†Ê	§R:¨f<î)\Gè=¯Þä¬Æx·”Ñ‡a¤Òc›Å|«±†šañ¢4ãí0{¨»8\»KV²>m›¹ö:EÉz"îÛHc¤úw-.rÕÙØAÔe¿ m¸é.²Ø·ž‰|Ö¶W$CÎØržf°£u3ô\R“žmÍ¹uRØDÏÕœÌwpjöàm%.¦u_ÉêaÔ‰™®<×†ºÔþÝÍv–â„£m!!·£ü§Þ_£š2/ßháù	q5È›8ç4N—‡Ë|~¢õšÁŒ…ÎþÍˆ"_•+Qàf ›—¶ÿøÄ%~¸(Ô‚ºTÁ¡æyx¹jRuöÀ¨É^È·÷«>.T}.(¶ TŸƒ“$´2Šõ§ÕîW»÷üX°Á•€/hùãÇ±O„Ý”©ždÉ½¥¹Î¾xtñ„©0‡Hc‘n´(p¶À¾d€O‚[yÖ´3ëÓÙIY±{ª™2âk~¦âój|Õ”J|¯‚WBâ#®äU=E[¿ÐdJ‚W¶ƒ©ËÃv¦èS±H¦+ÃïT14vF—.†	¨•m€(Ù]Ì65
+–£ßÛ×Ò2äü6îwÝrâ{Óé¯ÔBR3Ê2@Q0Ôžá(åÔ¹¿ŒQXLâ}_‰ÜRmów_'ÔC›D3ÙB”8J»Ìõë‘G×ä¼ Ýv#ùÛh¢l­Ú˜­ÈAÚiÒKbj±5É»Õ¬}æ?Ü-}¨Ö
+fÂu¢7Î•¸!¶ûÓ# ²ZÂ¯xeò~°8¥Éþ<¥2À¦å¶¥ÚÅodxÊäN6]wáI|jû;cÊ'{ÕV°}|ìŒó/±ð_"¯Þm…‚DƒH_PlÐÜÊ]¿eµU(Zó$&Ò˜á/Ø`ni¸@½^etxãüe.ªWk‡˜.Ó2ißfn3•m#?¡²Ú2Ý–!)pr›!L!„ýÎrPQÍ)‹S“ÜÚ1‚T3d.õà[¡½Q”¢ýˆŸ¿¥ì|¬2”,ZHð`³üfc•§(40ïl«‡äbÕÐ«7UŒa:p;´ð:ÂnJˆïnUßg±˜¶–…Q.y3ÈA=ª£ I°†_c4 ÑVßëé-WëÏÀEÂ(!“k_mS#pÎm¾ýÉ×þp äxÆþ³¶N¤÷êCÚùY×2Í-ˆœÈJö1Î{bÒ
+ùrÑuŒ—p¶ ižœ¾mÏf?˜ƒè¯ºÈÏ½R…‘”f¼¾qfëG‹ÈïMqŠ¿~Ñ
+ÅßžvO`+|üjí¦ÁË£d ‹Ãé;ã>•£e€ífœ–ñëú¢Ûªˆ„žófp˜Ç¹w;©Yè…ÿ\ŒNãÊ±{tÎãÞ€,éhø{Í.wíAÚJF	;Í‰¡‹Ûâdb
+…‡ÏÝÐð|ÏÜq~P «2Ô3õ©Ì£°ÞröåóZ
+õâpÂ$24QÄä3•Î:{Y}¨æZƒ£¦y©Oá‹w7,‹1{·fº¯<3Ï„î^„„>!Šêž`«®Ô 4%­ÊeM*7Œ¢¶ Þ,]/QŠ”h'<éÕhùÒ@Ÿä8Dq«ÿ žûÜUí–DLå0´Ÿ°¶}V§=±Õ×	ëxl8®e	Í\`Yv§¹ã{.ÃRÑ´ô•AÌ=L-Ý" >í¤zÄ±¹¿ÿ7{3’WCºý¡’©7Qá´áÀÂÎäjŽ &f¤l¸ÓÏMu#Ü-
+_Ö"Ãsiùw{E^rÓ#üÙÜÓïžÁEzÐ¸ƒ½».öÅr·ßš}G‘ý»nÙu¥2‘=’ç|ÀÒ‘Ž Wr‹$dXºæX(Är•³üÙÞš‹å¸Ý	¦N<ÜuÈ˜÷ã’”wÅõc´.ØÔàXË€¢HA´Zi¡©ÄqMª×Ûïdx8žº58¶ý5Mæ—óÒì)…zø'`6xn’^C!)ŸœI
+Ü*š¼öáSÍ>ÚÈ˜áø’k…ÿè±V@ÁÊÑ×DcŽ*p;ÿì®7=×Î´#öÌgÍöýVØ'|ˆñ(Ü«Æ¡}&ÿÀ'ty-gãœù†m=zÛÑ|žP²c íœV½f6ª˜Ž’6%h¡¶^ƒ)E×kÿã.%±([™ÒRÌçµCÖþƒÌ«zA­0)£ÛV%IÔS^-Š–¿¤BGuµ$M…}ˆÝû™³ŠÓÓ&ÞŒ#>€´ÙHW¦“õ /á];©k,b$²}—˜{Ræ¯¦tÖýZÂÑ/¤úiUÅìÌÖ_SºMHøY+üÜ{…w¿-1/e«^ZWŠëC¶‹iÑT¿Ú!»´_‘§åbëÌ`Ì¶ù¾áãj—Hoë›†c§/EaUî˜jØÃJñ»îF,À ÞÞVùÂ­þ#µN§O·xÓ¢?o+ŽãÔW²¢¥„žæå?‚ÆÊDšiÂº»±€Ceh3à¥y"Ùð:óBx›É÷³tV‡'8¤³–j«Â´w!>¿c¤¸Bë;¿„Î,çÄ°¨àFöðs—NËízË«ä™%³/Q¹ítHÛ+Ÿ1àùÉqÛûÞüdchú\¯‰UëÓ€B]$ó£$WØ+Lä˜ÌUÔ_àËHA~’Î¤~,ãX<is„-I‘O‡Ðþsös- ÆG´8MñäŠEžc
+xmŒßÐÖ"7×zr¸¡úfhŒ­õäØIë*‰&Dû\%m´=ä‰´)ºs4…¶Âœ¿x2U£#0EžZ.ÇÞÒ–çŸ}*†·€Q6GóÛSmâqW_¨v†‘¯£Ì!).8w‚o´Ç{æ •%Ïh;FÐfYÒCj#ÓY£D£*èéõñêe¸û: p·h¼éx-gŒeµÇfè ÷Û˜“1ÆàP—dû_÷#¦o]‰Hê#h
+`ÖÛRêvšæ˜wqçUpïL˜Vóg¡[d""Ü9yy4hµnoe—*l%:Ó¬œ‹‡å¼¦ÿ·XväkÅFÛrnäãqå>…´‘Ð4´´>uÉÐÆÛ¨kœÈ;ôv–	ÂGÇ’SÑ‚£Oƒªe®ƒS%±›–¯M¦Š*Î‹=†Ý3sÌ{×ÄíkŽ`!^ä&ú	šy¬AÙµ/ËöbBøqPQBØ_j‘y¥ÏÈÇÙû±*c¹àÍyÆ¹e»9UçÚ?ßQ^L-yŽ¢irYËAA "ö:Qìð´ëÕgÝ0Tƒv×'n¾‰‡‡x3©0ÝÃj2‰KóˆQÆ:Ru±°9ÊÏ‹±¡*‹ÇU4¡z{Òo[þ#Aâ|bÈ
+÷äí=dy¼Òr_Ár¡Ï¯Úeù¿+¤QEdAl,RbŠÊãbDÌ;…ˆ<àN^xeMå¤ðÓf¿ôk›EÍÔ´”WìÄÖM«SfŠ:ÑÞfN$³ý#€¹«™å_ì¤ÃSØ¯»Ö¬J®õWÎòÛÓDiŠ ó3m7¤ Qâ	N¹ËJåôƒ@÷v&•ñ°ˆ„BÎ¡×c@ìÞògú×'Û¹…¤Ó•u‰]|Ã?Útå÷i“Þ"^Š’lp}ü±Î"„ûÑ„AKa/#u¼6Ø†˜ÞŽRwWHî’Õã%µ®Õ/6±¨0Ê*M|YŒ~Ž>Zƒœ+v|›»ÄV£ÜXh–m”ÎÌx?T~§ºÏ©°i©˜{Ö(YáŠû4YmŽüF66 aš`o0I‹ò““ê$á¤îZí%ˆ+ôIÞÐüT¶fÓSQøEuéê73Kz'–µ/À3ì MSKùéf"@±åoÀ¿!õ(”[Ejld!†Z\p¦ÐÙ› U
+–µ"9Àªã¯—>yXÕ,Oð´†”‘üp­È"ó',”¹>h}ÂÉQèÑdÓIîr¼05P÷ì[h¬53øÅ;ÿzKÏ‡ÊÝyåþÐ;bdçÈf-—È5	4§üð`6:þšV—puÍ*N0»ØŸaI9œZ;‰c+TPO3Ï´YR?#5waãé¯NgF…òÿ(|"ïÂýîÙòhCµ1·Š„C²—ïM/RhnIS¹kLãöfÐÓ¾úÃ\òTmJ+tM+hPÊ;×¶XºŸ›ì´½8ÂTGÖ7ë=‡=³>E+A~5õçÞj´'å\|éº-»\ëM/€¶7h­¾òa¥¯|%x×ókž3¹/«ý.£eÂ^/TÜÂ®ù ðz÷y
+”XgŸ_ÙìÎlÏGb³ÜÅ‚VnöýVÔ?RÓ™#›ªôý×T'Ç+µý“…ïªÀ\§FB¼SÈÎËÑ«Ó®*ëÔc«ÚOÐùÓò)V¸K´Í«²ëT‘W9Q˜M/6u‰ÍC&JGž?‘'Îkhþ!_œS"¯$0Ä>0€˜å)¢ï*J“OÖ0x<ãq;ÚtµÑ^ÉkYº™È®2¸ÏoÇRÐ¡ðNÄ¹jtÝÞnMØ»°‡Ã%ï©Þ”ïF=DNÍØÝ!ZD®uË08}WûÍ1©ôìÈ3¥ÔCüG$—U5Þà`6½6œ^!G6>5ÒUEÎug´ÂYWØtHÒÀºy4W8W­¼ÊÇá¥iìsiÅhœŽ+;$vT¯¨äjÄ·†U¼Ø™µKGœÕxÞ˜8Ý–˜äLñ­b/LÂXeðË§™ä[ñt×øû	û‡(øöµé'Ù'–ÊTY‘Í)¡—¯ò5i^7Ö}ùpV7§süIˆAÙîd¿Ï‡v¥óbùZ…‡àÉ„Ï‡,±>yˆ¸¸JÕ)\G¢m`÷"ÎÄiþ+š¿Ãª›î‰â~_­kUrÑ­˜%UJé.ôÝ©Ìrsr=ÎÙã»-ÏGÝTóœ|ŒŒ’)„—r6øý<ðë‚ˆ¸ƒýÍ¶¤kH
+] ïÀ%ó)ŽƒP*éê¥s»Ÿ$c}ßÉ¿ª]dö{®ê9ÓƒÃ›I¨kPò¿¡CLñ<Dï¡“/u¤™¯•ÓLÍ`ò‚_.âqµé˜¼Íÿ•‚õ50¢Ê56"9³º}C?(uèÍÔ«øâ!å”‰'Ìß)u‚öl„Ö–îM2Ö¯F·u×B¡¾´ÓØ+5/Ï/g<ƒ½U²c0*­òÝ.”Dqúêd0Žg3d(„ÍÙõQ8º´Æìr¦°7e¶Z·z™W9ì{ÂÇÇO`YÔ§hèßät‚Gç4ýC¨zj)¹ž“-^æ’"DƒÀ@Ç¤D¢Ûd}á¬“†*»ø4ÔÐ‡gç*ÍZÚÃhu“Iüí=†½Ÿ4ïcï¦8Fk{ÑÌ´¶q‹¢§&EO+ë³sË
+ZžJäLDååà(0A­*P>ùÛÃýsGdé{|OéÆM•0¾g¹Ã‡¡Hãö­VAßÏ?¢Ì¾”žW·’¶ˆ_™ÜD†kz„dörˆ®”	Oð—5V¼ü\£ÄtZÙn­¼0ü=èÁr÷šQk®ï@Zá¦#Fº;Ih‘†Ïw²Í-Ðú’s7Ö ÆË-ÚèË`‡]KS¤äAÄÙäb¿Õ[îu®9ãE÷œ•všRãœ[Dh×2íbI¿=ç/¿ôšŠzÊ8ÔêÐÚSGgÖ\;q¬24*3ÜˆÝ˜=½I‘Î§ßç¬,@xdÕ¿ýÛ¦ûÎÇ…7ªFmi	2ag-Cbé¤E°è÷ZËS—ËæŒýl¨j¡áúÄ:ÛôzEúûµãÕÁ0|q™NÓyÔ'ùï€â	w<¹cæCn,î¦;î<Î«ç¾Öo³#Ü­h$)¨fær@èB¯£Jú9é«Ã×”e'$±YUSËŠÈW6.‡GµöDä2‡tÓÌà½„1û6Õ@!ÞGŒ©5AI-&¤ò>A¡Ù=À’ñØ©m±ò‚â3óŸ·ÑEÞ1À€ëÎIç´^Gþ*Øê>øfyt[×ŒøUA)w5Eïy[^^Ÿ²š Ë#:Ž{£¾˜T÷‹‰mmÍbä|€Fÿê@–‰ƒq,ø’ìØÏªø’øÛ„;\…m:Šj'W#‰§*Í:oÔ©7ÔUqÍIAÝÊO=mâíÒRÛì;«HïqÖô<ü}ºgeµ–â=Êk/1	¨ül©¡Ê’úv+¸ÄM ¢76ê;éþ·LÎ¶Džn¶Öó^òk‰gÐœ8çK‹'jÏªžFš)eT±øEpÎ|yrhŽhÎ—›kTc½êfê6èÅ6&ºGÕ)8LÛëfWìkóÚqÕ¨³8Vnñ8Kø‰§Éôš`öåWPIû(¤c
+b&ú¢èœ,§t-G{˜Èõ´ê‡n>ÎoSc[v8 ÝôFKœ}ºÚkNLº[ßFGïsã¶ÎèëÑÃr7àç1˜”èþ.(Òp*	S|Bú½˜‚ö²˜"Zn‰8ÂVmšå%~—­$%b¯ÂuPtœ°x¦ü_>xÿoðÂ ƒ€H¸;á†‡÷žWž
+endstream
+endobj
+1 0 obj
+<<
+/Creator( TeX output 2008.12.30:1745)
+/Producer(dvipdfm 0.13.2c, Copyright \251 1998, by Mark A. Wicks)
+/CreationDate(D:20081230174603-05'00')
+>>
+endobj
+5 0 obj
+<<
+/Type/Page
+/Resources 6 0 R
+/Contents[23 0 R 4 0 R 24 0 R 25 0 R]
+/Parent 182 0 R
+>>
+endobj
+27 0 obj
+<<
+/Type/Page
+/Resources 28 0 R
+/Contents[23 0 R 4 0 R 32 0 R 25 0 R]
+/Parent 182 0 R
+>>
+endobj
+182 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[5 0 R 27 0 R]
+/Parent 181 0 R
+>>
+endobj
+34 0 obj
+<<
+/Type/Page
+/Resources 35 0 R
+/Contents[23 0 R 4 0 R 48 0 R 25 0 R]
+/Parent 183 0 R
+>>
+endobj
+50 0 obj
+<<
+/Type/Page
+/Resources 51 0 R
+/Contents[23 0 R 4 0 R 52 0 R 25 0 R]
+/Parent 183 0 R
+>>
+endobj
+183 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[34 0 R 50 0 R]
+/Parent 181 0 R
+>>
+endobj
+54 0 obj
+<<
+/Type/Page
+/Resources 55 0 R
+/Contents[23 0 R 4 0 R 56 0 R 25 0 R]
+/Parent 184 0 R
+>>
+endobj
+58 0 obj
+<<
+/Type/Page
+/Resources 59 0 R
+/Contents[23 0 R 4 0 R 60 0 R 25 0 R]
+/Parent 184 0 R
+>>
+endobj
+184 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[54 0 R 58 0 R]
+/Parent 181 0 R
+>>
+endobj
+62 0 obj
+<<
+/Type/Page
+/Resources 63 0 R
+/Contents[23 0 R 4 0 R 64 0 R 25 0 R]
+/Parent 185 0 R
+>>
+endobj
+66 0 obj
+<<
+/Type/Page
+/Resources 67 0 R
+/Contents[23 0 R 4 0 R 68 0 R 25 0 R]
+/Parent 185 0 R
+>>
+endobj
+185 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[62 0 R 66 0 R]
+/Parent 181 0 R
+>>
+endobj
+181 0 obj
+<<
+/Type/Pages
+/Count 8
+/Kids[182 0 R 183 0 R 184 0 R 185 0 R]
+/Parent 3 0 R
+>>
+endobj
+70 0 obj
+<<
+/Type/Page
+/Resources 71 0 R
+/Contents[23 0 R 4 0 R 72 0 R 25 0 R]
+/Parent 187 0 R
+>>
+endobj
+74 0 obj
+<<
+/Type/Page
+/Resources 75 0 R
+/Contents[23 0 R 4 0 R 76 0 R 25 0 R]
+/Parent 187 0 R
+>>
+endobj
+187 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[70 0 R 74 0 R]
+/Parent 186 0 R
+>>
+endobj
+78 0 obj
+<<
+/Type/Page
+/Resources 79 0 R
+/Contents[23 0 R 4 0 R 80 0 R 25 0 R]
+/Parent 188 0 R
+>>
+endobj
+82 0 obj
+<<
+/Type/Page
+/Resources 83 0 R
+/Contents[23 0 R 4 0 R 84 0 R 25 0 R]
+/Parent 188 0 R
+>>
+endobj
+188 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[78 0 R 82 0 R]
+/Parent 186 0 R
+>>
+endobj
+86 0 obj
+<<
+/Type/Page
+/Resources 87 0 R
+/Contents[23 0 R 4 0 R 88 0 R 25 0 R]
+/Parent 189 0 R
+>>
+endobj
+90 0 obj
+<<
+/Type/Page
+/Resources 91 0 R
+/Contents[23 0 R 4 0 R 92 0 R 25 0 R]
+/Parent 189 0 R
+>>
+endobj
+189 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[86 0 R 90 0 R]
+/Parent 186 0 R
+>>
+endobj
+94 0 obj
+<<
+/Type/Page
+/Resources 95 0 R
+/Contents[23 0 R 4 0 R 96 0 R 25 0 R]
+/Parent 190 0 R
+>>
+endobj
+98 0 obj
+<<
+/Type/Page
+/Resources 99 0 R
+/Contents[23 0 R 4 0 R 100 0 R 25 0 R]
+/Parent 190 0 R
+>>
+endobj
+102 0 obj
+<<
+/Type/Page
+/Resources 103 0 R
+/Contents[23 0 R 4 0 R 104 0 R 25 0 R]
+/Parent 190 0 R
+>>
+endobj
+190 0 obj
+<<
+/Type/Pages
+/Count 3
+/Kids[94 0 R 98 0 R 102 0 R]
+/Parent 186 0 R
+>>
+endobj
+186 0 obj
+<<
+/Type/Pages
+/Count 9
+/Kids[187 0 R 188 0 R 189 0 R 190 0 R]
+/Parent 3 0 R
+>>
+endobj
+106 0 obj
+<<
+/Type/Page
+/Resources 107 0 R
+/Contents[23 0 R 4 0 R 108 0 R 25 0 R]
+/Parent 192 0 R
+>>
+endobj
+110 0 obj
+<<
+/Type/Page
+/Resources 111 0 R
+/Contents[23 0 R 4 0 R 112 0 R 25 0 R]
+/Parent 192 0 R
+>>
+endobj
+192 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[106 0 R 110 0 R]
+/Parent 191 0 R
+>>
+endobj
+114 0 obj
+<<
+/Type/Page
+/Resources 115 0 R
+/Contents[23 0 R 4 0 R 116 0 R 25 0 R]
+/Parent 193 0 R
+>>
+endobj
+118 0 obj
+<<
+/Type/Page
+/Resources 119 0 R
+/Contents[23 0 R 4 0 R 120 0 R 25 0 R]
+/Parent 193 0 R
+>>
+endobj
+193 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[114 0 R 118 0 R]
+/Parent 191 0 R
+>>
+endobj
+122 0 obj
+<<
+/Type/Page
+/Resources 123 0 R
+/Contents[23 0 R 4 0 R 124 0 R 25 0 R]
+/Parent 194 0 R
+>>
+endobj
+126 0 obj
+<<
+/Type/Page
+/Resources 127 0 R
+/Contents[23 0 R 4 0 R 128 0 R 25 0 R]
+/Parent 194 0 R
+>>
+endobj
+194 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[122 0 R 126 0 R]
+/Parent 191 0 R
+>>
+endobj
+130 0 obj
+<<
+/Type/Page
+/Resources 131 0 R
+/Contents[23 0 R 4 0 R 132 0 R 25 0 R]
+/Parent 195 0 R
+>>
+endobj
+134 0 obj
+<<
+/Type/Page
+/Resources 135 0 R
+/Contents[23 0 R 4 0 R 136 0 R 25 0 R]
+/Parent 195 0 R
+>>
+endobj
+138 0 obj
+<<
+/Type/Page
+/Resources 139 0 R
+/Contents[23 0 R 4 0 R 140 0 R 25 0 R]
+/Parent 195 0 R
+>>
+endobj
+195 0 obj
+<<
+/Type/Pages
+/Count 3
+/Kids[130 0 R 134 0 R 138 0 R]
+/Parent 191 0 R
+>>
+endobj
+191 0 obj
+<<
+/Type/Pages
+/Count 9
+/Kids[192 0 R 193 0 R 194 0 R 195 0 R]
+/Parent 3 0 R
+>>
+endobj
+142 0 obj
+<<
+/Type/Page
+/Resources 143 0 R
+/Contents[23 0 R 4 0 R 144 0 R 25 0 R]
+/Parent 197 0 R
+>>
+endobj
+146 0 obj
+<<
+/Type/Page
+/Resources 147 0 R
+/Contents[23 0 R 4 0 R 148 0 R 25 0 R]
+/Parent 197 0 R
+>>
+endobj
+197 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[142 0 R 146 0 R]
+/Parent 196 0 R
+>>
+endobj
+150 0 obj
+<<
+/Type/Page
+/Resources 151 0 R
+/Contents[23 0 R 4 0 R 152 0 R 25 0 R]
+/Parent 198 0 R
+>>
+endobj
+154 0 obj
+<<
+/Type/Page
+/Resources 155 0 R
+/Contents[23 0 R 4 0 R 156 0 R 25 0 R]
+/Parent 198 0 R
+>>
+endobj
+198 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[150 0 R 154 0 R]
+/Parent 196 0 R
+>>
+endobj
+158 0 obj
+<<
+/Type/Page
+/Resources 159 0 R
+/Contents[23 0 R 4 0 R 160 0 R 25 0 R]
+/Parent 199 0 R
+>>
+endobj
+162 0 obj
+<<
+/Type/Page
+/Resources 163 0 R
+/Contents[23 0 R 4 0 R 164 0 R 25 0 R]
+/Parent 199 0 R
+>>
+endobj
+199 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[158 0 R 162 0 R]
+/Parent 196 0 R
+>>
+endobj
+166 0 obj
+<<
+/Type/Page
+/Resources 167 0 R
+/Contents[23 0 R 4 0 R 168 0 R 25 0 R]
+/Parent 200 0 R
+>>
+endobj
+170 0 obj
+<<
+/Type/Page
+/Resources 171 0 R
+/Contents[23 0 R 4 0 R 172 0 R 25 0 R]
+/Parent 200 0 R
+>>
+endobj
+174 0 obj
+<<
+/Type/Page
+/Resources 175 0 R
+/Contents[23 0 R 4 0 R 179 0 R 25 0 R]
+/Parent 200 0 R
+>>
+endobj
+200 0 obj
+<<
+/Type/Pages
+/Count 3
+/Kids[166 0 R 170 0 R 174 0 R]
+/Parent 196 0 R
+>>
+endobj
+196 0 obj
+<<
+/Type/Pages
+/Count 9
+/Kids[197 0 R 198 0 R 199 0 R 200 0 R]
+/Parent 3 0 R
+>>
+endobj
+3 0 obj
+<<
+/Type/Pages
+/Count 35
+/Kids[181 0 R 186 0 R 191 0 R 196 0 R]
+/MediaBox[0 0 595 842]
+>>
+endobj
+23 0 obj
+<<
+/Length 1
+>>
+stream
+
+endstream
+endobj
+25 0 obj
+<<
+/Length 1
+>>
+stream
+
+endstream
+endobj
+4 0 obj
+<<
+/Length 33
+>>
+stream
+1.00028 0 0 1.00028 72 769.82 cm
+endstream
+endobj
+201 0 obj
+<<
+>>
+endobj
+202 0 obj
+null
+endobj
+203 0 obj
+<<
+>>
+endobj
+2 0 obj
+<<
+/Type/Catalog
+/Pages 3 0 R
+/Outlines 201 0 R
+/Threads 202 0 R
+/Names 203 0 R
+>>
+endobj
+xref
+0 204
+0000000000 65535 f 
+0000088577 00000 n 
+0000094550 00000 n 
+0000094195 00000 n 
+0000094400 00000 n 
+0000088741 00000 n 
+0000006354 00000 n 
+0000000009 00000 n 
+0000037643 00000 n 
+0000037459 00000 n 
+0000000913 00000 n 
+0000042623 00000 n 
+0000042437 00000 n 
+0000001906 00000 n 
+0000047367 00000 n 
+0000047179 00000 n 
+0000002823 00000 n 
+0000050297 00000 n 
+0000050111 00000 n 
+0000003822 00000 n 
+0000058814 00000 n 
+0000058626 00000 n 
+0000004790 00000 n 
+0000094300 00000 n 
+0000005707 00000 n 
+0000094350 00000 n 
+0000006277 00000 n 
+0000088844 00000 n 
+0000007574 00000 n 
+0000064072 00000 n 
+0000063883 00000 n 
+0000006415 00000 n 
+0000007361 00000 n 
+0000007530 00000 n 
+0000089029 00000 n 
+0000014314 00000 n 
+0000007636 00000 n 
+0000067459 00000 n 
+0000067264 00000 n 
+0000009252 00000 n 
+0000010203 00000 n 
+0000069217 00000 n 
+0000069022 00000 n 
+0000011110 00000 n 
+0000012091 00000 n 
+0000071874 00000 n 
+0000071688 00000 n 
+0000013068 00000 n 
+0000013812 00000 n 
+0000014248 00000 n 
+0000089134 00000 n 
+0000014931 00000 n 
+0000014376 00000 n 
+0000014887 00000 n 
+0000089320 00000 n 
+0000015500 00000 n 
+0000014993 00000 n 
+0000015456 00000 n 
+0000089425 00000 n 
+0000016156 00000 n 
+0000015562 00000 n 
+0000016112 00000 n 
+0000089611 00000 n 
+0000016867 00000 n 
+0000016218 00000 n 
+0000016823 00000 n 
+0000089716 00000 n 
+0000017692 00000 n 
+0000016929 00000 n 
+0000017648 00000 n 
+0000089999 00000 n 
+0000018527 00000 n 
+0000017754 00000 n 
+0000018483 00000 n 
+0000090104 00000 n 
+0000019318 00000 n 
+0000018589 00000 n 
+0000019274 00000 n 
+0000090290 00000 n 
+0000020024 00000 n 
+0000019380 00000 n 
+0000019980 00000 n 
+0000090395 00000 n 
+0000020598 00000 n 
+0000020086 00000 n 
+0000020554 00000 n 
+0000090581 00000 n 
+0000021184 00000 n 
+0000020660 00000 n 
+0000021140 00000 n 
+0000090686 00000 n 
+0000021914 00000 n 
+0000021246 00000 n 
+0000021870 00000 n 
+0000090872 00000 n 
+0000022666 00000 n 
+0000021976 00000 n 
+0000022622 00000 n 
+0000090977 00000 n 
+0000023396 00000 n 
+0000022728 00000 n 
+0000023351 00000 n 
+0000091083 00000 n 
+0000024007 00000 n 
+0000023459 00000 n 
+0000023962 00000 n 
+0000091377 00000 n 
+0000024714 00000 n 
+0000024071 00000 n 
+0000024669 00000 n 
+0000091485 00000 n 
+0000025370 00000 n 
+0000024778 00000 n 
+0000025325 00000 n 
+0000091676 00000 n 
+0000026126 00000 n 
+0000025434 00000 n 
+0000026081 00000 n 
+0000091784 00000 n 
+0000026882 00000 n 
+0000026190 00000 n 
+0000026837 00000 n 
+0000091975 00000 n 
+0000027607 00000 n 
+0000026946 00000 n 
+0000027562 00000 n 
+0000092083 00000 n 
+0000028364 00000 n 
+0000027671 00000 n 
+0000028319 00000 n 
+0000092274 00000 n 
+0000029069 00000 n 
+0000028428 00000 n 
+0000029024 00000 n 
+0000092382 00000 n 
+0000029805 00000 n 
+0000029133 00000 n 
+0000029760 00000 n 
+0000092490 00000 n 
+0000030431 00000 n 
+0000029869 00000 n 
+0000030386 00000 n 
+0000092786 00000 n 
+0000031187 00000 n 
+0000030495 00000 n 
+0000031142 00000 n 
+0000092894 00000 n 
+0000031884 00000 n 
+0000031251 00000 n 
+0000031839 00000 n 
+0000093085 00000 n 
+0000032607 00000 n 
+0000031948 00000 n 
+0000032562 00000 n 
+0000093193 00000 n 
+0000033260 00000 n 
+0000032671 00000 n 
+0000033215 00000 n 
+0000093384 00000 n 
+0000034041 00000 n 
+0000033324 00000 n 
+0000033996 00000 n 
+0000093492 00000 n 
+0000034792 00000 n 
+0000034105 00000 n 
+0000034747 00000 n 
+0000093683 00000 n 
+0000035637 00000 n 
+0000034856 00000 n 
+0000035592 00000 n 
+0000093791 00000 n 
+0000036068 00000 n 
+0000035701 00000 n 
+0000036023 00000 n 
+0000093899 00000 n 
+0000037395 00000 n 
+0000082850 00000 n 
+0000082658 00000 n 
+0000036132 00000 n 
+0000037071 00000 n 
+0000037337 00000 n 
+0000089902 00000 n 
+0000088949 00000 n 
+0000089239 00000 n 
+0000089530 00000 n 
+0000089821 00000 n 
+0000091280 00000 n 
+0000090209 00000 n 
+0000090500 00000 n 
+0000090791 00000 n 
+0000091191 00000 n 
+0000092689 00000 n 
+0000091593 00000 n 
+0000091892 00000 n 
+0000092191 00000 n 
+0000092598 00000 n 
+0000094098 00000 n 
+0000093002 00000 n 
+0000093301 00000 n 
+0000093600 00000 n 
+0000094007 00000 n 
+0000094482 00000 n 
+0000094505 00000 n 
+0000094527 00000 n 
+trailer
+<<
+/Size 204
+/Root 2 0 R
+/Info 1 0 R
+>>
+startxref
+94648
+%%EOF
diff --git a/src/axiom-website/CATS/kamke5.input.pamphlet b/src/axiom-website/CATS/kamke5.input.pamphlet
new file mode 100644
index 0000000..34a8ee0
--- /dev/null
+++ b/src/axiom-website/CATS/kamke5.input.pamphlet
@@ -0,0 +1,1634 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke5.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the 251-300 of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+<<*>>=
+)spool kamke5.output
+)set break resume
+)set mes auto off
+)clear all
+
+--S 1 of 130
+y:=operator 'y
+--R 
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 130
+f:=operator 'f
+--R 
+--R
+--R   (2)  f
+--R                                                          Type: BasicOperator
+--E 2
+
+--S 3 of 130
+f0:=operator 'f0
+--R 
+--R
+--R   (3)  f0
+--R                                                          Type: BasicOperator
+--E 3
+
+--S 4 of 130
+f1:=operator 'f1
+--R 
+--R
+--R   (4)  f1
+--R                                                          Type: BasicOperator
+--E 4
+
+--S 5 of 130
+f2:=operator 'f2
+--R 
+--R
+--R   (5)  f2
+--R                                                          Type: BasicOperator
+--E 5
+
+--S 6 of 130
+f3:=operator 'f3
+--R 
+--R
+--R   (6)  f3
+--R                                                          Type: BasicOperator
+--E 6
+
+--S 7 of 130
+g:=operator 'g
+--R 
+--R
+--R   (7)  g
+--R                                                          Type: BasicOperator
+--E 7
+
+--S 8 of 130
+g0:=operator 'g0
+--R 
+--R
+--R   (8)  g0
+--R                                                          Type: BasicOperator
+--E 8
+
+--S 9 of 130
+g1:=operator 'g1
+--R 
+--R
+--R   (9)  g1
+--R                                                          Type: BasicOperator
+--E 9
+
+--S 10 of 130
+h:=operator 'h
+--R 
+--R
+--R   (10)  h
+--R                                                          Type: BasicOperator
+--E 10
+
+--S 11 of 130
+ode251 := (x**2*y(x)-1)*D(y(x),x)+x*y(x)**2-1
+--R 
+--R
+--R           2          ,            2
+--R   (11)  (x y(x) - 1)y (x) + x y(x)  - 1
+--R
+--R                                                     Type: Expression Integer
+--E 11
+
+--S 12 of 130
+yx:=solve(ode251,y,x)
+--R 
+--R
+--R          2    2
+--R         x y(x)  - 2y(x) - 2x
+--R   (12)  --------------------
+--R                   2
+--R                                          Type: Union(Expression Integer,...)
+--E 12
+
+--S 13 of 130
+ode251expr := (x**2*yx-1)*D(yx,x)+x*yx**2-1
+--R 
+--R
+--R   (13)
+--R          6    3     4    2     5         3      ,        5    4     3    3
+--R       (2x y(x)  - 6x y(x)  - 4x y(x) + 4x  + 4)y (x) + 3x y(x)  - 8x y(x)
+--R
+--R     + 
+--R            4    2      2         3
+--R       - 10x y(x)  + 12x y(x) + 8x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 13
+
+--S 14 of 130
+ode252 := (x**2*y(x)-1)*D(y(x),x)-(x*y(x)**2-1)
+--R 
+--R
+--R           2          ,            2
+--R   (14)  (x y(x) - 1)y (x) - x y(x)  + 1
+--R
+--R                                                     Type: Expression Integer
+--E 14
+
+--S 15 of 130
+solve(ode252,y,x)
+--R 
+--R
+--R   (15)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 15
+
+--S 16 of 130
+ode253 := (x**2*y(x)-1)*D(y(x),x)+8*(x*y(x)**2-1)
+--R 
+--R
+--R           2          ,             2
+--R   (16)  (x y(x) - 1)y (x) + 8x y(x)  - 8
+--R
+--R                                                     Type: Expression Integer
+--E 16
+
+--S 17 of 130
+solve(ode253,y,x)
+--R 
+--R
+--R   (17)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 17
+
+--S 18 of 130
+ode254 := x*(x*y(x)-2)*D(y(x),x)+x**2*y(x)**3+x*y(x)**2-2*y(x)
+--R 
+--R
+--R           2           ,       2    3         2
+--R   (18)  (x y(x) - 2x)y (x) + x y(x)  + x y(x)  - 2y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 18
+
+--S 19 of 130
+solve(ode254,y,x)
+--R 
+--R
+--R   (19)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 19
+
+--S 20 of 130
+ode255 := x*(x*y(x)-3)*D(y(x),x)+x*y(x)**2-y(x)
+--R 
+--R
+--R           2           ,            2
+--R   (20)  (x y(x) - 3x)y (x) + x y(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 20
+
+--S 21 of 130
+solve(ode255,y,x)
+--R 
+--R
+--R   (21)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 21
+
+--S 22 of 130
+ode256 := x**2*(y(x)-1)*D(y(x),x)+(x-1)*y(x)
+--R 
+--R
+--R           2        2  ,
+--R   (22)  (x y(x) - x )y (x) + (x - 1)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 22
+
+--S 23 of 130
+solve(ode256,y,x)
+--R 
+--R
+--R   (23)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 23
+
+--S 24 of 130
+ode257 := x*(x*y(x)+x**4-1)*D(y(x),x)-y(x)*(x*y(x)-x**4-1)
+--R 
+--R
+--R           2        5      ,            2     4
+--R   (24)  (x y(x) + x  - x)y (x) - x y(x)  + (x  + 1)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 24
+
+--S 25 of 130
+solve(ode257,y,x)
+--R 
+--R
+--R   (25)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 25
+
+--S 26 of 130
+ode258 := 2*x**2*y(x)*D(y(x),x)+y(x)**2-2*x**3-x**2
+--R 
+--R
+--R           2     ,          2     3    2
+--R   (26)  2x y(x)y (x) + y(x)  - 2x  - x
+--R
+--R                                                     Type: Expression Integer
+--E 26
+
+--S 27 of 130
+yx:=solve(ode258,y,x)
+--R 
+--R
+--R                         1
+--R                       - -
+--R              2    2     x
+--R   (27)  (y(x)  - x )%e
+--R                                          Type: Union(Expression Integer,...)
+--E 27
+
+--S 28 of 130
+ode258expr := 2*x**2*yx*D(yx,x)+yx**2-2*x**3-x**2
+--R 
+--R
+--R   (28)
+--R                              1 2
+--R                            - -
+--R        2    3     4          x   ,
+--R     (4x y(x)  - 4x y(x))(%e   ) y (x)
+--R
+--R   + 
+--R                                                   1 2
+--R                                                 - -
+--R           4        3     2     2     5     4      x       3    2
+--R     (3y(x)  + (- 4x  - 6x )y(x)  + 4x  + 3x )(%e   )  - 2x  - x
+--R                                                     Type: Expression Integer
+--E 28
+
+--S 29 of 130
+ode259 := 2*x**2*y(x)*D(y(x),x)-y(x)**2-x**2*exp(x-1/x)
+--R 
+--R
+--R                             2
+--R                            x  - 1
+--R                            ------
+--R           2     ,       2     x         2
+--R   (29)  2x y(x)y (x) - x %e       - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 29
+
+--S 30 of 130
+yx:=solve(ode259,y,x)
+--R 
+--R
+--R                 2
+--R             1  x  - 1          1
+--R             -  ------          -
+--R             x     x         2  x
+--R   (30)  - %e %e       + y(x) %e
+--R                                          Type: Union(Expression Integer,...)
+--E 30
+
+--S 31 of 130
+ode259expr := 2*x**2*yx*D(yx,x)-yx**2-x**2*exp(x-1/x)
+--R 
+--R
+--R   (31)
+--R                        2
+--R                  1 2  x  - 1              1 2
+--R                  -    ------              -
+--R          2       x       x       2    3   x    ,
+--R     (- 4x y(x)(%e ) %e       + 4x y(x) (%e ) )y (x)
+--R
+--R   + 
+--R                        2     2                                   2
+--R                 1 2   x  - 1                         1 2        x  - 1
+--R                 -     ------                         -          ------
+--R        2        x        x             2         2   x      2      x
+--R     (2x  - 1)(%e ) (%e      )  + ((- 2x  + 4)y(x) (%e )  - x )%e
+--R   + 
+--R                1 2
+--R                -
+--R            4   x
+--R     - 3y(x) (%e )
+--R                                                     Type: Expression Integer
+--E 31
+
+--S 32 of 130
+ode260 := (2*x**2*y(x)+x)*D(y(x),x)-x**2*y(x)**3+2*x*y(x)**2+y(x)
+--R 
+--R
+--R            2          ,       2    3          2
+--R   (32)  (2x y(x) + x)y (x) - x y(x)  + 2x y(x)  + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 32
+
+--S 33 of 130
+solve(ode260,y,x)
+--R 
+--R
+--R   (33)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 33
+
+--S 34 of 130
+ode261 := (2*x**2*y(x)-x)*D(y(x),x)-2*x*y(x)**2-y(x)
+--R 
+--R
+--R            2          ,             2
+--R   (34)  (2x y(x) - x)y (x) - 2x y(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 34
+
+--S 35 of 130
+solve(ode261,y,x)
+--R 
+--R
+--R   (35)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 35
+
+--S 36 of 130
+ode262 := (2*x**2*y(x)-x**3)*D(y(x),x)+y(x)**3-4*x*y(x)**2+2*x**3
+--R 
+--R
+--R            2        3  ,          3          2     3
+--R   (36)  (2x y(x) - x )y (x) + y(x)  - 4x y(x)  + 2x
+--R
+--R                                                     Type: Expression Integer
+--E 36
+
+--S 37 of 130
+solve(ode262,y,x)
+--R 
+--R
+--R   (37)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 37
+
+--S 38 of 130
+ode263 := 2*x**3+y(x)*D(y(x),x)+3*x**2*y(x)**2+7
+--R 
+--R
+--R              ,        2    2     3
+--R   (38)  y(x)y (x) + 3x y(x)  + 2x  + 7
+--R
+--R                                                     Type: Expression Integer
+--E 38
+
+--S 39 of 130
+solve(ode263,y,x)
+--R 
+--R
+--R            x                            3
+--I          ++      2    2      3       2%K
+--I   (39)   |   (3%K y(x)  + 2%K  + 7)%e    d%K
+--R         ++
+--R                                          Type: Union(Expression Integer,...)
+--E 39
+
+--S 40 of 130
+ode264 := 2*x*(x**3*y(x)+1)*D(y(x),x)+(3*x**3*y(x)-1)*y(x)
+--R 
+--R
+--R            4           ,        3    2
+--R   (40)  (2x y(x) + 2x)y (x) + 3x y(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 40
+
+--S 41 of 130
+solve(ode264,y,x)
+--R 
+--R
+--R   (41)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 41
+
+--S 42 of 130
+ode265 := (x**(n*(n+1))*y(x)-1)*D(y(x),x)+2*(n+1)**2*x**(n-1)_
+            *(x**(n**2)*y(x)**2-1)
+--R 
+--R
+--R   (42)
+--R            2                                            2
+--R           n  + n      ,         2              2 n - 1 n
+--R     (y(x)x       - 1)y (x) + (2n  + 4n + 2)y(x) x     x
+--R
+--R   + 
+--R          2           n - 1
+--R     (- 2n  - 4n - 2)x
+--R                                                     Type: Expression Integer
+--E 42
+
+--S 43 of 130
+solve(ode265,y,x)
+--R 
+--R
+--R   (43)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 43
+
+--S 44 of 130
+ode266 := (y(x)-x)*sqrt(x**2+1)*D(y(x),x)-a*sqrt((y(x)**2+1)**3)
+--R 
+--R
+--R                    +------+          +---------------------------+
+--R                    | 2      ,        |    6        4        2
+--R   (44)  (y(x) - x)\|x  + 1 y (x) - a\|y(x)  + 3y(x)  + 3y(x)  + 1
+--R
+--R                                                     Type: Expression Integer
+--E 44
+
+--S 45 of 130
+solve(ode266,y,x)
+--R 
+--R
+--R   (45)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 45
+
+--S 46 of 130
+ode267 := y(x)*D(y(x),x)*sin(x)**2+y(x)**2*cos(x)*sin(x)-1
+--R 
+--R
+--R                   2 ,          2
+--R   (46)  y(x)sin(x) y (x) + y(x) cos(x)sin(x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 46
+
+--S 47 of 130
+yx:=solve(ode267,y,x)
+--R 
+--R
+--R             2      2
+--R         y(x) sin(x)  - 2x
+--R   (47)  -----------------
+--R                 2
+--R                                          Type: Union(Expression Integer,...)
+--E 47
+
+--S 48 of 130
+ode267expr := yx*D(yx,x)*sin(x)**2+yx**2*cos(x)*sin(x)-1
+--R 
+--R
+--R   (48)
+--R             3      6                4  ,           4            5
+--R       (2y(x) sin(x)  - 4x y(x)sin(x) )y (x) + 3y(x) cos(x)sin(x)
+--R
+--R     + 
+--R            2      4          2            3            2     2
+--R     - 2y(x) sin(x)  - 8x y(x) cos(x)sin(x)  + 4x sin(x)  + 4x cos(x)sin(x) - 4
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 48
+
+--S 49 of 130
+ode268 := f(x)*y(x)*D(y(x),x)+g(x)*y(x)**2+h(x)
+--R 
+--R
+--R                  ,              2
+--R   (49)  f(x)y(x)y (x) + g(x)y(x)  + h(x)
+--R
+--R                                                     Type: Expression Integer
+--E 49
+
+--S 50 of 130
+solve(ode268,y,x)
+--R 
+--R 
+--R   >> Error detected within library code:
+--R   Function not supported by Risch d.e.
+--R
+--R   Continuing to read the file...
+--R
+--E 50
+
+--S 51 of 130
+ode269 := (g1(x)*y(x)+g0(x))*D(y(x),x)-f1(x)*y(x)-_
+              f2(x)*y(x)**2-f3(x)*y(x)**3-f0(x)
+--R 
+--R
+--R   (50)
+--R                       ,               3            2
+--R   (g1(x)y(x) + g0(x))y (x) - f3(x)y(x)  - f2(x)y(x)  - f1(x)y(x) - f0(x)
+--R
+--R                                                     Type: Expression Integer
+--E 51
+
+--S 52 of 130
+solve(ode269,y,x)
+--R 
+--R
+--R   (51)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 52
+
+--S 53 of 130
+ode270 := (y(x)**2-x)*D(y(x),x)-y(x)+x**2
+--R 
+--R
+--R              2      ,              2
+--R   (52)  (y(x)  - x)y (x) - y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 53
+
+--S 54 of 130
+yx:=solve(ode270,y,x)
+--R 
+--R
+--R             3              3
+--R         y(x)  - 3x y(x) + x
+--R   (53)  --------------------
+--R                   3
+--R                                          Type: Union(Expression Integer,...)
+--E 54
+
+--S 55 of 130
+ode270expr := (yx**2-x)*D(yx,x)-yx+x**2
+--R 
+--R
+--R   (54)
+--R               8          6     3    5      2    4     4    3
+--R           y(x)  - 7x y(x)  + 2x y(x)  + 15x y(x)  - 8x y(x)
+--R         + 
+--R             6     3          2     5        7     2
+--R           (x  - 9x  - 9x)y(x)  + 6x y(x) - x  + 9x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R             7    2    6          5     3    4      5     2         3
+--R       - y(x)  + x y(x)  + 6x y(x)  - 8x y(x)  + (2x  - 9x  - 3)y(x)
+--R     + 
+--R          4    2        6               8      3     2
+--R       15x y(x)  + (- 7x  + 18x)y(x) + x  - 12x  + 9x
+--R  /
+--R     9
+--R                                                     Type: Expression Integer
+--E 55
+
+--S 56 of 130
+ode271 := (y(x)**2+x**2)*D(y(x),x)+2*x*(y(x)+2*x)
+--R 
+--R
+--R              2    2  ,                  2
+--R   (55)  (y(x)  + x )y (x) + 2x y(x) + 4x
+--R
+--R                                                     Type: Expression Integer
+--E 56
+
+--S 57 of 130
+yx:=solve(ode271,y,x)
+--R 
+--R
+--R             3     2         3
+--R         y(x)  + 3x y(x) + 4x
+--R   (56)  ---------------------
+--R                   3
+--R                                          Type: Union(Expression Integer,...)
+--E 57
+
+--S 58 of 130
+ode271expr := (yx**2+x**2)*D(yx,x)+2*x*(yx+2*x)
+--R 
+--R
+--R   (57)
+--R               8     2    6     3    5      4    4      5    3
+--R           y(x)  + 7x y(x)  + 8x y(x)  + 15x y(x)  + 32x y(x)
+--R         + 
+--R               6     2     2      7          8     4
+--R           (25x  + 9x )y(x)  + 24x y(x) + 16x  + 9x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R              7     2    6      3    5      4    4       5          3
+--R       2x y(x)  + 4x y(x)  + 12x y(x)  + 40x y(x)  + (50x  + 6x)y(x)
+--R     + 
+--R          6    2        7      3           8      4      2
+--R       84x y(x)  + (128x  + 36x )y(x) + 64x  + 60x  + 36x
+--R  /
+--R     9
+--R                                                     Type: Expression Integer
+--E 58
+
+--S 59 of 130
+ode272 := (y(x)**2+x**2)*D(y(x),x)-y(x)**2
+--R 
+--R
+--R              2    2  ,          2
+--R   (58)  (y(x)  + x )y (x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 59
+
+--S 60 of 130
+solve(ode272,y,x)
+--R 
+--R
+--R   (59)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 60
+
+--S 61 of 130
+ode273 := (y(x)**2+x**2+a)*D(y(x),x)+2*x*y(x)
+--R 
+--R
+--R              2    2      ,
+--R   (60)  (y(x)  + x  + a)y (x) + 2x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 61
+
+--S 62 of 130
+yx:=solve(ode273,y,x)
+--R 
+--R
+--R             3      2
+--R         y(x)  + (3x  + 3a)y(x)
+--R   (61)  ----------------------
+--R                    3
+--R                                          Type: Union(Expression Integer,...)
+--E 62
+
+--S 63 of 130
+ode273expr := (yx**2+x**2+a)*D(yx,x)+2*x*yx
+--R 
+--R
+--R   (62)
+--R               8      2          6       4        2      2     4
+--R           y(x)  + (7x  + 7a)y(x)  + (15x  + 30a x  + 15a )y(x)
+--R         + 
+--R              6        4       2      2     3          2     4        2     2
+--R           (9x  + 27a x  + (27a  + 9)x  + 9a  + 9a)y(x)  + 9x  + 18a x  + 9a
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R              7       3             5       5        3       2           3
+--R       2x y(x)  + (12x  + 12a x)y(x)  + (18x  + 36a x  + (18a  + 6)x)y(x)
+--R     + 
+--R           3
+--R       (36x  + 36a x)y(x)
+--R  /
+--R     9
+--R                                                     Type: Expression Integer
+--E 63
+
+--S 64 of 130
+ode274 := (y(x)**2+x**2+a)*D(y(x),x)+2*x*y(x)+x**2+b
+--R 
+--R
+--R              2    2      ,                 2
+--R   (63)  (y(x)  + x  + a)y (x) + 2x y(x) + x  + b
+--R
+--R                                                     Type: Expression Integer
+--E 64
+
+--S 65 of 130
+yx:=solve(ode274,y,x)
+--R 
+--R
+--R             3      2              3
+--R         y(x)  + (3x  + 3a)y(x) + x  + 3b x
+--R   (64)  ----------------------------------
+--R                          3
+--R                                          Type: Union(Expression Integer,...)
+--E 65
+
+--S 66 of 130
+ode274expr := (yx**2+x**2+a)*D(yx,x)+2*x*yx+x**2+b
+--R 
+--R
+--R   (65)
+--R               8      2          6      3            5
+--R           y(x)  + (7x  + 7a)y(x)  + (2x  + 6b x)y(x)
+--R         + 
+--R               4        2      2     4      5              3               3
+--R           (15x  + 30a x  + 15a )y(x)  + (8x  + (24b + 8a)x  + 24a b x)y(x)
+--R         + 
+--R               6              4      2      2      2     3          2
+--R           (10x  + (6b + 27a)x  + (9b  + 27a  + 9)x  + 9a  + 9a)y(x)
+--R         + 
+--R              7               5              2  3      2            8
+--R           (6x  + (18b + 12a)x  + (36a b + 6a )x  + 18a b x)y(x) + x
+--R         + 
+--R                    6      2             4        2        2     2
+--R           (6b + a)x  + (9b  + 6a b + 9)x  + (9a b  + 18a)x  + 9a
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R              7     2         6       3             5
+--R       2x y(x)  + (x  + b)y(x)  + (12x  + 12a x)y(x)
+--R     + 
+--R           4              2            4
+--R       (10x  + (18b + 6a)x  + 6a b)y(x)
+--R     + 
+--R           5              3      2      2           3
+--R       (20x  + (8b + 36a)x  + (6b  + 18a  + 6)x)y(x)
+--R     + 
+--R           6               4              2  2     2      2
+--R       (21x  + (45b + 30a)x  + (54a b + 9a )x  + 9a b)y(x)
+--R     + 
+--R          7              5       2               3         2                 8
+--R       (8x  + (36b + 6a)x  + (36b  + 24a b + 36)x  + (18a b  + 36a)x)y(x) + x
+--R     + 
+--R           6       2       4      3                 2
+--R       7b x  + (15b  + 15)x  + (9b  + 27b + 9a + 9)x  + (9a + 9)b
+--R  /
+--R     9
+--R                                                     Type: Expression Integer
+--E 66
+
+--S 67 of 130
+ode275 := (y(x)**2+x**2+x)*D(y(x),x)-y(x)
+--R 
+--R
+--R              2    2      ,
+--R   (66)  (y(x)  + x  + x)y (x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 67
+
+--S 68 of 130
+solve(ode275,y,x)
+--R 
+--R
+--R   (67)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 68
+
+--S 69 of 130
+ode276 := (y(x)**2-x**2)*D(y(x),x)+2*x*y(x)
+--R 
+--R
+--R              2    2  ,
+--R   (68)  (y(x)  - x )y (x) + 2x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 69
+
+--S 70 of 130
+yx:=solve(ode276,y,x)
+--R 
+--R
+--R             2    2
+--R         y(x)  + x
+--R   (69)  ----------
+--R            y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 70
+
+--S 71 of 130
+ode276expr := (yx**2-x**2)*D(yx,x)+2*x*yx
+--R 
+--R
+--R              6    6  ,             5     3    3     5
+--R         (y(x)  - x )y (x) + 4x y(x)  + 4x y(x)  + 2x y(x)
+--R
+--R   (70)  -------------------------------------------------
+--R                                   4
+--R                               y(x)
+--R                                                     Type: Expression Integer
+--E 71
+
+--S 72 of 130
+ode277 := (y(x)**2+x**4)*D(y(x),x)-4*x**3*y(x)
+--R 
+--R
+--R              2    4  ,        3
+--R   (71)  (y(x)  + x )y (x) - 4x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 72
+
+--S 73 of 130
+yx:=solve(ode277,y,x)
+--R 
+--R
+--R             2    4
+--R         y(x)  - x
+--R   (72)  ----------
+--R            y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 73
+
+--S 74 of 130
+ode277expr := (yx**2+x**4)*D(yx,x)-4*x**3*yx
+--R 
+--R
+--R              6    12  ,        3    5     7    3     11
+--R         (y(x)  + x  )y (x) - 8x y(x)  + 8x y(x)  - 4x  y(x)
+--R
+--R   (73)  ---------------------------------------------------
+--R                                    4
+--R                                y(x)
+--R                                                     Type: Expression Integer
+--E 74
+
+--S 75 of 130
+ode278 := (y(x)**2+4*sin(x))*D(y(x),x)-cos(x)
+--R 
+--R
+--R                        2  ,
+--R   (74)  (4sin(x) + y(x) )y (x) - cos(x)
+--R
+--R                                                     Type: Expression Integer
+--E 75
+
+--S 76 of 130
+yx:=solve(ode278,y,x)
+--R 
+--R
+--R                            2               - 4y(x)
+--R         (- 32sin(x) - 8y(x)  - 4y(x) - 1)%e
+--R   (75)  ------------------------------------------
+--R                             32
+--R                                          Type: Union(Expression Integer,...)
+--E 76
+
+--S 77 of 130
+ode278expr := (yx**2+4*sin(x))*D(yx,x)-cos(x)
+--R 
+--R
+--R   (76)
+--R                         3            2                        2
+--R               4096sin(x)  + (3072y(x)  + 1024y(x) + 256)sin(x)
+--R             + 
+--R                       4          3          2                             6
+--R               (768y(x)  + 512y(x)  + 192y(x)  + 32y(x) + 4)sin(x) + 64y(x)
+--R             + 
+--R                     5         4        3       2
+--R               64y(x)  + 32y(x)  + 8y(x)  + y(x)
+--R          *
+--R                - 4y(x) 3
+--R             (%e       )
+--R         + 
+--R                       2           2         - 4y(x)
+--R           (16384sin(x)  + 4096y(x) sin(x))%e
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                             2             2
+--R           - 1024cos(x)sin(x)  + (- 512y(x)  - 256y(x) - 64)cos(x)sin(x)
+--R         + 
+--R                    4         3         2
+--R           (- 64y(x)  - 64y(x)  - 32y(x)  - 8y(x) - 1)cos(x)
+--R      *
+--R            - 4y(x) 3
+--R         (%e       )
+--R     + 
+--R                           - 4y(x)
+--R       - 4096cos(x)sin(x)%e        - 1024cos(x)
+--R  /
+--R     1024
+--R                                                     Type: Expression Integer
+--E 77
+
+--S 78 of 130
+ode279 := (y(x)**2+2*y(x)+x)*D(y(x),x)+(y(x)+x)**2*y(x)**2+y(x)*(y(x)+1)
+--R 
+--R
+--R              2              ,          4          3     2         2
+--R   (77)  (y(x)  + 2y(x) + x)y (x) + y(x)  + 2x y(x)  + (x  + 1)y(x)  + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 78
+
+--S 79 of 130
+solve(ode279,y,x)
+--R 
+--R
+--R   (78)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 79
+
+--S 80 of 130
+ode280 := (y(x)+x)**2*D(y(x),x)-a**2
+--R 
+--R
+--R              2              2  ,       2
+--R   (79)  (y(x)  + 2x y(x) + x )y (x) - a
+--R
+--R                                                     Type: Expression Integer
+--E 80
+
+--S 81 of 130
+solve(ode280,y,x)
+--R 
+--R
+--R   (80)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 81
+
+--S 82 of 130
+ode281 := (y(x)**2+2*x*y(x)-x**2)*D(y(x),x)-_
+            y(x)**2+2*x*y(x)+x**2
+--R 
+--R
+--R              2              2  ,          2              2
+--R   (81)  (y(x)  + 2x y(x) - x )y (x) - y(x)  + 2x y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 82
+
+--S 83 of 130
+solve(ode281,y,x)
+--R 
+--R
+--R   (82)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 83
+
+--S 84 of 130
+ode282 := (y(x)+3*x-1)**2*D(y(x),x)-(2*y(x)-1)*(4*y(x)+6*x-3)
+--R 
+--R
+--R   (83)
+--R          2                    2           ,           2
+--R     (y(x)  + (6x - 2)y(x) + 9x  - 6x + 1)y (x) - 8y(x)  + (- 12x + 10)y(x) + 6x
+--R
+--R   + 
+--R     - 3
+--R                                                     Type: Expression Integer
+--E 84
+
+--S 85 of 130
+solve(ode282,y,x)
+--R 
+--R
+--R   (84)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 85
+
+--S 86 of 130
+ode283 := 3*(y(x)**2-x**2)*D(y(x),x)+2*y(x)**3-6*x*(x+1)*y(x)-3*exp(x)
+--R 
+--R
+--R               2     2  ,         x        3        2
+--R   (85)  (3y(x)  - 3x )y (x) - 3%e  + 2y(x)  + (- 6x  - 6x)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 86
+
+--S 87 of 130
+yx:=solve(ode283,y,x)
+--R 
+--R
+--R              x 3        3     2        x 2
+--R   (86)  - (%e )  + (y(x)  - 3x y(x))(%e )
+--R                                          Type: Union(Expression Integer,...)
+--E 87
+
+--S 88 of 130
+ode283expr := 3*(yx**2-x**2)*D(yx,x)+2*yx**3-6*x*(x+1)*yx-3*exp(x)
+--R 
+--R
+--R   (87)
+--R               2     2    x 8            5      2    3      4        x 7
+--R         (9y(x)  - 9x )(%e )  + (- 18y(x)  + 72x y(x)  - 54x y(x))(%e )
+--R       + 
+--R               8      2    6       4    4      6    2    x 6
+--R         (9y(x)  - 63x y(x)  + 135x y(x)  - 81x y(x) )(%e )
+--R       + 
+--R              2    2     4    x 2
+--R         (- 9x y(x)  + 9x )(%e )
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R            x 9          3         2               x 8
+--R     - 11(%e )  + (30y(x)  + (- 90x  - 18x)y(x))(%e )
+--R   + 
+--R              6        2           4          4       3     2    x 7
+--R     (- 27y(x)  + (162x  + 36x)y(x)  + (- 243x  - 108x )y(x) )(%e )
+--R   + 
+--R              9         2           7        4       3     5
+--R         8y(x)  + (- 72x  - 18x)y(x)  + (216x  + 108x )y(x)
+--R       + 
+--R                6       5     3
+--R         (- 216x  - 162x )y(x)
+--R    *
+--R          x 6
+--R       (%e )
+--R   + 
+--R         2         x 3          2          3       4      3         x 2      x
+--R     (15x  + 6x)(%e )  + ((- 12x  - 6x)y(x)  + (36x  + 36x )y(x))(%e )  - 3%e
+--R                                                     Type: Expression Integer
+--E 88
+
+--S 89 of 130
+ode284 := (4*y(x)**2+x**2)*D(y(x),x)-x*y(x)
+--R 
+--R
+--R               2    2  ,
+--R   (88)  (4y(x)  + x )y (x) - x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 89
+
+--S 90 of 130
+yx:=solve(ode284,y,x)
+--R 
+--R
+--R              2             2
+--R         8y(x) log(y(x)) - x
+--R   (89)  --------------------
+--R                     2
+--R                2y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 90
+
+--S 91 of 130
+ode284expr := (4*yx**2+x**2)*D(yx,x)-x*yx
+--R 
+--R
+--R   (90)
+--R                   6       2    4          2
+--R           (512y(x)  + 128x y(x) )log(y(x))
+--R         + 
+--R                  2    4      4    2               2    6     4    4     4    2
+--R           (- 128x y(x)  - 32x y(x) )log(y(x)) + 8x y(x)  + 2x y(x)  + 8x y(x)
+--R         + 
+--R             6
+--R           2x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                  5         2             7      3    3              3    5
+--R       - 128x y(x) log(y(x))  + (- 8x y(x)  + 32x y(x) )log(y(x)) - x y(x)
+--R     + 
+--R           5
+--R       - 2x y(x)
+--R  /
+--R          7
+--R     2y(x)
+--R                                                     Type: Expression Integer
+--E 91
+
+--S 92 of 130
+ode285 := (4*y(x)**2+2*x*y(x)+3*x**2)*D(y(x),x)+y(x)**2+6*x*y(x)+2*x**2
+--R 
+--R
+--R               2               2  ,          2               2
+--R   (91)  (4y(x)  + 2x y(x) + 3x )y (x) + y(x)  + 6x y(x) + 2x
+--R
+--R                                                     Type: Expression Integer
+--E 92
+
+--S 93 of 130
+yx:=solve(ode285,y,x)
+--R 
+--R
+--R              3          2     2         3
+--R         4y(x)  + 3x y(x)  + 9x y(x) + 2x
+--R   (92)  ---------------------------------
+--R                         3
+--R                                          Type: Union(Expression Integer,...)
+--E 93
+
+--S 94 of 130
+ode285expr := (4*yx**2+2*x*yx+3*x**2)*D(yx,x)+yx**2+6*x*yx+2*x**2
+--R 
+--R
+--R   (93)
+--R                  8            7        2    6         3           5
+--R           256y(x)  + 512x y(x)  + 1680x y(x)  + (2056x  + 96x)y(x)
+--R         + 
+--R                 4       2     4         5       3     3
+--R           (3020x  + 120x )y(x)  + (2160x  + 324x )y(x)
+--R         + 
+--R                 6       4       2     2        7       5      3           8
+--R           (1468x  + 210x  + 108x )y(x)  + (464x  + 186x  + 54x )y(x) + 48x
+--R         + 
+--R              6      4
+--R           36x  + 81x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R             8            7         2          6         3           5
+--R       64y(x)  + 480x y(x)  + (1028x  + 16)y(x)  + (2416x  + 48x)y(x)
+--R     + 
+--R             4       2     4         5       3           3
+--R       (2700x  + 243x )y(x)  + (2936x  + 280x  + 72x)y(x)
+--R     + 
+--R             6       4      2     2        7       5       3           8      6
+--R       (1624x  + 465x  + 81x )y(x)  + (384x  + 216x  + 324x )y(x) + 32x  + 28x
+--R     + 
+--R          4      2
+--R       90x  + 18x
+--R  /
+--R     9
+--R                                                     Type: Expression Integer
+--E 94
+
+--S 95 of 130
+ode286 := (2*y(x)-3*x+1)**2*D(y(x),x)-(3*y(x)-2*x-4)**2
+--R 
+--R
+--R   (94)
+--R           2                       2           ,           2
+--R     (4y(x)  + (- 12x + 4)y(x) + 9x  - 6x + 1)y (x) - 9y(x)  + (12x + 24)y(x)
+--R
+--R   + 
+--R         2
+--R     - 4x  - 16x - 16
+--R                                                     Type: Expression Integer
+--E 95
+
+--S 96 of 130
+solve(ode286,y,x)
+--R 
+--R
+--R   (95)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 96
+
+--S 97 of 130
+ode287 := (2*y(x)-4*x+1)**2*D(y(x),x)-(y(x)-2*x)**2
+--R 
+--R
+--R   (96)
+--R         2                        2           ,          2               2
+--R   (4y(x)  + (- 16x + 4)y(x) + 16x  - 8x + 1)y (x) - y(x)  + 4x y(x) - 4x
+--R
+--R                                                     Type: Expression Integer
+--E 97
+
+--S 98 of 130
+solve(ode287,y,x)
+--R 
+--R
+--R   (97)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 98
+
+--S 99 of 130
+ode288 := (6*y(x)**2-3*x**2*y(x)+1)*D(y(x),x)-3*x*y(x)**2+x
+--R 
+--R
+--R               2     2          ,             2
+--R   (98)  (6y(x)  - 3x y(x) + 1)y (x) - 3x y(x)  + x
+--R
+--R                                                     Type: Expression Integer
+--E 99
+
+--S 100 of 130
+yx:=solve(ode288,y,x)
+--R 
+--R
+--R              3     2    2            2
+--R         4y(x)  - 3x y(x)  + 2y(x) + x
+--R   (99)  ------------------------------
+--R                        2
+--R                                          Type: Union(Expression Integer,...)
+--E 100
+
+--S 101 of 130
+ode288expr := (6*yx**2-3*x**2*yx+1)*D(yx,x)-3*x*yx**2+x
+--R 
+--R
+--R   (100)
+--R                  8        2    7        4           6          6       2     5
+--R           576y(x)  - 1152x y(x)  + (756x  + 672)y(x)  + (- 162x  - 720x )y(x)
+--R         + 
+--R               4           4       6      2     3         4          2
+--R           (90x  + 240)y(x)  + (54x  - 48x )y(x)  + (- 54x  + 48)y(x)  + 4
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                  8       3    7          5            6      3    5
+--R       - 288x y(x)  + 432x y(x)  + (- 162x  - 240x)y(x)  + 72x y(x)
+--R     + 
+--R           5           4      3    3     5
+--R       (81x  - 24x)y(x)  - 72x y(x)  - 3x  + 8x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 101
+
+--S 102 of 130
+ode289 := (6*y(x)-x)**2*D(y(x),x)-6*y(x)**2+2*x*y(x)+a
+--R 
+--R
+--R                 2               2  ,           2
+--R   (101)  (36y(x)  - 12x y(x) + x )y (x) - 6y(x)  + 2x y(x) + a
+--R
+--R                                                     Type: Expression Integer
+--E 102
+
+--S 103 of 130
+yx:=solve(ode289,y,x)
+--R 
+--R
+--R                3          2    2
+--R   (102)  12y(x)  - 6x y(x)  + x y(x) + a x
+--R                                          Type: Union(Expression Integer,...)
+--E 103
+
+--S 104 of 130
+ode289expr := (6*yx-x)**2*D(yx,x)-6*yx**2+2*x*yx+a
+--R 
+--R
+--R   (103)
+--R                   8               7          2    6
+--R         186624y(x)  - 248832x y(x)  + 145152x y(x)
+--R       + 
+--R                  3                        5
+--R         (- 46656x  + (31104a - 5184)x)y(x)
+--R       + 
+--R               4                     2     4          5                  3     3
+--R         (8640x  + (- 25920a + 4320)x )y(x)  + (- 864x  + (8640a - 1440)x )y(x)
+--R       + 
+--R             6                   4         2              2     2
+--R         (36x  + (- 1296a + 216)x  + (1296a  - 432a + 36)x )y(x)
+--R       + 
+--R                     5          2              3            2            4
+--R         ((72a - 12)x  + (- 432a  + 144a - 12)x )y(x) + (36a  - 12a + 1)x
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R                8              7            2                   6
+--R     - 31104y(x)  + 41472x y(x)  + (- 23328x  + 5184a - 864)y(x)
+--R   + 
+--R           3                          5           4                  2     4
+--R     (6912x  + (- 10368a + 1728)x)y(x)  + (- 1080x  + (6480a - 1080)x )y(x)
+--R   + 
+--R         5                   3        2                   3
+--R     (72x  + (- 1728a + 288)x  + (864a  - 288a + 24)x)y(x)
+--R   + 
+--R                  4          2              2     2        2            3
+--R     ((180a - 30)x  + (- 648a  + 216a - 18)x )y(x)  + (144a  - 48a + 4)x y(x)
+--R   + 
+--R         3      2       2
+--R     (36a  - 18a  + 3a)x  + a
+--R                                                     Type: Expression Integer
+--E 104
+
+--S 105 of 130
+ode290 := (a*y(x)**2+2*b*x*y(x)+c*x**2)*D(y(x),x)+b*y(x)**2+2*c*x*y(x)+d*x**2
+--R 
+--R
+--R                 2                  2  ,            2                  2
+--R   (104)  (a y(x)  + 2b x y(x) + c x )y (x) + b y(x)  + 2c x y(x) + d x
+--R
+--R                                                     Type: Expression Integer
+--E 105
+
+--S 106 of 130
+yx:=solve(ode290,y,x)
+--R 
+--R
+--R                3            2       2          3
+--R          a y(x)  + 3b x y(x)  + 3c x y(x) + d x
+--R   (105)  ---------------------------------------
+--R                             3
+--R                                          Type: Union(Expression Integer,...)
+--E 106
+
+--S 107 of 130
+ode290expr:=(a*yx**2+2*b*x*yx+c*x**2)*D(yx,x)+b*yx**2+2*c*x*yx+d*x**2
+--R 
+--R
+--R   (106)
+--R            4    8     3        7      3       2 2  2    6
+--R           a y(x)  + 8a b x y(x)  + (7a c + 21a b )x y(x)
+--R         + 
+--R               3       2           3  3     2        5
+--R           ((2a d + 36a b c + 18a b )x  + 6a b x)y(x)
+--R         + 
+--R                2         2 2        2   4        2 2     4
+--R           ((10a b d + 15a c  + 45a b c)x  + 30a b x )y(x)
+--R         + 
+--R                2         2            2  5                 3  3     3
+--R           (((8a c + 12a b )d + 36a b c )x  + (24a b c + 36b )x )y(x)
+--R         + 
+--R              2 2                   3  6                2   4         2     2
+--R           ((a d  + 18a b c d + 9a c )x  + (6a b d + 54b c)x  + 9a c x )y(x)
+--R         + 
+--R                   2       2   7       2         2  5          3             2 8
+--R           ((2a b d  + 6a c d)x  + (12b d + 18b c )x  + 18b c x )y(x) + a c d x
+--R         + 
+--R                   6     2 4
+--R           6b c d x  + 9c x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R        3      8      3      2 2       7
+--R       a b y(x)  + (2a c + 6a b )x y(x)
+--R     + 
+--R          3       2          3  2    2      6
+--R       ((a d + 18a b c + 9a b )x  + a b)y(x)
+--R     + 
+--R           2         2 2        2   3        2      5
+--R       ((8a b d + 12a c  + 36a b c)x  + 12a b x)y(x)
+--R     + 
+--R             2         2            2  4                 3  2     4
+--R       (((10a c + 15a b )d + 45a b c )x  + (18a b c + 27b )x )y(x)
+--R     + 
+--R           2 2                    3  5                2   3              3
+--R       ((2a d  + 36a b c d + 18a c )x  + (8a b d + 72b c)x  + 6a c x)y(x)
+--R     + 
+--R               2        2   6       2         2  4          2     2
+--R       ((7a b d  + 21a c d)x  + (30b d + 45b c )x  + 27b c x )y(x)
+--R     + 
+--R            2 7            5      2 3           3 8       2 6          4       2
+--R     (8a c d x  + 36b c d x  + 36c x )y(x) + a d x  + 7b d x  + 15c d x  + 9d x
+--R  /
+--R     9
+--R                                                     Type: Expression Integer
+--E 107
+
+--S 108 of 130
+ode291 := (b*(beta*y(x)+alpha*x)**2-beta*(b*y(x)+a*x))*D(y(x),x)+_
+              a*(beta*y(x)+alpha*x)**2-alpha*(b*y(x)+a*x)
+--R 
+--R
+--R   (107)
+--R              2    2                                         2   2
+--R       (b beta y(x)  + (2alpha b beta x - b beta)y(x) + alpha b x  - a beta x)
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R           2    2                                            2 2
+--R     a beta y(x)  + (2a alpha beta x - alpha b)y(x) + a alpha x  - a alpha x
+--R                                                     Type: Expression Integer
+--E 108
+
+--S 109 of 130
+solve(ode291,y,x)
+--R 
+--R
+--R   (108)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 109
+
+--S 110 of 130
+ode292 := (a*y(x)+b*x+c)**2*D(y(x),x)+(alpha*y(x)+beta*x+gamma)**2
+--R 
+--R
+--R   (109)
+--R       2    2                          2 2             2  ,           2    2
+--R     (a y(x)  + (2a b x + 2a c)y(x) + b x  + 2b c x + c )y (x) + alpha y(x)
+--R
+--R   + 
+--R                                              2 2                        2
+--R     (2alpha beta x + 2alpha gamma)y(x) + beta x  + 2beta gamma x + gamma
+--R                                                     Type: Expression Integer
+--E 110
+
+--S 111 of 130
+solve(ode292,y,x)
+--R 
+--R
+--R   (110)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 111
+
+--S 112 of 130
+ode293 := x*(y(x)**2-3*x)*D(y(x),x)+2*y(x)**3-5*x*y(x)
+--R 
+--R
+--R                 2     2  ,           3
+--R   (111)  (x y(x)  - 3x )y (x) + 2y(x)  - 5x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 112
+
+--S 113 of 130
+solve(ode293,y,x)
+--R 
+--R
+--R   (112)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 113
+
+--S 114 of 130
+ode294 := x*(y(x)**2+x**2-a)*D(y(x),x)-y(x)*(y(x)**2+x**2+a)
+--R 
+--R
+--R                 2    3        ,          3       2
+--R   (113)  (x y(x)  + x  - a x)y (x) - y(x)  + (- x  - a)y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 114
+
+--S 115 of 130
+solve(ode294,y,x)
+--R 
+--R
+--R   (114)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 115
+
+--S 116 of 130
+ode295 := x*(y(x)**2+x*y(x)-x**2)*D(y(x),x)-y(x)**3+x*y(x)**2+x**2*y(x)
+--R 
+--R
+--R                 2    2        3  ,          3         2    2
+--R   (115)  (x y(x)  + x y(x) - x )y (x) - y(x)  + x y(x)  + x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 116
+
+--S 117 of 130
+solve(ode295,y,x)
+--R 
+--R
+--R   (116)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 117
+
+--S 118 of 130
+ode296 := x*(y(x)**2+x**2*y(x)+x**2)*D(y(x),x)-2*y(x)**3-2*x**2*y(x)**2+x**4
+--R 
+--R
+--R                 2    3        3  ,           3     2    2    4
+--R   (117)  (x y(x)  + x y(x) + x )y (x) - 2y(x)  - 2x y(x)  + x
+--R
+--R                                                     Type: Expression Integer
+--E 118
+
+--S 119 of 130
+solve(ode296,y,x)
+--R 
+--R
+--R   (118)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 119
+
+--S 120 of 130
+ode297 := 2*x*(y(x)**2+5*x**2)*D(y(x),x)+y(x)**3-x**2*y(x)
+--R 
+--R
+--R                  2      3  ,          3    2
+--R   (119)  (2x y(x)  + 10x )y (x) + y(x)  - x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 120
+
+--S 121 of 130
+solve(ode297,y,x)
+--R 
+--R
+--R   (120)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 121
+
+--S 122 of 130
+ode298 := 3*x*y(x)**2*D(y(x),x)+y(x)**3-2*x
+--R 
+--R
+--R                 2 ,          3
+--R   (121)  3x y(x) y (x) + y(x)  - 2x
+--R
+--R                                                     Type: Expression Integer
+--E 122
+
+--S 123 of 130
+yx:=solve(ode298,y,x)
+--R 
+--R
+--R                3    2
+--R   (122)  x y(x)  - x
+--R                                          Type: Union(Expression Integer,...)
+--E 123
+
+--S 124 of 130
+ode298expr := 3*x*yx**2*D(yx,x)+yx**3-2*x
+--R 
+--R
+--R   (123)
+--R        4    8      5    5     6    2  ,        3    9      4    6      5    3
+--R     (9x y(x)  - 18x y(x)  + 9x y(x) )y (x) + 4x y(x)  - 15x y(x)  + 18x y(x)
+--R
+--R   + 
+--R         6
+--R     - 7x  - 2x
+--R                                                     Type: Expression Integer
+--E 124
+
+--S 125 of 130
+ode299 := (3*x*y(x)**2-x**2)*D(y(x),x)+y(x)**3-2*x*y(x)
+--R 
+--R
+--R                  2    2  ,          3
+--R   (124)  (3x y(x)  - x )y (x) + y(x)  - 2x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 125
+
+--S 126 of 130
+yx:=solve(ode299,y,x)
+--R 
+--R
+--R                3    2
+--R   (125)  x y(x)  - x y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 126
+
+--S 127 of 130
+ode299expr := (3*x*yx**2-x**2)*D(yx,x)+yx**3-2*x*yx
+--R 
+--R
+--R   (126)
+--R        4    8      5    6      6    4        7     3     2    4  ,
+--R     (9x y(x)  - 21x y(x)  + 15x y(x)  + (- 3x  - 3x )y(x)  + x )y (x)
+--R
+--R   + 
+--R       3    9      4    7      5    5        6     2     3     3
+--R     4x y(x)  - 15x y(x)  + 18x y(x)  + (- 7x  - 3x )y(x)  + 4x y(x)
+--R                                                     Type: Expression Integer
+--E 127
+
+--S 128 of 130
+ode300 := 6*x*y(x)**2*D(y(x),x)+2*y(x)**3+x
+--R 
+--R
+--R                 2 ,           3
+--R   (127)  6x y(x) y (x) + 2y(x)  + x
+--R
+--R                                                     Type: Expression Integer
+--E 128
+
+--S 129 of 130
+yx:=solve(ode300,y,x)
+--R 
+--R
+--R                 3    2
+--R          4x y(x)  + x
+--R   (128)  -------------
+--R                2
+--R                                          Type: Union(Expression Integer,...)
+--E 129
+
+--S 130 of 130
+ode300expr := 6*x*yx**2*D(yx,x)+2*yx**3+x
+--R 
+--R
+--R   (129)
+--R            4    8       5    5      6    2  ,          3    9       4    6
+--R       (576x y(x)  + 288x y(x)  + 36x y(x) )y (x) + 256x y(x)  + 240x y(x)
+--R
+--R     + 
+--R          5    3     6
+--R       72x y(x)  + 7x  + 4x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 130
+
+)spool
+)lisp (bye)
+ 
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/kamke5.input.pdf b/src/axiom-website/CATS/kamke5.input.pdf
new file mode 100644
index 0000000..3d07ba6
Binary files /dev/null and b/src/axiom-website/CATS/kamke5.input.pdf differ
diff --git a/src/axiom-website/CATS/kamke6.input.pamphlet b/src/axiom-website/CATS/kamke6.input.pamphlet
new file mode 100644
index 0000000..ad31cd3
--- /dev/null
+++ b/src/axiom-website/CATS/kamke6.input.pamphlet
@@ -0,0 +1,3661 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke6.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the 301-350 of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+<<*>>=
+)spool kamke6.output
+)set break resume
+)set mes auto off
+)clear all
+
+--S 1 of 120
+y:=operator 'y
+--R 
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 120
+--Rf:=operator 'f
+--R 
+--R
+--R   (2)  f
+--R                                                          Type: BasicOperator
+--E 2
+
+--S 3 of 120
+--Rg:=operator 'g
+--R 
+--R
+--R   (3)  g
+--R                                                          Type: BasicOperator
+--R
+--E 3
+
+--S 4 of 120
+--Rode301 := (6*x*y(x)**2+x**2)*D(y(x),x)-y(x)*(3*y(x)**2-x)
+--R 
+--R
+--R                2    2  ,           3
+--R   (4)  (6x y(x)  + x )y (x) - 3y(x)  + x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 4
+
+--S 5 of 120
+--Rsolve(ode301,y,x)
+--R 
+--R
+--R   (5)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 5
+
+--S 6 of 120
+--Rode302 := (x**2*y(x)**2+x)*D(y(x),x)+y(x)
+--R 
+--R
+--R          2    2      ,
+--R   (6)  (x y(x)  + x)y (x) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 6
+
+--S 7 of 120
+--Rsolve(ode302,y,x)
+--R 
+--R
+--R   (7)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 7
+
+--S 8 of 120
+--Rode303 := (x*y(x)-1)**2*x*D(y(x),x)+(x**2*y(x)**2+1)*y(x)
+--R 
+--R
+--R          3    2     2          ,       2    3
+--R   (8)  (x y(x)  - 2x y(x) + x)y (x) + x y(x)  + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 8
+
+--S 9 of 120
+--Rsolve(ode303,y,x)
+--R 
+--R
+--R   (9)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 9
+
+--S 10 of 120
+--Rode304 := (10*x**3*y(x)**2+x**2*y(x)+2*x)*D(y(x),x)+5*x**2*y(x)**3+x*y(x)**2
+--R 
+--R
+--R             3    2    2           ,        2    3         2
+--R   (10)  (10x y(x)  + x y(x) + 2x)y (x) + 5x y(x)  + x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 10
+
+--S 11 of 120
+--Rsolve(ode304,y,x)
+--R 
+--R
+--R   (11)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 11
+
+--S 12 of 120
+--Rode305 := (y(x)**3-3*x)*D(y(x),x)-3*y(x)+x**2
+--R 
+--R
+--R              3       ,               2
+--R   (12)  (y(x)  - 3x)y (x) - 3y(x) + x
+--R
+--R                                                     Type: Expression Integer
+--E 12
+
+--S 13 of 120
+--Ryx:=solve(ode305,y,x)
+--R 
+--R
+--R              4                3
+--R         3y(x)  - 36x y(x) + 4x
+--R   (13)  -----------------------
+--R                    12
+--R                                          Type: Union(Expression Integer,...)
+--E 13
+
+--S 14 of 120
+--Rode305expr := (yx**3-3*x)*D(yx,x)-3*yx+x**2
+--R 
+--R
+--R   (14)
+--R                 15             12       3    11         2    9        4    8
+--R           27y(x)   - 1053x y(x)   + 108x y(x)   + 14580x y(x)  - 2916x y(x)
+--R         + 
+--R               6    7         3    6         5    5        7    4
+--R           144x y(x)  - 81648x y(x)  + 23328x y(x)  - 2160x y(x)
+--R         + 
+--R               9          4             3         6    2        8           10
+--R           (64x  + 139968x  - 5184x)y(x)  - 46656x y(x)  + 5184x y(x) - 192x
+--R         + 
+--R                 2
+--R           15552x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R               13      2    12             10        3    9       5    8
+--R       - 81y(x)   + 27x y(x)   + 2916x y(x)   - 1296x y(x)  + 108x y(x)
+--R     + 
+--R               2    7         4    6        6    5
+--R       - 34992x y(x)  + 19440x y(x)  - 3024x y(x)
+--R     + 
+--R            8          3            4         5    3         7    2
+--R       (144x  + 139968x  - 1296)y(x)  - 93312x y(x)  + 20736x y(x)
+--R     + 
+--R               9                    11        3        2
+--R       (- 1920x  + 31104x)y(x) + 64x   - 6912x  + 1728x
+--R  /
+--R     1728
+--R                                                     Type: Expression Integer
+--E 14
+
+--S 15 of 120
+--Rode306 := (y(x)**3-x**3)*D(y(x),x)-x**2*y(x)
+--R 
+--R
+--R              3    3  ,       2
+--R   (15)  (y(x)  - x )y (x) - x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 15
+
+--S 16 of 120
+--Ryx:=solve(ode306,y,x)
+--R 
+--R
+--R             6     3    3
+--R         y(x)  - 2x y(x)
+--R   (16)  ----------------
+--R                 6
+--R                                          Type: Union(Expression Integer,...)
+--E 16
+
+--S 17 of 120
+--Rode306expr := (yx**3-x**3)*D(yx,x)-x**2*yx
+--R 
+--R
+--R   (17)
+--R               23     3    20      6    17      9    14     12    11
+--R           y(x)   - 7x y(x)   + 18x y(x)   - 20x y(x)   + 8x  y(x)
+--R         + 
+--R                 3    5       6    2
+--R           - 216x y(x)  + 216x y(x)
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R        2    21     5    18      8    15     11    12      2    6       5    3
+--R     - x y(x)   + 6x y(x)   - 12x y(x)   + 8x  y(x)   - 36x y(x)  + 288x y(x)
+--R  /
+--R     216
+--R                                                     Type: Expression Integer
+--E 17
+
+--S 18 of 120
+--Rode307 := (y(x)**2+x**2+a)*y(x)*D(y(x),x)+(y(x)**2+x**2-a)*x
+--R 
+--R
+--R              3     2           ,            2    3
+--R   (18)  (y(x)  + (x  + a)y(x))y (x) + x y(x)  + x  - a x
+--R
+--R                                                     Type: Expression Integer
+--E 18
+
+--S 19 of 120
+--Ryx:=solve(ode307,y,x)
+--R 
+--R
+--R             4      2          2    4       2
+--R         y(x)  + (2x  + 2a)y(x)  + x  - 2a x
+--R   (19)  ------------------------------------
+--R                           4
+--R                                          Type: Union(Expression Integer,...)
+--E 19
+
+--S 20 of 120
+--Rode307expr := (yx**2+x**2+a)*yx*D(yx,x)+(yx**2+x**2-a)*x
+--R 
+--R
+--R   (20)
+--R               15      2          13       4        2      2     11
+--R           y(x)   + (7x  + 7a)y(x)   + (21x  + 30a x  + 18a )y(x)
+--R         + 
+--R               6        4      2 2      3     9
+--R           (35x  + 45a x  + 30a x  + 20a )y(x)
+--R         + 
+--R               8        6      2 4         3       2     4           7
+--R           (35x  + 20a x  - 12a x  + (- 16a  + 16)x  + 8a  + 16a)y(x)
+--R         + 
+--R                    10        8      2 6         3       4         4        2
+--R                 21x   - 15a x  - 36a x  + (- 24a  + 48)x  + (- 24a  + 96a)x
+--R               + 
+--R                    2
+--R                 48a
+--R          *
+--R                 5
+--R             y(x)
+--R         + 
+--R                 12        10     2 8       3       6       4        4      2 2
+--R               7x   - 18a x   - 6a x  + (16a  + 48)x  + (24a  + 80a)x  + 64a x
+--R             + 
+--R                  3
+--R               32a
+--R          *
+--R                 3
+--R             y(x)
+--R         + 
+--R             14       12     2 10      3       8     4 6      2 4      3 2
+--R           (x   - 5a x   + 6a x   + (4a  + 16)x  - 8a x  - 48a x  - 32a x )y(x)
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R             14      3            12       5        3     2      10
+--R       x y(x)   + (7x  + 5a x)y(x)   + (21x  + 18a x  + 6a x)y(x)
+--R     + 
+--R           7        5     2 3        3           8
+--R       (35x  + 15a x  - 6a x  + (- 4a  + 4)x)y(x)
+--R     + 
+--R           9        7      2 5         3       3        4             6
+--R       (35x  - 20a x  - 36a x  + (- 16a  + 32)x  + (- 8a  + 32a)x)y(x)
+--R     + 
+--R           11        9      2 7       3       5       4        3      2      4
+--R       (21x   - 45a x  - 12a x  + (24a  + 72)x  + (24a  + 80a)x  + 32a x)y(x)
+--R     + 
+--R          13        11      2 9       3       7      4 5      2 3      3      2
+--R       (7x   - 30a x   + 30a x  + (16a  + 64)x  - 24a x  - 96a x  - 32a x)y(x)
+--R     + 
+--R        15       13      2 11         3       9      4        7       3       3
+--R       x   - 7a x   + 18a x   + (- 20a  + 20)x  + (8a  - 48a)x  + (32a  + 64)x
+--R     + 
+--R       - 64a x
+--R  /
+--R     64
+--R                                                     Type: Expression Integer
+--E 20
+
+--S 21 of 120
+--Rode308 := 2*y(x)**3*D(y(x),x)+x*y(x)**2
+--R 
+--R
+--R              3 ,            2
+--R   (21)  2y(x) y (x) + x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 21
+
+--S 22 of 120
+--Ryx:=solve(ode308,y,x)
+--R 
+--R
+--R              2    2
+--R         2y(x)  + x
+--R   (22)  -----------
+--R              2
+--R                                          Type: Union(Expression Integer,...)
+--E 22
+
+--S 23 of 120
+--Rode308expr := 2*yx**3*D(yx,x)+x*yx**2
+--R 
+--R
+--R   (23)
+--R              7      2    5      4    3     6      ,             6
+--R       (16y(x)  + 24x y(x)  + 12x y(x)  + 2x y(x))y (x) + 8x y(x)
+--R
+--R     + 
+--R           3          4      5     3     2    7    5
+--R       (12x  + 4x)y(x)  + (6x  + 4x )y(x)  + x  + x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 23
+
+--S 24 of 120
+--Rode309 := (2*y(x)**3+y(x))*D(y(x),x)-2*x**3-x
+--R 
+--R
+--R               3         ,        3
+--R   (24)  (2y(x)  + y(x))y (x) - 2x  - x
+--R
+--R                                                     Type: Expression Integer
+--E 24
+
+--S 25 of 120
+--Ryx:=solve(ode309,y,x)
+--R 
+--R
+--R             4       2    4    2
+--R         y(x)  + y(x)  - x  - x
+--R   (25)  -----------------------
+--R                    2
+--R                                          Type: Union(Expression Integer,...)
+--E 25
+
+--S 26 of 120
+--Rode309expr := (2*yx**3+yx)*D(yx,x)-2*x**3-x
+--R 
+--R
+--R   (26)
+--R                15        13        4     2         11
+--R           2y(x)   + 7y(x)   + (- 6x  - 6x  + 9)y(x)
+--R         + 
+--R                 4      2         9      8      6     4      2         7
+--R           (- 15x  - 15x  + 5)y(x)  + (6x  + 12x  - 6x  - 12x  + 5)y(x)
+--R         + 
+--R              8      6     4     2         5
+--R           (9x  + 18x  + 6x  - 3x  + 6)y(x)
+--R         + 
+--R                12     10     8     6    4     2         3
+--R           (- 2x   - 6x   - 3x  + 4x  - x  - 4x  + 2)y(x)
+--R         + 
+--R               12     10     8    6     4     2
+--R           (- x   - 3x   - 3x  - x  - 2x  - 2x )y(x)
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R            3         12        3          10      7     5     3          8
+--R       (- 2x  - x)y(x)   + (- 6x  - 3x)y(x)   + (6x  + 9x  - 3x  - 3x)y(x)
+--R     + 
+--R           7      5     3         6        11      9     7     5    3          4
+--R       (12x  + 18x  + 4x  - x)y(x)  + (- 6x   - 15x  - 6x  + 6x  - x  - 2x)y(x)
+--R     + 
+--R            11      9      7     5     3          2     15     13     11     9
+--R       (- 6x   - 15x  - 12x  - 3x  - 4x  - 2x)y(x)  + 2x   + 7x   + 9x   + 5x
+--R     + 
+--R         7     5     3
+--R       5x  + 6x  - 6x  - 4x
+--R  /
+--R     4
+--R                                                     Type: Expression Integer
+--E 26
+
+--S 27 of 120
+--Rode310 := (2*y(x)**3+5*x**2*y(x))*D(y(x),x)+5*x*y(x)**2+x**3
+--R 
+--R
+--R               3     2      ,             2    3
+--R   (27)  (2y(x)  + 5x y(x))y (x) + 5x y(x)  + x
+--R
+--R                                                     Type: Expression Integer
+--E 27
+
+--S 28 of 120
+--Ryx:=solve(ode310,y,x)
+--R 
+--R
+--R              4      2    2    4
+--R         2y(x)  + 10x y(x)  + x
+--R   (28)  -----------------------
+--R                    4
+--R                                          Type: Union(Expression Integer,...)
+--E 28
+
+--S 29 of 120
+--Rode310expr := (2*yx**3+5*x**2*yx)*D(yx,x)+5*x*yx**2+x**3
+--R 
+--R
+--R   (29)
+--R                 15       2    13        4    11        6    9
+--R           16y(x)   + 280x y(x)   + 1824x y(x)   + 5300x y(x)
+--R         + 
+--R                 8       2     7         10        4     5
+--R           (6212x  + 160x )y(x)  + (1590x   + 1200x )y(x)
+--R         + 
+--R                12        6     3      14       8
+--R           (152x   + 2080x )y(x)  + (5x   + 200x )y(x)
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R               14       3    12        5    10         7           8
+--R       40x y(x)   + 608x y(x)   + 3180x y(x)   + (6212x  + 40x)y(x)
+--R     + 
+--R             9       3     6        11        5     4       13       7     2
+--R       (2650x  + 800x )y(x)  + (456x   + 3120x )y(x)  + (35x   + 800x )y(x)
+--R     + 
+--R        15      9      3
+--R       x   + 50x  + 32x
+--R  /
+--R     32
+--R                                                     Type: Expression Integer
+--E 29
+
+--S 30 of 120
+--Rode311 := (20*y(x)**3-3*x*y(x)**2+6*x**2*y(x)+3*x**3)*D(y(x),x)-_
+--R             y(x)**3+6*x*y(x)**2+9*x**2*y(x)+4*x**3
+--R 
+--R
+--R   (30)
+--R          3          2     2         3  ,          3          2     2         3
+--R   (20y(x)  - 3x y(x)  + 6x y(x) + 3x )y (x) - y(x)  + 6x y(x)  + 9x y(x) + 4x
+--R
+--R                                                     Type: Expression Integer
+--E 30
+
+--S 31 of 120
+--Ryx:=solve(ode311,y,x)
+--R 
+--R
+--R              4         3     2    2     3        4
+--R   (31)  5y(x)  - x y(x)  + 3x y(x)  + 3x y(x) + x
+--R                                          Type: Union(Expression Integer,...)
+--E 31
+
+--S 32 of 120
+--Rode311expr := (20*yx**3-3*x*yx**2+6*x**2*yx+3*x**3)*D(yx,x)-_
+--R                yx**3+6*x*yx**2+9*x**2*yx+4*x**3
+--R 
+--R
+--R   (32)
+--R                  15              14          2    13         3    12
+--R         50000y(x)   - 37500x y(x)   + 115500x y(x)   + 37700x y(x)
+--R       + 
+--R                4             11           5       2     10
+--R         (67860x  - 1500x)y(x)   + (111540x  + 825x )y(x)
+--R       + 
+--R                6        3     9          7        4     8
+--R         (90600x  - 2400x )y(x)  + (72720x  - 1206x )y(x)
+--R       + 
+--R                8        5       2     7          9        6       3     6
+--R         (71880x  - 1032x  + 600x )y(x)  + (52080x  - 1554x  - 210x )y(x)
+--R       + 
+--R                10        7       4     5          11       8       5     4
+--R         (29880x   - 1206x  + 558x )y(x)  + (17100x   - 630x  + 360x )y(x)
+--R       + 
+--R               12       9       6      3     3
+--R         (8860x   - 420x  + 156x  + 60x )y(x)
+--R       + 
+--R               13       10       7     4     2
+--R         (3180x   - 234x   + 144x  - 9x )y(x)
+--R       + 
+--R              14      11      8      5           15     12      9     6
+--R         (660x   - 72x   + 90x  + 18x )y(x) + 60x   - 9x   + 18x  + 9x
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R               15              14        2    13          3           12
+--R     - 2500y(x)   + 16500x y(x)   + 8700x y(x)   + (22620x  - 125)y(x)
+--R   + 
+--R            4            11          5       2     10          6       3     9
+--R     (50700x  + 150x)y(x)   + (54360x  - 720x )y(x)   + (56560x  - 536x )y(x)
+--R   + 
+--R            7       4            8          8        5      2     7
+--R     (71880x  - 645x  + 150x)y(x)  + (66960x  - 1332x  - 90x )y(x)
+--R   + 
+--R            9        6       3     6          10        7       4     5
+--R     (49800x  - 1407x  + 372x )y(x)  + (37620x   - 1008x  + 360x )y(x)
+--R   + 
+--R            11       8       5      2     4
+--R     (26580x   - 945x  + 234x  + 45x )y(x)
+--R   + 
+--R            12       9       6      3     3
+--R     (13780x   - 780x  + 336x  - 12x )y(x)
+--R   + 
+--R           13       10       7      4     2
+--R     (4620x   - 396x   + 360x  + 45x )y(x)
+--R   + 
+--R          14       11       8      5           15      12      9      6     3
+--R     (900x   - 108x   + 162x  + 54x )y(x) + 80x   - 13x   + 30x  + 21x  + 4x
+--R                                                     Type: Expression Integer
+--E 32
+
+--S 33 of 120
+--Rode312 := (y(x)**2/b+x**2/a)*(y(x)*D(y(x),x)+x)+((a-b)/(a+b))*_
+--R             (y(x)*D(y(x),x)-x)
+--R 
+--R
+--R   (33)
+--R                2     3      2        2      2    2        ,
+--R       ((a b + a )y(x)  + ((b  + a b)x  - a b  + a b)y(x))y (x)
+--R
+--R     + 
+--R               2       2     2        3       2    2
+--R       (a b + a )x y(x)  + (b  + a b)x  + (a b  - a b)x
+--R  /
+--R        2    2
+--R     a b  + a b
+--R                                                     Type: Expression Integer
+--E 33
+
+--S 34 of 120
+--Rsolve(ode312,y,x)
+--R 
+--R
+--R   (34)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 34
+
+--S 35 of 120
+--Rode313 := (2*a*y(x)**3+3*a*x*y(x)**2-b*x**3+c*x**2)*D(y(x),x)-_
+--R             a*y(x)**3+c*y(x)**2+3*b*x**2*y(x)+2*b*x**3
+--R 
+--R
+--R   (35)
+--R             3            2      3      2  ,            3         2       2
+--R     (2a y(x)  + 3a x y(x)  - b x  + c x )y (x) - a y(x)  + c y(x)  + 3b x y(x)
+--R
+--R   + 
+--R         3
+--R     2b x
+--R                                                     Type: Expression Integer
+--E 35
+
+--S 36 of 120
+--Rsolve(ode313,y,x)
+--R 
+--R
+--R   (36)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 36
+
+--S 37 of 120
+--Rode314 := x*y(x)**3*D(y(x),x)+y(x)**4-x*sin(x)
+--R 
+--R
+--R               3 ,                     4
+--R   (37)  x y(x) y (x) - x sin(x) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 37
+
+--S 38 of 120
+--Ryx:=solve(ode314,y,x)
+--R 
+--R
+--R               3                   4      2                4    4
+--R         (- 16x  + 96x)sin(x) + (4x  - 48x  + 96)cos(x) + x y(x)
+--R   (38)  --------------------------------------------------------
+--R                                     4
+--R                                          Type: Union(Expression Integer,...)
+--E 38
+
+--S 39 of 120
+--Rode314expr := x*yx**3*D(yx,x)+yx**4-x*sin(x)
+--R 
+--R
+--R   (39)
+--R                    14          12           10           8     3      3
+--R           (- 16384x   + 294912x   - 1769472x   + 3538944x )y(x) sin(x)
+--R         + 
+--R                        15          13           11           9            7
+--R                 (12288x   - 294912x   + 2506752x   - 8847360x  + 10616832x )
+--R              *
+--R                     3
+--R                 y(x) cos(x)
+--R             + 
+--R                     15         13          11     7
+--R               (3072x   - 36864x   + 110592x  )y(x)
+--R          *
+--R                   2
+--R             sin(x)
+--R         + 
+--R                          16         14           12           10            8
+--R                   - 3072x   + 92160x   - 1032192x   + 5308416x   - 12386304x
+--R                 + 
+--R                            6
+--R                   10616832x
+--R              *
+--R                     3      2
+--R                 y(x) cos(x)
+--R             + 
+--R                       16         14          12          10     7
+--R               (- 1536x   + 27648x   - 147456x   + 221184x  )y(x) cos(x)
+--R             + 
+--R                      16        14     11
+--R               (- 192x   + 1152x  )y(x)
+--R          *
+--R             sin(x)
+--R         + 
+--R                   17        15          13          11           9           7
+--R               256x   - 9216x   + 129024x   - 884736x   + 3096576x  - 5308416x
+--R             + 
+--R                       5
+--R               3538944x
+--R          *
+--R                 3      3
+--R             y(x) cos(x)
+--R         + 
+--R                17        15         13          11          9     7      2
+--R           (192x   - 4608x   + 36864x   - 110592x   + 110592x )y(x) cos(x)
+--R         + 
+--R               17       15        13     11           17    15
+--R           (48x   - 576x   + 1152x  )y(x)  cos(x) + 4x  y(x)
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                   14          12          10            8            6
+--R             16384x   - 229376x   + 196608x   + 10616832x  - 56623104x
+--R           + 
+--R                      4
+--R             84934656x
+--R      *
+--R               4
+--R         sin(x)
+--R     + 
+--R                       15          13          11            9             7
+--R               - 12288x   + 229376x   - 540672x   - 13959168x  + 116785152x
+--R             + 
+--R                           5             3
+--R               - 339738624x  + 339738624x
+--R          *
+--R             cos(x)
+--R         + 
+--R                   15        13          11           9           7     4
+--R           (- 3072x   + 4096x   + 479232x   - 3538944x  + 7077888x )y(x)
+--R      *
+--R               3
+--R         sin(x)
+--R     + 
+--R                    16         14          12           10            8
+--R               3072x   - 67584x   + 147456x   + 7372800x   - 79626240x
+--R             + 
+--R                         6             4             2
+--R               343277568x  - 679477248x  + 509607936x
+--R          *
+--R                   2
+--R             cos(x)
+--R         + 
+--R                    16        14          12           10            8
+--R               1536x   - 3072x   - 442368x   + 4792320x   - 17694720x
+--R             + 
+--R                        6
+--R               21233664x
+--R          *
+--R                 4
+--R             y(x) cos(x)
+--R         + 
+--R                16        14         12          10     8
+--R           (192x   + 3456x   - 55296x   + 165888x  )y(x)
+--R      *
+--R               2
+--R         sin(x)
+--R     + 
+--R                     17        15         13           11            9
+--R               - 256x   + 5120x   + 43008x   - 2064384x   + 23445504x
+--R             + 
+--R                           7             5             3
+--R               - 129171456x  + 378667008x  - 566231040x  + 339738624x
+--R          *
+--R                   3
+--R             cos(x)
+--R         + 
+--R                     17        15          13           11            9
+--R               - 192x   - 1536x   + 147456x   - 1953792x   + 10506240x
+--R             + 
+--R                          7            5
+--R               - 24772608x  + 21233664x
+--R          *
+--R                 4      2
+--R             y(x) cos(x)
+--R         + 
+--R                 17        15         13          11          9     8
+--R           (- 48x   - 1728x   + 40320x   - 221184x   + 331776x )y(x) cos(x)
+--R         + 
+--R                17       15        13     12
+--R           (- 4x   - 256x   + 1536x  )y(x)   - 256x
+--R      *
+--R         sin(x)
+--R     + 
+--R               16         14          12           10            8            6
+--R           256x   - 12288x   + 245760x   - 2654208x   + 16809984x  - 63700992x
+--R         + 
+--R                     4             2
+--R           141557760x  - 169869312x  + 84934656
+--R      *
+--R               4
+--R         cos(x)
+--R     + 
+--R               16         14          12           10           8            6
+--R           512x   - 18432x   + 258048x   - 1769472x   + 6193152x  - 10616832x
+--R         + 
+--R                   4
+--R           7077888x
+--R      *
+--R             4      3
+--R         y(x) cos(x)
+--R     + 
+--R            16        14         12          10          8     8      2
+--R       (288x   - 6912x   + 55296x   - 165888x   + 165888x )y(x) cos(x)
+--R     + 
+--R           16       14        12     12           16    16
+--R       (64x   - 768x   + 1536x  )y(x)  cos(x) + 5x  y(x)
+--R  /
+--R     256
+--R                                                     Type: Expression Integer
+--E 39
+
+--S 40 of 120
+--Rode315 := (2*x*y(x)**3-x**4)*D(y(x),x)-y(x)**4+2*x**3*y(x)
+--R 
+--R
+--R                 3    4  ,          4     3
+--R   (40)  (2x y(x)  - x )y (x) - y(x)  + 2x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 40
+
+--S 41 of 120
+--Rsolve(ode315,y,x)
+--R 
+--R
+--R   (41)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 41
+
+--S 42 of 120
+--Rode316 := (2*x*y(x)**3+y(x))*D(y(x),x)+2*y(x)**2
+--R 
+--R
+--R                 3         ,           2
+--R   (42)  (2x y(x)  + y(x))y (x) + 2y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 42
+
+--S 43 of 120
+--Ryx:=solve(ode316,y,x)
+--R 
+--R
+--R                  2
+--R              y(x)
+--R              -----          2
+--R                2        y(x)
+--R         4x %e      + Ei(-----)
+--R                           2
+--R   (43)  ----------------------
+--R                    2
+--R                                          Type: Union(Expression Integer,...)
+--E 43
+
+--S 44 of 120
+--Rode316expr := (2*x*yx**3+yx)*D(yx,x)+2*yx**2
+--R 
+--R
+--R   (44)
+--R                                     2 4                                     2 3
+--R                                 y(x)                                    y(x)
+--R                                 -----                              2    -----
+--R                5    2      4      2           4    2      3    y(x)       2
+--R           (128x y(x)  + 64x )(%e     )  + (96x y(x)  + 48x )Ei(-----)(%e     )
+--R                                                                  2
+--R         + 
+--R                                                                 2 2
+--R                                                             y(x)
+--R                                     2 2                     -----
+--R                3    2      2    y(x)         2    2           2
+--R           ((24x y(x)  + 12x )Ei(-----)  + 16x y(x)  + 8x)(%e     )
+--R                                   2
+--R         + 
+--R                                                                     2
+--R                                                                 y(x)
+--R                                 2 3                        2    -----
+--R               2    2        y(x)              2        y(x)       2
+--R           ((2x y(x)  + x)Ei(-----)  + (4x y(x)  + 2)Ei(-----))%e
+--R                               2                          2
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                       2 4                           2 3
+--R                   y(x)                          y(x)
+--R                   -----                    2    -----
+--R           4         2          3       y(x)       2
+--R       128x y(x)(%e     )  + 96x y(x)Ei(-----)(%e     )
+--R                                          2
+--R     + 
+--R                                                     2 2
+--R                                                 y(x)
+--R                       2 2                       -----
+--R           2       y(x)          2                 2
+--R       (24x y(x)Ei(-----)  + (32x  + 16x)y(x))(%e     )
+--R                     2
+--R     + 
+--R                                                         2
+--R                                                     y(x)
+--R                      2 3                       2    -----               2 2
+--R                  y(x)                      y(x)       2             y(x)
+--R       (2x y(x)Ei(-----)  + (16x + 4)y(x)Ei(-----))%e      + 2y(x)Ei(-----)
+--R                    2                         2                        2
+--R  /
+--R     4y(x)
+--R                                                     Type: Expression Integer
+--E 44
+
+--S 45 of 120
+--Rode317 := (2*x*y(x)**3+x*y(x)+x**2)*D(y(x),x)+y(x)**2-x*y(x)
+--R 
+--R
+--R                 3             2  ,          2
+--R   (45)  (2x y(x)  + x y(x) + x )y (x) + y(x)  - x y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 45
+
+--S 46 of 120
+--Rsolve(ode317,y,x)
+--R 
+--R
+--R   (46)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 46
+
+--S 47 of 120
+--Rode318 := (3*x*y(x)**3-4*x*y(x)+y(x))*D(y(x),x)+y(x)**2*(y(x)**2-2)
+--R 
+--R
+--R                 3                   ,          4        2
+--R   (47)  (3x y(x)  + (- 4x + 1)y(x))y (x) + y(x)  - 2y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 47
+
+--S 48 of 120
+--Ryx:=solve(ode318,y,x)
+--R 
+--R
+--R   (48)
+--R                                       +---------+
+--R                4               2      |    2              5                 3
+--R       (- x y(x)  + (2x - 1)y(x)  + 2)\|y(x)  - 2  + x y(x)  + (- 2x + 1)y(x)
+--R     + 
+--R       - 2y(x)
+--R  /
+--R          +---------+
+--R          |    2            2
+--R     y(x)\|y(x)  - 2  - y(x)  + 2
+--R                                          Type: Union(Expression Integer,...)
+--E 48
+
+--S 49 of 120
+--Rode318expr := (3*x*yx**3-4*x*yx+yx)*D(yx,x)+yx**2*(yx**2-2)
+--R 
+--R
+--R   (49)
+--R           5    11         5      4     9       5      4      3     7
+--R         9x y(x)   + (- 30x  + 30x )y(x)  + (24x  - 96x  + 36x )y(x)
+--R       + 
+--R             4       3      2     5       3      2          3
+--R         (72x  - 120x  + 21x )y(x)  + (88x  - 68x  + 7x)y(x)
+--R       + 
+--R             2
+--R         (40x  - 14x + 1)y(x)
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R       4    12         4      3     10       4      3      2     8
+--R     4x y(x)   + (- 16x  + 13x )y(x)   + (16x  - 52x  + 15x )y(x)
+--R   + 
+--R         3      2          6       2               4                2
+--R     (52x  - 66x  + 8x)y(x)  + (72x  - 38x + 2)y(x)  + (44x - 8)y(x)  + 8
+--R                                                     Type: Expression Integer
+--E 49
+
+--S 50 of 120
+--Rode319 := (7*x*y(x)**3+y(x)-5*x)*D(y(x),x)+y(x)**4-5*y(x)
+--R 
+--R
+--R                 3              ,          4
+--R   (50)  (7x y(x)  + y(x) - 5x)y (x) + y(x)  - 5y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 50
+
+--S 51 of 120
+--Ryx:=solve(ode319,y,x)
+--R 
+--R
+--R                 7        5            4         2
+--R         10x y(x)  + 2y(x)  - 100x y(x)  - 25y(x)  + 250x y(x)
+--R   (51)  -----------------------------------------------------
+--R                                   10
+--R                                          Type: Union(Expression Integer,...)
+--E 51
+
+--S 52 of 120
+--Rode319expr := (7*x*yx**3+yx-5*x)*D(yx,x)+yx**4-5*yx
+--R 
+--R
+--R   (52)
+--R                  5    27          4    25            5    24          3    23
+--R           490000x y(x)   + 364000x y(x)   - 17500000x y(x)   + 100800x y(x)
+--R         + 
+--R                      4    22              5         2     21           3    20
+--R           - 13685000x y(x)   + (269500000x  + 12320x )y(x)   - 3969000x y(x)
+--R         + 
+--R                      4            19                 5          2     18
+--R           (210000000x  + 560x)y(x)   + (- 2327500000x  - 505400x )y(x)
+--R         + 
+--R                    3    17                 4              16
+--R           60952500x y(x)   + (- 1710625000x  - 23800x)y(x)
+--R         + 
+--R                        5           2     15             3    14
+--R           (12250000000x  + 7784000x )y(x)   - 464625000x y(x)
+--R         + 
+--R                       4         2               13
+--R           (7962500000x  + 70000x  + 367500x)y(x)
+--R         + 
+--R                          5            2     12               3              11
+--R           (- 39812500000x  - 55168750x )y(x)   + (1842750000x  + 24000x)y(x)
+--R         + 
+--R                          4           2                10
+--R           (- 20934375000x  - 1100000x  - 2406250x)y(x)
+--R         + 
+--R                        5             2            9
+--R           (76562500000x  + 175000000x  + 2000)y(x)
+--R         + 
+--R                         3               8
+--R           (- 3543750000x  - 405000x)y(x)
+--R         + 
+--R                        4           2                7
+--R           (28000000000x  + 6000000x  + 5468750x)y(x)
+--R         + 
+--R                          5             2             6
+--R           (- 76562500000x  - 191756250x  - 35000)y(x)
+--R         + 
+--R                       3                5
+--R           (2460937500x  + 1800000x)y(x)
+--R         + 
+--R                          4            2              4
+--R           (- 13671875000x  - 12500000x  - 50000x)y(x)
+--R         + 
+--R                        5           2              3                2
+--R           (27343750000x  + 2000000x  + 125000)y(x)  - 1875000x y(x)
+--R         + 
+--R                    2                          2
+--R           (6250000x  + 250000x)y(x) - 1250000x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R             4    28         3    26           4    25         2    24
+--R       80000x y(x)   + 50000x y(x)   - 3200000x y(x)   + 10800x y(x)
+--R     + 
+--R                 3    23             4            22          2    21
+--R       - 2125000x y(x)   + (56000000x  + 880x)y(x)   - 486000x y(x)
+--R     + 
+--R                 3          20                4              19
+--R       (37500000x  + 16)y(x)   + (- 560000000x  - 41800x)y(x)
+--R     + 
+--R               2    18                3           17
+--R       8707500x y(x)   + (- 359375000x  - 800)y(x)
+--R     + 
+--R                   4               16            2    15
+--R       (3500000000x  + 764500x)y(x)   - 79650000x y(x)
+--R     + 
+--R                   3                      14
+--R       (2031250000x  + 10000x + 15000)y(x)
+--R     + 
+--R                      4                13              2            12
+--R       (- 14000000000x  - 6668750x)y(x)   + (394875000x  + 2000)y(x)
+--R     + 
+--R                     3                        11
+--R       (- 6796875000x  - 200000x - 125000)y(x)
+--R     + 
+--R                    4                 10                 2             9
+--R       (35000000000x  + 27500000x)y(x)   + (- 1012500000x  - 45000)y(x)
+--R     + 
+--R                    3                         8
+--R       (12500000000x  + 1500000x + 390625)y(x)
+--R     + 
+--R                      4                 7               2              6
+--R       (- 50000000000x  - 43068750x)y(x)  + (1054687500x  + 300000)y(x)
+--R     + 
+--R                     3                        5
+--R       (- 9765625000x  - 5000000x - 10000)y(x)
+--R     + 
+--R                    4                4             3                          2
+--R       (31250000000x  + 1000000x)y(x)  - 625000y(x)  + (6250000x + 125000)y(x)
+--R     + 
+--R       - 2500000x y(x)
+--R  /
+--R     10000
+--R                                                     Type: Expression Integer
+--E 52
+
+--S 53 of 120
+--Rode320 := (x**2*y(x)**3+x*y(x))*D(y(x),x)-1
+--R 
+--R
+--R           2    3           ,
+--R   (53)  (x y(x)  + x y(x))y (x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 53
+
+--S 54 of 120
+--Rsolve(ode320,y,x)
+--R 
+--R
+--R   (54)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 54
+
+--S 55 of 120
+--Rode321 := (2*x**2*y(x)**3+x**2*y(x)**2-2*x)*D(y(x),x)-2*y(x)-1
+--R 
+--R
+--R            2    3    2    2       ,
+--R   (55)  (2x y(x)  + x y(x)  - 2x)y (x) - 2y(x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 55
+
+--S 56 of 120
+--Rsolve(ode321,y,x)
+--R 
+--R
+--R   (56)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 56
+
+--S 57 of 120
+--Rode322 := (10*x**2*y(x)**3-3*y(x)**2-2)*D(y(x),x)+5*x*y(x)**4+x
+--R 
+--R
+--R             2    3        2      ,             4
+--R   (57)  (10x y(x)  - 3y(x)  - 2)y (x) + 5x y(x)  + x
+--R
+--R                                                     Type: Expression Integer
+--E 57
+
+--S 58 of 120
+--Ryx:=solve(ode322,y,x)
+--R 
+--R
+--R           2    4        3            2
+--R         5x y(x)  - 2y(x)  - 4y(x) + x
+--R   (58)  ------------------------------
+--R                        2
+--R                                          Type: Union(Expression Integer,...)
+--E 58
+
+--S 59 of 120
+--Rode322expr := (10*x**2*yx**3-3*yx**2-2)*D(yx,x)+5*x*yx**4+x
+--R 
+--R
+--R   (59)
+--R                 10    15         8    14         6    13
+--R           25000x  y(x)   - 37500x y(x)   + 21000x y(x)
+--R         + 
+--R                    8        4     12          10         6       2     11
+--R           (- 65000x  - 5200x )y(x)   + (15000x   + 69000x  + 480x )y(x)
+--R         + 
+--R                    8         4     10          6        2     9
+--R           (- 16500x  - 23100x )y(x)   + (66000x  + 2000x )y(x)
+--R         + 
+--R                    8         4           8         10         6        2     7
+--R           (- 27000x  - 38520x  + 144)y(x)  + (3000x   + 18000x  + 3840x )y(x)
+--R         + 
+--R                   8         4           6          6        2     5
+--R           (- 2100x  - 24920x  + 672)y(x)  + (14760x  + 4656x )y(x)
+--R         + 
+--R                   8        4           4        10       6        2     3
+--R           (- 3000x  - 3600x  + 960)y(x)  + (200x   + 840x  + 1856x )y(x)
+--R         + 
+--R               8        4           2        6       2           8      4
+--R         (- 60x  - 1884x  + 480)y(x)  + (480x  - 192x )y(x) - 40x  + 24x  + 64
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R             9    16         7    15        5    14            7        3     13
+--R       15625x y(x)   - 20000x y(x)   + 9000x y(x)   + (- 40000x  - 1600x )y(x)
+--R     + 
+--R              9         5           12            7        3     11
+--R       (12500x  + 34500x  + 80x)y(x)   + (- 12000x  - 8400x )y(x)
+--R     + 
+--R              5            10            7         3     9
+--R       (39600x  + 400x)y(x)   + (- 24000x  - 17120x )y(x)
+--R     + 
+--R             9         5            8           7         3     7
+--R       (3750x  + 13500x  + 960x)y(x)  + (- 2400x  - 14240x )y(x)
+--R     + 
+--R              5             6           7        3     5
+--R       (14760x  + 1552x)y(x)  + (- 4800x  - 2880x )y(x)
+--R     + 
+--R            9        5            4          7        3     3
+--R       (500x  + 1260x  + 928x)y(x)  + (- 160x  - 2512x )y(x)
+--R     + 
+--R             5            2          7      3           9      5
+--R       (1440x  - 192x)y(x)  + (- 320x  + 96x )y(x) + 25x  - 12x  - 16x
+--R  /
+--R     16
+--R                                                     Type: Expression Integer
+--E 59
+
+--S 60 of 120
+--Rode323 := (a*x*y(x)**3+c)*x*D(y(x),x)+(b*x**3*y(x)+c)*y(x)
+--R 
+--R
+--R             2    3        ,         3    2
+--R   (60)  (a x y(x)  + c x)y (x) + b x y(x)  + c y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 60
+
+--S 61 of 120
+--Rsolve(ode323,y,x)
+--R 
+--R
+--R   (61)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 61
+
+--S 62 of 120
+--Rode324 := (2*x**3*y(x)**3-x)*D(y(x),x)+2*x**3*y(x)**3-y(x)
+--R 
+--R
+--R            3    3      ,        3    3
+--R   (62)  (2x y(x)  - x)y (x) + 2x y(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 62
+
+--S 63 of 120
+--Rsolve(ode324,y,x)
+--R 
+--R
+--R   (63)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 63
+
+--S 64 of 120
+--Rode325 := y(x)*(y(x)**3-2*x**3)*D(y(x),x)+(2*y(x)**3-x**3)*x
+--R 
+--R
+--R              4     3      ,             3    4
+--R   (64)  (y(x)  - 2x y(x))y (x) + 2x y(x)  - x
+--R
+--R                                                     Type: Expression Integer
+--E 64
+
+--S 65 of 120
+--Rsolve(ode325,y,x)
+--R 
+--R
+--R   (65)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 65
+
+--S 66 of 120
+--Rode326 := y(x)*((a*y(x)+b*x)**3+b*x**3)*D(y(x),x)+x*((a*y(x)+b*x)**3+a*y(x)**3)
+--R 
+--R
+--R   (66)
+--R       3    4     2        3       2 2    2     3      3      ,
+--R     (a y(x)  + 3a b x y(x)  + 3a b x y(x)  + (b  + b)x y(x))y (x)
+--R
+--R   + 
+--R       3           3     2   2    2       2 3        3 4
+--R     (a  + a)x y(x)  + 3a b x y(x)  + 3a b x y(x) + b x
+--R                                                     Type: Expression Integer
+--E 66
+
+--S 67 of 120
+--Rsolve(ode326,y,x)
+--R 
+--R
+--R   (67)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 67
+
+--S 68 of 120
+--Rode327 := (x*y(x)**4+2*x**2*y(x)**3+2*y(x)+x)*D(y(x),x)+y(x)**5+y(x)
+--R 
+--R
+--R                4     2    3              ,          5
+--R   (68)  (x y(x)  + 2x y(x)  + 2y(x) + x)y (x) + y(x)  + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 68
+
+--S 69 of 120
+--Rsolve(ode327,y,x)
+--R 
+--R
+--R   (69)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 69
+
+--S 70 of 120
+--Rode328 := a*x**2*y(x)**n*D(y(x),x)-2*x*D(y(x),x)+y(x)
+--R 
+--R
+--R             2    n       ,
+--R   (70)  (a x y(x)  - 2x)y (x) + y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 70
+
+--S 71 of 120
+--Rsolve(ode328,y,x)
+--R 
+--R
+--R   (71)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 71
+
+--S 72 of 120
+--Rode329 := y(x)**m*x**n*(a*x*D(y(x),x)+b*y(x))+alpha*x*D(y(x),x)+beta*y(x)
+--R 
+--R
+--R               n    m            ,             n    m
+--R   (72)  (a x x y(x)  + alpha x)y (x) + b y(x)x y(x)  + beta y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 72
+
+--S 73 of 120
+--Rsolve(ode329,y,x)
+--R 
+--R
+--R   (73)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 73
+
+--S 74 of 120
+--Rode330 := (f(x+y(x))+1)*D(y(x),x)+f(x+y(x))
+--R 
+--R
+--R                           ,
+--R   (74)  (f(y(x) + x) + 1)y (x) + f(y(x) + x)
+--R
+--R                                                     Type: Expression Integer
+--E 74
+
+--S 75 of 120
+--Rsolve(ode330,y,x)
+--R 
+--R 
+--R   >> Error detected within library code:
+--R   Sorry - cannot handle that integrand yet
+--R
+--R   Continuing to read the file...
+--R
+--E 75
+
+@
+I have no idea what to do with this
+\begin{verbatim}
+ ode331 := D(y(x),x)*convert([sum(f[nu](x)*y(x)**nu,'nu'=1..p)],`+`)-_
+                     convert([sum(g[nu](x)*y(x)**nu,'nu'=1..q)],`+`)
+\end{verbatim}
+<<*>>=
+--R
+--S 76 of 120
+--Rode333 := (2*x**(5/2)*y(x)**(3/2)+x**2*y(x)-x)*D(y(x),x)-_
+--R            x**(3/2)*y(x)**(5/2)+x*y(x)**2-y(x)
+--R 
+--R
+--R   (75)
+--R      2     +-+ +----+    2          ,            2 +-+ +----+         2
+--R   (2x y(x)\|x \|y(x)  + x y(x) - x)y (x) - x y(x) \|x \|y(x)  + x y(x)  - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 76
+
+--S 77 of 120
+--Rsolve(ode333,y,x)
+--R 
+--R
+--R   (76)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 77
+
+--S 78 of 120
+--Rode334 := (sqrt(y(x)+x)+1)*D(y(x),x)+1
+--R 
+--R
+--R           +--------+      ,
+--R   (77)  (\|y(x) + x  + 1)y (x) + 1
+--R
+--R                                                     Type: Expression Integer
+--E 78
+
+--S 79 of 120
+--Rsolve(ode334,y,x)
+--R 
+--R
+--R   (78)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 79
+
+--S 80 of 120
+--Rode335 := sqrt(y(x)**2-1)*D(y(x),x)-sqrt(x**2-1)
+--R 
+--R
+--R          +---------+         +------+
+--R          |    2      ,       | 2
+--R   (79)  \|y(x)  - 1 y (x) - \|x  - 1
+--R
+--R                                                     Type: Expression Integer
+--E 80
+
+--S 81 of 120
+--Ryx:=solve(ode335,y,x)
+--R 
+--R
+--R   (80)
+--R                    +------+                    +---------+
+--R                    | 2             2           |    2
+--R           (4x y(x)\|x  - 1  + (- 4x  + 2)y(x))\|y(x)  - 1
+--R         + 
+--R                             +------+
+--R                     2       | 2           2         2     2
+--R           (- 4x y(x)  + 2x)\|x  - 1  + (4x  - 2)y(x)  - 2x  + 1
+--R      *
+--R              +---------+
+--R              |    2
+--R         log(\|y(x)  - 1  - y(x))
+--R     + 
+--R                      +------+                      +------+
+--R                      | 2           2               | 2
+--R           (- 4x y(x)\|x  - 1  + (4x  - 2)y(x))log(\|x  - 1  - x)
+--R         + 
+--R                                  +------+
+--R                     3     3      | 2           2         3
+--R           (- 4x y(x)  + 4x y(x))\|x  - 1  + (4x  - 2)y(x)
+--R         + 
+--R                4     2
+--R           (- 4x  + 2x  + 1)y(x)
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  - 1
+--R     + 
+--R                        +------+                                   +------+
+--R                2       | 2             2         2     2          | 2
+--R       ((4x y(x)  - 2x)\|x  - 1  + (- 4x  + 2)y(x)  + 2x  - 1)log(\|x  - 1  - x)
+--R     + 
+--R                                                +------+
+--R               4        3          2     3      | 2             2         4
+--R       (4x y(x)  + (- 4x  - 2x)y(x)  + 2x  - x)\|x  - 1  + (- 4x  + 2)y(x)
+--R     + 
+--R          4         2     4     2
+--R       (4x  - 2)y(x)  - 2x  + 2x
+--R  /
+--R                +------+                    +---------+
+--R                | 2             2           |    2
+--R       (8x y(x)\|x  - 1  + (- 8x  + 4)y(x))\|y(x)  - 1
+--R     + 
+--R                         +------+
+--R                 2       | 2           2         2     2
+--R       (- 8x y(x)  + 4x)\|x  - 1  + (8x  - 4)y(x)  - 4x  + 2
+--R                                          Type: Union(Expression Integer,...)
+--E 81
+
+--S 82 of 120
+--Rode335expr := sqrt(yx**2-1)*D(yx,x)-sqrt(x**2-1)
+--R 
+--R
+--R   (81)
+--R                             4      2         5       4      2          3
+--R                       (- 64x  + 64x  - 8)y(x)  + (96x  - 96x  + 12)y(x)
+--R                     + 
+--R                             4      2
+--R                       (- 32x  + 32x  - 4)y(x)
+--R                  *
+--R                      +------+
+--R                      | 2
+--R                     \|x  - 1
+--R                 + 
+--R                       5      3           5         5       3           3
+--R                   (64x  - 96x  + 32x)y(x)  + (- 96x  + 144x  - 48x)y(x)
+--R                 + 
+--R                       5      3
+--R                   (32x  - 48x  + 16x)y(x)
+--R              *
+--R                  +---------+
+--R                  |    2
+--R                 \|y(x)  - 1
+--R             + 
+--R                       4      2         6          4       2          4
+--R                   (64x  - 64x  + 8)y(x)  + (- 128x  + 128x  - 16)y(x)
+--R                 + 
+--R                       4      2         2     4     2
+--R                   (72x  - 72x  + 9)y(x)  - 8x  + 8x  - 1
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  - 1
+--R             + 
+--R                     5      3           6        5       3           4
+--R               (- 64x  + 96x  - 32x)y(x)  + (128x  - 192x  + 64x)y(x)
+--R             + 
+--R                     5       3           2     5      3
+--R               (- 72x  + 108x  - 36x)y(x)  + 8x  - 12x  + 4x
+--R          *
+--R              ,
+--R             y (x)
+--R
+--R         + 
+--R                       5      3           4         5      3           2     5
+--R                   (64x  - 96x  + 32x)y(x)  + (- 64x  + 96x  - 32x)y(x)  + 8x
+--R                 + 
+--R                        3
+--R                   - 12x  + 4x
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  - 1
+--R             + 
+--R                     6       4      2         4       6       4      2         2
+--R               (- 64x  + 128x  - 72x  + 8)y(x)  + (64x  - 128x  + 72x  - 8)y(x)
+--R             + 
+--R                   6      4     2
+--R               - 8x  + 16x  - 9x  + 1
+--R          *
+--R              +---------+
+--R              |    2
+--R             \|y(x)  - 1
+--R         + 
+--R                     5      3           5       5       3           3
+--R               (- 64x  + 96x  - 32x)y(x)  + (96x  - 144x  + 48x)y(x)
+--R             + 
+--R                     5      3
+--R               (- 32x  + 48x  - 16x)y(x)
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  - 1
+--R         + 
+--R               6       4      2         5         6       4       2          3
+--R           (64x  - 128x  + 72x  - 8)y(x)  + (- 96x  + 192x  - 108x  + 12)y(x)
+--R         + 
+--R               6      4      2
+--R           (32x  - 64x  + 36x  - 4)y(x)
+--R      *
+--R         ROOT
+--R                                                                 +------+
+--R                             3           3         3             | 2
+--R                        ((64x  - 32x)y(x)  + (- 32x  + 16x)y(x))\|x  - 1
+--R                      + 
+--R                              4      2         3       4      2
+--R                        (- 64x  + 64x  - 8)y(x)  + (32x  - 32x  + 4)y(x)
+--R                   *
+--R                       +---------+
+--R                       |    2
+--R                      \|y(x)  - 1
+--R                  + 
+--R                             3           4       3           2     3
+--R                      ((- 64x  + 32x)y(x)  + (64x  - 32x)y(x)  - 8x  + 4x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                        4      2         4         4      2         2     4
+--R                    (64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x
+--R                  + 
+--R                        2
+--R                    - 8x  + 1
+--R               *
+--R                       +---------+        2
+--R                       |    2
+--R                  log(\|y(x)  - 1  - y(x))
+--R              + 
+--R                                                                      +------+
+--R                                    3           3       3             | 2
+--R                            ((- 128x  + 64x)y(x)  + (64x  - 32x)y(x))\|x  - 1
+--R                          + 
+--R                                 4       2          3         4      2
+--R                            (128x  - 128x  + 16)y(x)  + (- 64x  + 64x  - 8)y(x)
+--R                       *
+--R                               +------+
+--R                               | 2
+--R                          log(\|x  - 1  - x)
+--R                      + 
+--R                                   3           5        5           3
+--R                            (- 128x  + 64x)y(x)  + (128x  - 48x)y(x)
+--R                          + 
+--R                                  5      3
+--R                            (- 64x  + 48x )y(x)
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  - 1
+--R                      + 
+--R                             4       2          5
+--R                        (128x  - 128x  + 16)y(x)
+--R                      + 
+--R                               6      4      2          3
+--R                        (- 128x  + 64x  + 64x  - 16)y(x)
+--R                      + 
+--R                            6      4      2
+--R                        (64x  - 80x  + 16x  + 2)y(x)
+--R                   *
+--R                       +---------+
+--R                       |    2
+--R                      \|y(x)  - 1
+--R                  + 
+--R                                   3           4          3           2      3
+--R                              (128x  - 64x)y(x)  + (- 128x  + 64x)y(x)  + 16x
+--R                            + 
+--R                              - 8x
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  - 1
+--R                      + 
+--R                               4       2          4        4       2          2
+--R                        (- 128x  + 128x  - 16)y(x)  + (128x  - 128x  + 16)y(x)
+--R                      + 
+--R                             4      2
+--R                        - 16x  + 16x  - 2
+--R                   *
+--R                           +------+
+--R                           | 2
+--R                      log(\|x  - 1  - x)
+--R                  + 
+--R                             3           6          5      3           4
+--R                        (128x  - 64x)y(x)  + (- 128x  - 64x  + 80x)y(x)
+--R                      + 
+--R                             5      3           2      5      3
+--R                        (128x  - 64x  - 16x)y(x)  - 16x  + 16x  - 2x
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                           4       2          6        6       2          4
+--R                    (- 128x  + 128x  - 16)y(x)  + (128x  - 128x  + 24)y(x)
+--R                  + 
+--R                           6       4         2      6      4     2
+--R                    (- 128x  + 128x  - 8)y(x)  + 16x  - 24x  + 8x
+--R               *
+--R                       +---------+
+--R                       |    2
+--R                  log(\|y(x)  - 1  - y(x))
+--R              + 
+--R                                                                 +------+
+--R                             3           3         3             | 2
+--R                        ((64x  - 32x)y(x)  + (- 32x  + 16x)y(x))\|x  - 1
+--R                      + 
+--R                              4      2         3       4      2
+--R                        (- 64x  + 64x  - 8)y(x)  + (32x  - 32x  + 4)y(x)
+--R                   *
+--R                           +------+     2
+--R                           | 2
+--R                      log(\|x  - 1  - x)
+--R                  + 
+--R                                 3           5          5           3
+--R                            (128x  - 64x)y(x)  + (- 128x  + 48x)y(x)
+--R                          + 
+--R                                5      3
+--R                            (64x  - 48x )y(x)
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  - 1
+--R                      + 
+--R                               4       2          5
+--R                        (- 128x  + 128x  - 16)y(x)
+--R                      + 
+--R                             6      4      2          3
+--R                        (128x  - 64x  - 64x  + 16)y(x)
+--R                      + 
+--R                              6      4      2
+--R                        (- 64x  + 80x  - 16x  - 2)y(x)
+--R                   *
+--R                           +------+
+--R                           | 2
+--R                      log(\|x  - 1  - x)
+--R                  + 
+--R                            3           7          5      3           5
+--R                        (64x  - 32x)y(x)  + (- 128x  + 32x  + 32x)y(x)
+--R                      + 
+--R                            7      5       3            3
+--R                        (64x  + 32x  - 320x  + 128x)y(x)
+--R                      + 
+--R                              7      5       3
+--R                        (- 32x  + 32x  + 128x  - 66x)y(x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                          4      2         7        6      4      2          5
+--R                    (- 64x  + 64x  - 8)y(x)  + (128x  - 96x  - 32x  + 12)y(x)
+--R                  + 
+--R                          8       4       2          3
+--R                    (- 64x  + 344x  - 280x  + 28)y(x)
+--R                  + 
+--R                        8      6       4       2
+--R                    (32x  - 48x  - 116x  + 132x  - 16)y(x)
+--R               *
+--R                   +---------+
+--R                   |    2
+--R                  \|y(x)  - 1
+--R              + 
+--R                             3           4       3           2     3
+--R                      ((- 64x  + 32x)y(x)  + (64x  - 32x)y(x)  - 8x  + 4x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                        4      2         4         4      2         2     4
+--R                    (64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x
+--R                  + 
+--R                        2
+--R                    - 8x  + 1
+--R               *
+--R                       +------+     2
+--R                       | 2
+--R                  log(\|x  - 1  - x)
+--R              + 
+--R                               3           6        5      3           4
+--R                        (- 128x  + 64x)y(x)  + (128x  + 64x  - 80x)y(x)
+--R                      + 
+--R                               5      3           2      5      3
+--R                        (- 128x  + 64x  + 16x)y(x)  + 16x  - 16x  + 2x
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  - 1
+--R                  + 
+--R                         4       2          6          6       2          4
+--R                    (128x  - 128x  + 16)y(x)  + (- 128x  + 128x  - 24)y(x)
+--R                  + 
+--R                         6       4         2      6      4     2
+--R                    (128x  - 128x  + 8)y(x)  - 16x  + 24x  - 8x
+--R               *
+--R                       +------+
+--R                       | 2
+--R                  log(\|x  - 1  - x)
+--R              + 
+--R                          3           8        5           6
+--R                    (- 64x  + 32x)y(x)  + (128x  - 48x)y(x)
+--R                  + 
+--R                          7      5       3            4
+--R                    (- 64x  - 96x  + 344x  - 116x)y(x)
+--R                  + 
+--R                        7      5       3            2     7      5      3
+--R                    (64x  - 32x  - 280x  + 132x)y(x)  - 8x  + 12x  + 28x  - 16x
+--R               *
+--R                   +------+
+--R                   | 2
+--R                  \|x  - 1
+--R              + 
+--R                    4      2         8          6      4      2          6
+--R                (64x  - 64x  + 8)y(x)  + (- 128x  + 64x  + 64x  - 16)y(x)
+--R              + 
+--R                    8      6       4       2          4
+--R                (64x  + 64x  - 400x  + 272x  - 23)y(x)
+--R              + 
+--R                      8      6       4       2          2     8      6      4
+--R                (- 64x  + 64x  + 272x  - 272x  + 31)y(x)  + 8x  - 16x  - 23x
+--R              + 
+--R                   2
+--R                31x  - 4
+--R           /
+--R                                                                +------+
+--R                          3            3          3             | 2
+--R                    ((256x  - 128x)y(x)  + (- 128x  + 64x)y(x))\|x  - 1
+--R                  + 
+--R                           4       2          3        4       2
+--R                    (- 256x  + 256x  - 32)y(x)  + (128x  - 128x  + 16)y(x)
+--R               *
+--R                   +---------+
+--R                   |    2
+--R                  \|y(x)  - 1
+--R              + 
+--R                          3            4        3            2      3
+--R                  ((- 256x  + 128x)y(x)  + (256x  - 128x)y(x)  - 32x  + 16x)
+--R               *
+--R                   +------+
+--R                   | 2
+--R                  \|x  - 1
+--R              + 
+--R                     4       2          4          4       2          2      4
+--R                (256x  - 256x  + 32)y(x)  + (- 256x  + 256x  - 32)y(x)  + 32x
+--R              + 
+--R                     2
+--R                - 32x  + 4
+--R     + 
+--R                   5      3           4         5      3           2     5
+--R               (64x  - 96x  + 32x)y(x)  + (- 64x  + 96x  - 32x)y(x)  + 8x
+--R             + 
+--R                    3
+--R               - 12x  + 4x
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  - 1
+--R         + 
+--R                 6       4      2         4       6       4      2         2
+--R           (- 64x  + 128x  - 72x  + 8)y(x)  + (64x  - 128x  + 72x  - 8)y(x)
+--R         + 
+--R               6      4     2
+--R           - 8x  + 16x  - 9x  + 1
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  - 1
+--R     + 
+--R                 5      3           5       5       3           3
+--R           (- 64x  + 96x  - 32x)y(x)  + (96x  - 144x  + 48x)y(x)
+--R         + 
+--R                 5      3
+--R           (- 32x  + 48x  - 16x)y(x)
+--R      *
+--R          +------+
+--R          | 2
+--R         \|x  - 1
+--R     + 
+--R           6       4      2         5         6       4       2          3
+--R       (64x  - 128x  + 72x  - 8)y(x)  + (- 96x  + 192x  - 108x  + 12)y(x)
+--R     + 
+--R           6      4      2
+--R       (32x  - 64x  + 36x  - 4)y(x)
+--R  /
+--R                  4      2         4         4      2         2     4     2
+--R             ((64x  - 64x  + 8)y(x)  + (- 64x  + 64x  - 8)y(x)  + 8x  - 8x  + 1)
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  - 1
+--R         + 
+--R               5      3           4       5      3           2     5      3
+--R         (- 64x  + 96x  - 32x)y(x)  + (64x  - 96x  + 32x)y(x)  - 8x  + 12x  - 4x
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  - 1
+--R     + 
+--R                 4      2         5       4      2          3
+--R           (- 64x  + 64x  - 8)y(x)  + (96x  - 96x  + 12)y(x)
+--R         + 
+--R                 4      2
+--R           (- 32x  + 32x  - 4)y(x)
+--R      *
+--R          +------+
+--R          | 2
+--R         \|x  - 1
+--R     + 
+--R           5      3           5         5       3           3
+--R       (64x  - 96x  + 32x)y(x)  + (- 96x  + 144x  - 48x)y(x)
+--R     + 
+--R           5      3
+--R       (32x  - 48x  + 16x)y(x)
+--R                                                     Type: Expression Integer
+--E 82
+
+--S 83 of 120
+--Rode336 := (sqrt(y(x)**2+1)+a*x)*D(y(x),x)+sqrt(x**2+1)+a*y(x)
+--R 
+--R
+--R           +---------+                +------+
+--R           |    2             ,       | 2
+--R   (82)  (\|y(x)  + 1  + a x)y (x) + \|x  + 1  + a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 83
+
+--S 84 of 120
+--Ryx:=solve(ode336,y,x)
+--R 
+--R
+--R   (83)
+--R                      +------+                  +---------+
+--R                      | 2           2           |    2
+--R           (- 4x y(x)\|x  + 1  + (4x  + 2)y(x))\|y(x)  + 1
+--R         + 
+--R                           +------+
+--R                   2       | 2             2         2     2
+--R           (4x y(x)  + 2x)\|x  + 1  + (- 4x  - 2)y(x)  - 2x  - 1
+--R      *
+--R              +---------+
+--R              |    2
+--R         log(\|y(x)  + 1  - y(x))
+--R     + 
+--R                      +------+                      +------+
+--R                      | 2           2               | 2
+--R           (- 4x y(x)\|x  + 1  + (4x  + 2)y(x))log(\|x  + 1  - x)
+--R         + 
+--R                                                        +------+
+--R                     3       2    2        3            | 2
+--R           (- 4x y(x)  + 8a x y(x)  + (- 4x  - 4x)y(x))\|x  + 1
+--R         + 
+--R              2         3          3            2      4     2
+--R           (4x  + 2)y(x)  + (- 8a x  - 4a x)y(x)  + (4x  + 6x  + 1)y(x)
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  + 1
+--R     + 
+--R                        +------+                                   +------+
+--R                2       | 2             2         2     2          | 2
+--R       ((4x y(x)  + 2x)\|x  + 1  + (- 4x  - 2)y(x)  - 2x  - 1)log(\|x  + 1  - x)
+--R     + 
+--R                                                                       +------+
+--R               4       2    3      3          2       2         3      | 2
+--R       (4x y(x)  - 8a x y(x)  + (4x  + 6x)y(x)  - 4a x y(x) + 2x  + x)\|x  + 1
+--R     + 
+--R            2         4        3            3        4     2         2
+--R       (- 4x  - 2)y(x)  + (8a x  + 4a x)y(x)  + (- 4x  - 8x  - 2)y(x)
+--R     + 
+--R            3                 4     2
+--R       (4a x  + 2a x)y(x) - 2x  - 2x
+--R  /
+--R                +------+                    +---------+
+--R                | 2             2           |    2
+--R       (8x y(x)\|x  + 1  + (- 8x  - 4)y(x))\|y(x)  + 1
+--R     + 
+--R                         +------+
+--R                 2       | 2           2         2     2
+--R       (- 8x y(x)  - 4x)\|x  + 1  + (8x  + 4)y(x)  + 4x  + 2
+--R                                          Type: Union(Expression Integer,...)
+--E 84
+
+--S 85 of 120
+--Rode336expr := (sqrt(yx**2+1)+a*x)*D(yx,x)+sqrt(x**2+1)+a*yx
+--R 
+--R
+--R   (84)
+--R                               6        4        2          7
+--R                       (- 2048x  - 3072x  - 1152x  - 64)y(x)
+--R                     + 
+--R                               7          5          3             6
+--R                       (2048a x  + 3072a x  + 1152a x  + 64a x)y(x)
+--R                     + 
+--R                               6        4        2           5
+--R                       (- 4096x  - 6144x  - 2304x  - 128)y(x)
+--R                     + 
+--R                               7          5          3             4
+--R                       (3072a x  + 4608a x  + 1728a x  + 96a x)y(x)
+--R                     + 
+--R                               6        4        2          3
+--R                       (- 2432x  - 3648x  - 1368x  - 76)y(x)
+--R                     + 
+--R                               7          5         3             2
+--R                       (1152a x  + 1728a x  + 648a x  + 36a x)y(x)
+--R                     + 
+--R                              6       4       2                  7        5
+--R                       (- 384x  - 576x  - 216x  - 12)y(x) + 64a x  + 96a x
+--R                     + 
+--R                            3
+--R                       36a x  + 2a x
+--R                  *
+--R                      +------+
+--R                      | 2
+--R                     \|x  + 1
+--R                 + 
+--R                         7        5        3            7
+--R                   (2048x  + 4096x  + 2432x  + 384x)y(x)
+--R                 + 
+--R                             8          6          4         2     6
+--R                   (- 2048a x  - 4096a x  - 2432a x  - 384a x )y(x)
+--R                 + 
+--R                         7        5        3            5
+--R                   (4096x  + 8192x  + 4864x  + 768x)y(x)
+--R                 + 
+--R                             8          6          4         2     4
+--R                   (- 3072a x  - 6144a x  - 3648a x  - 576a x )y(x)
+--R                 + 
+--R                         7        5        3            3
+--R                   (2432x  + 4864x  + 2888x  + 456x)y(x)
+--R                 + 
+--R                             8          6          4         2     2
+--R                   (- 1152a x  - 2304a x  - 1368a x  - 216a x )y(x)
+--R                 + 
+--R                        7       5       3                   8         6        4
+--R                   (384x  + 768x  + 456x  + 72x)y(x) - 64a x  - 128a x  - 76a x
+--R                 + 
+--R                          2
+--R                   - 12a x
+--R              *
+--R                  +---------+
+--R                  |    2
+--R                 \|y(x)  + 1
+--R             + 
+--R                         6        4        2          8
+--R                   (2048x  + 3072x  + 1152x  + 64)y(x)
+--R                 + 
+--R                             7          5          3             7
+--R                   (- 2048a x  - 3072a x  - 1152a x  - 64a x)y(x)
+--R                 + 
+--R                         6        4        2           6
+--R                   (5120x  + 7680x  + 2880x  + 160)y(x)
+--R                 + 
+--R                             7          5          3              5
+--R                   (- 4096a x  - 6144a x  - 2304a x  - 128a x)y(x)
+--R                 + 
+--R                         6        4        2           4
+--R                   (4224x  + 6336x  + 2376x  + 132)y(x)
+--R                 + 
+--R                             7          5          3             3
+--R                   (- 2432a x  - 3648a x  - 1368a x  - 76a x)y(x)
+--R                 + 
+--R                         6        4       2          2
+--R                   (1216x  + 1824x  + 684x  + 38)y(x)
+--R                 + 
+--R                            7         5         3                   6      4
+--R                   (- 384a x  - 576a x  - 216a x  - 12a x)y(x) + 64x  + 96x
+--R                 + 
+--R                      2
+--R                   36x  + 2
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  + 1
+--R             + 
+--R                       7        5        3            8
+--R               (- 2048x  - 4096x  - 2432x  - 384x)y(x)
+--R             + 
+--R                       8          6          4         2     7
+--R               (2048a x  + 4096a x  + 2432a x  + 384a x )y(x)
+--R             + 
+--R                       7         5        3            6
+--R               (- 5120x  - 10240x  - 6080x  - 960x)y(x)
+--R             + 
+--R                       8          6          4         2     5
+--R               (4096a x  + 8192a x  + 4864a x  + 768a x )y(x)
+--R             + 
+--R                       7        5        3            4
+--R               (- 4224x  - 8448x  - 5016x  - 792x)y(x)
+--R             + 
+--R                       8          6          4         2     3
+--R               (2432a x  + 4864a x  + 2888a x  + 456a x )y(x)
+--R             + 
+--R                       7        5        3            2
+--R               (- 1216x  - 2432x  - 1444x  - 228x)y(x)
+--R             + 
+--R                      8         6         4        2           7       5      3
+--R               (384a x  + 768a x  + 456a x  + 72a x )y(x) - 64x  - 128x  - 76x
+--R             + 
+--R               - 12x
+--R          *
+--R              ,
+--R             y (x)
+--R
+--R         + 
+--R                           6          4          2           7
+--R                   (2048a x  + 3072a x  + 1152a x  + 64a)y(x)
+--R                 + 
+--R                           7        5        3            6
+--R                   (- 2048x  - 4096x  - 2432x  - 384x)y(x)
+--R                 + 
+--R                           6          4          2           5
+--R                   (3072a x  + 4608a x  + 1728a x  + 96a)y(x)
+--R                 + 
+--R                           7        5        3            4
+--R                   (- 3072x  - 6144x  - 3648x  - 576x)y(x)
+--R                 + 
+--R                           6          4         2           3
+--R                   (1152a x  + 1728a x  + 648a x  + 36a)y(x)
+--R                 + 
+--R                           7        5        3            2
+--R                   (- 1152x  - 2304x  - 1368x  - 216x)y(x)
+--R                 + 
+--R                       6        4        2                7       5      3
+--R                 (64a x  + 96a x  + 36a x  + 2a)y(x) - 64x  - 128x  - 76x  - 12x
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  + 1
+--R             + 
+--R                         7          5          3              7
+--R               (- 2048a x  - 4096a x  - 2432a x  - 384a x)y(x)
+--R             + 
+--R                     8        6        4        2          6
+--R               (2048x  + 5120x  + 4224x  + 1216x  + 64)y(x)
+--R             + 
+--R                         7          5          3              5
+--R               (- 3072a x  - 6144a x  - 3648a x  - 576a x)y(x)
+--R             + 
+--R                     8        6        4        2          4
+--R               (3072x  + 7680x  + 6336x  + 1824x  + 96)y(x)
+--R             + 
+--R                         7          5          3              3
+--R               (- 1152a x  - 2304a x  - 1368a x  - 216a x)y(x)
+--R             + 
+--R                     8        6        4       2          2
+--R               (1152x  + 2880x  + 2376x  + 684x  + 36)y(x)
+--R             + 
+--R                       7         5        3                   8       6       4
+--R               (- 64a x  - 128a x  - 76a x  - 12a x)y(x) + 64x  + 160x  + 132x
+--R             + 
+--R                  2
+--R               38x  + 2
+--R          *
+--R              +---------+
+--R              |    2
+--R             \|y(x)  + 1
+--R         + 
+--R                         6          4          2           8
+--R               (- 2048a x  - 3072a x  - 1152a x  - 64a)y(x)
+--R             + 
+--R                     7        5        3            7
+--R               (2048x  + 4096x  + 2432x  + 384x)y(x)
+--R             + 
+--R                         6          4          2            6
+--R               (- 4096a x  - 6144a x  - 2304a x  - 128a)y(x)
+--R             + 
+--R                     7        5        3            5
+--R               (4096x  + 8192x  + 4864x  + 768x)y(x)
+--R             + 
+--R                         6          4          2           4
+--R               (- 2432a x  - 3648a x  - 1368a x  - 76a)y(x)
+--R             + 
+--R                     7        5        3            3
+--R               (2432x  + 4864x  + 2888x  + 456x)y(x)
+--R             + 
+--R                        6         4         2           2
+--R               (- 384a x  - 576a x  - 216a x  - 12a)y(x)
+--R             + 
+--R                    7       5       3
+--R               (384x  + 768x  + 456x  + 72x)y(x)
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  + 1
+--R         + 
+--R                   7          5          3              8
+--R           (2048a x  + 4096a x  + 2432a x  + 384a x)y(x)
+--R         + 
+--R                   8        6        4        2          7
+--R           (- 2048x  - 5120x  - 4224x  - 1216x  - 64)y(x)
+--R         + 
+--R                   7          5          3              6
+--R           (4096a x  + 8192a x  + 4864a x  + 768a x)y(x)
+--R         + 
+--R                   8         6        4        2           5
+--R           (- 4096x  - 10240x  - 8448x  - 2432x  - 128)y(x)
+--R         + 
+--R                   7          5          3              4
+--R           (2432a x  + 4864a x  + 2888a x  + 456a x)y(x)
+--R         + 
+--R                   8        6        4        2          3
+--R           (- 2432x  - 6080x  - 5016x  - 1444x  - 76)y(x)
+--R         + 
+--R                  7         5         3             2
+--R           (384a x  + 768a x  + 456a x  + 72a x)y(x)
+--R         + 
+--R                  8       6       4       2
+--R           (- 384x  - 960x  - 792x  - 228x  - 12)y(x)
+--R      *
+--R         ROOT
+--R                                                               +------+
+--R                             3           3       3             | 2
+--R                        ((64x  + 32x)y(x)  + (32x  + 16x)y(x))\|x  + 1
+--R                      + 
+--R                              4      2         3         4      2
+--R                        (- 64x  - 64x  - 8)y(x)  + (- 32x  - 32x  - 4)y(x)
+--R                   *
+--R                       +---------+
+--R                       |    2
+--R                      \|y(x)  + 1
+--R                  + 
+--R                             3           4         3           2     3
+--R                      ((- 64x  - 32x)y(x)  + (- 64x  - 32x)y(x)  - 8x  - 4x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  + 1
+--R                  + 
+--R                        4      2         4       4      2         2     4     2
+--R                    (64x  + 64x  + 8)y(x)  + (64x  + 64x  + 8)y(x)  + 8x  + 8x
+--R                  + 
+--R                    1
+--R               *
+--R                       +---------+        2
+--R                       |    2
+--R                  log(\|y(x)  + 1  - y(x))
+--R              + 
+--R                                                                    +------+
+--R                                  3           3       3             | 2
+--R                            ((128x  + 64x)y(x)  + (64x  + 32x)y(x))\|x  + 1
+--R                          + 
+--R                                 4       2          3         4      2
+--R                          (- 128x  - 128x  - 16)y(x)  + (- 64x  - 64x  - 8)y(x)
+--R                       *
+--R                               +------+
+--R                               | 2
+--R                          log(\|x  + 1  - x)
+--R                      + 
+--R                                 3           5            4         2     4
+--R                            (128x  + 64x)y(x)  + (- 256a x  - 128a x )y(x)
+--R                          + 
+--R                                 5       3           3
+--R                            (128x  + 256x  + 80x)y(x)
+--R                          + 
+--R                                     4        2     2       5      3
+--R                            (- 128a x  - 64a x )y(x)  + (64x  + 80x  + 16x)y(x)
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  + 1
+--R                      + 
+--R                               4       2          5
+--R                        (- 128x  - 128x  - 16)y(x)
+--R                      + 
+--R                               5         3             4
+--R                        (256a x  + 256a x  + 32a x)y(x)
+--R                      + 
+--R                               6       4       2          3
+--R                        (- 128x  - 320x  - 192x  - 16)y(x)
+--R                      + 
+--R                               5         3             2
+--R                        (128a x  + 128a x  + 16a x)y(x)
+--R                      + 
+--R                              6       4      2
+--R                        (- 64x  - 112x  - 48x  - 2)y(x)
+--R                   *
+--R                       +---------+
+--R                       |    2
+--R                      \|y(x)  + 1
+--R                  + 
+--R                                   3           4          3           2      3
+--R                            (- 128x  - 64x)y(x)  + (- 128x  - 64x)y(x)  - 16x
+--R                          + 
+--R                            - 8x
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  + 1
+--R                      + 
+--R                             4       2          4        4       2          2
+--R                        (128x  + 128x  + 16)y(x)  + (128x  + 128x  + 16)y(x)
+--R                      + 
+--R                           4      2
+--R                        16x  + 16x  + 2
+--R                   *
+--R                           +------+
+--R                           | 2
+--R                      log(\|x  + 1  - x)
+--R                  + 
+--R                               3           6          4         2     5
+--R                        (- 128x  - 64x)y(x)  + (256a x  + 128a x )y(x)
+--R                      + 
+--R                               5       3            4          4         2     3
+--R                        (- 128x  - 320x  - 112x)y(x)  + (256a x  + 128a x )y(x)
+--R                      + 
+--R                               5       3           2         4        2
+--R                        (- 128x  - 192x  - 48x)y(x)  + (32a x  + 16a x )y(x)
+--R                      + 
+--R                             5      3
+--R                        - 16x  - 16x  - 2x
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  + 1
+--R                  + 
+--R                         4       2          6
+--R                    (128x  + 128x  + 16)y(x)
+--R                  + 
+--R                             5         3             5
+--R                    (- 256a x  - 256a x  - 32a x)y(x)
+--R                  + 
+--R                         6       4       2          4
+--R                    (128x  + 384x  + 256x  + 24)y(x)
+--R                  + 
+--R                             5         3             3
+--R                    (- 256a x  - 256a x  - 32a x)y(x)
+--R                  + 
+--R                         6       4       2         2
+--R                    (128x  + 256x  + 128x  + 8)y(x)
+--R                  + 
+--R                            5        3                  6      4     2
+--R                    (- 32a x  - 32a x  - 4a x)y(x) + 16x  + 24x  + 8x
+--R               *
+--R                       +---------+
+--R                       |    2
+--R                  log(\|y(x)  + 1  - y(x))
+--R              + 
+--R                                                               +------+
+--R                             3           3       3             | 2
+--R                        ((64x  + 32x)y(x)  + (32x  + 16x)y(x))\|x  + 1
+--R                      + 
+--R                              4      2         3         4      2
+--R                        (- 64x  - 64x  - 8)y(x)  + (- 32x  - 32x  - 4)y(x)
+--R                   *
+--R                           +------+     2
+--R                           | 2
+--R                      log(\|x  + 1  - x)
+--R                  + 
+--R                                 3           5            4         2     4
+--R                            (128x  + 64x)y(x)  + (- 256a x  - 128a x )y(x)
+--R                          + 
+--R                                 5       3           3
+--R                            (128x  + 256x  + 80x)y(x)
+--R                          + 
+--R                                     4        2     2       5      3
+--R                            (- 128a x  - 64a x )y(x)  + (64x  + 80x  + 16x)y(x)
+--R                       *
+--R                           +------+
+--R                           | 2
+--R                          \|x  + 1
+--R                      + 
+--R                               4       2          5
+--R                        (- 128x  - 128x  - 16)y(x)
+--R                      + 
+--R                               5         3             4
+--R                        (256a x  + 256a x  + 32a x)y(x)
+--R                      + 
+--R                               6       4       2          3
+--R                        (- 128x  - 320x  - 192x  - 16)y(x)
+--R                      + 
+--R                               5         3             2
+--R                        (128a x  + 128a x  + 16a x)y(x)
+--R                      + 
+--R                              6       4      2
+--R                        (- 64x  - 112x  - 48x  - 2)y(x)
+--R                   *
+--R                           +------+
+--R                           | 2
+--R                      log(\|x  + 1  - x)
+--R                  + 
+--R                            3           7            4         2     6
+--R                        (64x  + 32x)y(x)  + (- 256a x  - 128a x )y(x)
+--R                      + 
+--R                              2        5        2        3           5
+--R                        ((256a  + 128)x  + (128a  + 224)x  + 64x)y(x)
+--R                      + 
+--R                                 6         4         2     4
+--R                        (- 256a x  - 512a x  - 160a x )y(x)
+--R                      + 
+--R                            7        2        5       2        3            3
+--R                        (64x  + (128a  + 224)x  + (64a  + 448)x  + 160x)y(x)
+--R                      + 
+--R                                 6         4        2     2
+--R                        (- 128a x  - 160a x  - 32a x )y(x)
+--R                      + 
+--R                            7      5       3
+--R                        (32x  + 64x  + 160x  + 66x)y(x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  + 1
+--R                  + 
+--R                          4      2         7          5         3             6
+--R                    (- 64x  - 64x  - 8)y(x)  + (256a x  + 256a x  + 32a x)y(x)
+--R                  + 
+--R                               2        6          2        4         2        2
+--R                        (- 256a  - 128)x  + (- 256a  - 288)x  + (- 32a  - 160)x
+--R                      + 
+--R                        - 12
+--R                   *
+--R                          5
+--R                      y(x)
+--R                  + 
+--R                           7         5         3             4
+--R                    (256a x  + 640a x  + 384a x  + 32a x)y(x)
+--R                  + 
+--R                             8          2        6          2        4
+--R                        - 64x  + (- 128a  - 256)x  + (- 128a  - 552)x
+--R                      + 
+--R                              2        2
+--R                        (- 16a  - 360)x  - 36
+--R                   *
+--R                          3
+--R                      y(x)
+--R                  + 
+--R                           7         5        3            2
+--R                    (128a x  + 224a x  + 96a x  + 4a x)y(x)
+--R                  + 
+--R                          8      6       4       2
+--R                    (- 32x  - 80x  - 188x  - 140x  - 16)y(x)
+--R               *
+--R                   +---------+
+--R                   |    2
+--R                  \|y(x)  + 1
+--R              + 
+--R                             3           4         3           2     3
+--R                      ((- 64x  - 32x)y(x)  + (- 64x  - 32x)y(x)  - 8x  - 4x)
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  + 1
+--R                  + 
+--R                        4      2         4       4      2         2     4     2
+--R                    (64x  + 64x  + 8)y(x)  + (64x  + 64x  + 8)y(x)  + 8x  + 8x
+--R                  + 
+--R                    1
+--R               *
+--R                       +------+     2
+--R                       | 2
+--R                  log(\|x  + 1  - x)
+--R              + 
+--R                               3           6          4         2     5
+--R                        (- 128x  - 64x)y(x)  + (256a x  + 128a x )y(x)
+--R                      + 
+--R                               5       3            4          4         2     3
+--R                        (- 128x  - 320x  - 112x)y(x)  + (256a x  + 128a x )y(x)
+--R                      + 
+--R                               5       3           2         4        2
+--R                        (- 128x  - 192x  - 48x)y(x)  + (32a x  + 16a x )y(x)
+--R                      + 
+--R                             5      3
+--R                        - 16x  - 16x  - 2x
+--R                   *
+--R                       +------+
+--R                       | 2
+--R                      \|x  + 1
+--R                  + 
+--R                         4       2          6
+--R                    (128x  + 128x  + 16)y(x)
+--R                  + 
+--R                             5         3             5
+--R                    (- 256a x  - 256a x  - 32a x)y(x)
+--R                  + 
+--R                         6       4       2          4
+--R                    (128x  + 384x  + 256x  + 24)y(x)
+--R                  + 
+--R                             5         3             3
+--R                    (- 256a x  - 256a x  - 32a x)y(x)
+--R                  + 
+--R                         6       4       2         2
+--R                    (128x  + 256x  + 128x  + 8)y(x)
+--R                  + 
+--R                            5        3                  6      4     2
+--R                    (- 32a x  - 32a x  - 4a x)y(x) + 16x  + 24x  + 8x
+--R               *
+--R                       +------+
+--R                       | 2
+--R                  log(\|x  + 1  - x)
+--R              + 
+--R                          3           8          4         2     7
+--R                    (- 64x  - 32x)y(x)  + (256a x  + 128a x )y(x)
+--R                  + 
+--R                            2        5          2        3           6
+--R                    ((- 256a  - 128)x  + (- 128a  - 256)x  - 80x)y(x)
+--R                  + 
+--R                           6         4         2     5
+--R                    (256a x  + 640a x  + 224a x )y(x)
+--R                  + 
+--R                          7          2        5          2        3            4
+--R                    (- 64x  + (- 256a  - 288)x  + (- 128a  - 552)x  - 188x)y(x)
+--R                  + 
+--R                           6         4        2     3
+--R                    (256a x  + 384a x  + 96a x )y(x)
+--R                  + 
+--R                          7         2        5         2        3            2
+--R                    (- 64x  + (- 32a  - 160)x  + (- 16a  - 360)x  - 140x)y(x)
+--R                  + 
+--R                          6        4       2          7      5      3
+--R                    (32a x  + 32a x  + 4a x )y(x) - 8x  - 12x  - 36x  - 16x
+--R               *
+--R                   +------+
+--R                   | 2
+--R                  \|x  + 1
+--R              + 
+--R                    4      2         8            5         3             7
+--R                (64x  + 64x  + 8)y(x)  + (- 256a x  - 256a x  - 32a x)y(x)
+--R              + 
+--R                      2        6        2        4       2        2          6
+--R                ((256a  + 128)x  + (256a  + 320)x  + (32a  + 192)x  + 16)y(x)
+--R              + 
+--R                         7         5         3             5
+--R                (- 256a x  - 768a x  - 512a x  - 48a x)y(x)
+--R              + 
+--R                         8        2        6        2        4       2        2
+--R                      64x  + (256a  + 320)x  + (256a  + 688)x  + (32a  + 432)x
+--R                    + 
+--R                      41
+--R               *
+--R                      4
+--R                  y(x)
+--R              + 
+--R                         7         5         3             3
+--R                (- 256a x  - 512a x  - 256a x  - 16a x)y(x)
+--R              + 
+--R                      8       2        6       2        4      2        2
+--R                  (64x  + (32a  + 192)x  + (32a  + 432)x  + (4a  + 304)x  + 33)
+--R               *
+--R                      2
+--R                  y(x)
+--R              + 
+--R                        7        5        3          8      6      4      2
+--R                (- 32a x  - 48a x  - 16a x )y(x) + 8x  + 16x  + 41x  + 33x  + 4
+--R           /
+--R                                                              +------+
+--R                          3            3        3             | 2
+--R                    ((256x  + 128x)y(x)  + (128x  + 64x)y(x))\|x  + 1
+--R                  + 
+--R                           4       2          3          4       2
+--R                    (- 256x  - 256x  - 32)y(x)  + (- 128x  - 128x  - 16)y(x)
+--R               *
+--R                   +---------+
+--R                   |    2
+--R                  \|y(x)  + 1
+--R              + 
+--R                          3            4          3            2      3
+--R                  ((- 256x  - 128x)y(x)  + (- 256x  - 128x)y(x)  - 32x  - 16x)
+--R               *
+--R                   +------+
+--R                   | 2
+--R                  \|x  + 1
+--R              + 
+--R                     4       2          4        4       2          2      4
+--R                (256x  + 256x  + 32)y(x)  + (256x  + 256x  + 32)y(x)  + 32x
+--R              + 
+--R                   2
+--R                32x  + 4
+--R     + 
+--R                             6          4         2           6
+--R                   (- 1024a x  - 1536a x  - 576a x  - 32a)y(x)
+--R                 + 
+--R                             6          4         2           4
+--R                   (- 1536a x  - 2304a x  - 864a x  - 48a)y(x)
+--R                 + 
+--R                            6         4         2           2        6        4
+--R                   (- 576a x  - 864a x  - 324a x  - 18a)y(x)  - 32a x  - 48a x
+--R                 + 
+--R                          2
+--R                   - 18a x  - a
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  + 1
+--R             + 
+--R                       7          5          3              6
+--R               (1024a x  + 2048a x  + 1216a x  + 192a x)y(x)
+--R             + 
+--R                       7          5          3              4
+--R               (1536a x  + 3072a x  + 1824a x  + 288a x)y(x)
+--R             + 
+--R                      7          5         3              2        7        5
+--R               (576a x  + 1152a x  + 684a x  + 108a x)y(x)  + 32a x  + 64a x
+--R             + 
+--R                    3
+--R               38a x  + 6a x
+--R          *
+--R              +---------+
+--R              |    2
+--R             \|y(x)  + 1
+--R         + 
+--R                       6          4         2           7
+--R               (1024a x  + 1536a x  + 576a x  + 32a)y(x)
+--R             + 
+--R                       6          4          2           5
+--R               (2048a x  + 3072a x  + 1152a x  + 64a)y(x)
+--R             + 
+--R                       6          4         2           3
+--R               (1216a x  + 1824a x  + 684a x  + 38a)y(x)
+--R             + 
+--R                      6         4         2
+--R               (192a x  + 288a x  + 108a x  + 6a)y(x)
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  + 1
+--R         + 
+--R                     7          5          3              7
+--R           (- 1024a x  - 2048a x  - 1216a x  - 192a x)y(x)
+--R         + 
+--R                     7          5          3              5
+--R           (- 2048a x  - 4096a x  - 2432a x  - 384a x)y(x)
+--R         + 
+--R                     7          5          3              3
+--R           (- 1216a x  - 2432a x  - 1444a x  - 228a x)y(x)
+--R         + 
+--R                    7         5         3
+--R           (- 192a x  - 384a x  - 228a x  - 36a x)y(x)
+--R      *
+--R              +---------+
+--R              |    2
+--R         log(\|y(x)  + 1  - y(x))
+--R     + 
+--R                             7          5          3             7
+--R                   (- 2048a x  - 3072a x  - 1152a x  - 64a x)y(x)
+--R                 + 
+--R                         2 8        2 6        2 4      2 2     6
+--R                   (2048a x  + 3072a x  + 1152a x  + 64a x )y(x)
+--R                 + 
+--R                             7          5          3              5
+--R                   (- 4096a x  - 6144a x  - 2304a x  - 128a x)y(x)
+--R                 + 
+--R                         2 8        2 6        2 4      2 2     4
+--R                   (3072a x  + 4608a x  + 1728a x  + 96a x )y(x)
+--R                 + 
+--R                             7          5          3             3
+--R                   (- 2432a x  - 3648a x  - 1368a x  - 76a x)y(x)
+--R                 + 
+--R                         2 8        2 6       2 4      2 2     2
+--R                   (1152a x  + 1728a x  + 648a x  + 36a x )y(x)
+--R                 + 
+--R                            7         5         3                   2 8      2 6
+--R                   (- 384a x  - 576a x  - 216a x  - 12a x)y(x) + 64a x  + 96a x
+--R                 + 
+--R                      2 4     2 2
+--R                   36a x  + 2a x
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  + 1
+--R             + 
+--R                       8          6          4         2     7
+--R               (2048a x  + 4096a x  + 2432a x  + 384a x )y(x)
+--R             + 
+--R                       2 9        2 7        2 5       2 3     6
+--R               (- 2048a x  - 4096a x  - 2432a x  - 384a x )y(x)
+--R             + 
+--R                       8          6          4         2     5
+--R               (4096a x  + 8192a x  + 4864a x  + 768a x )y(x)
+--R             + 
+--R                       2 9        2 7        2 5       2 3     4
+--R               (- 3072a x  - 6144a x  - 3648a x  - 576a x )y(x)
+--R             + 
+--R                       8          6          4         2     3
+--R               (2432a x  + 4864a x  + 2888a x  + 456a x )y(x)
+--R             + 
+--R                       2 9        2 7        2 5       2 3     2
+--R               (- 1152a x  - 2304a x  - 1368a x  - 216a x )y(x)
+--R             + 
+--R                      8         6         4        2           2 9       2 7
+--R               (384a x  + 768a x  + 456a x  + 72a x )y(x) - 64a x  - 128a x
+--R             + 
+--R                    2 5      2 3
+--R               - 76a x  - 12a x
+--R          *
+--R              +---------+
+--R              |    2
+--R             \|y(x)  + 1
+--R         + 
+--R                       7          5          3             8
+--R               (2048a x  + 3072a x  + 1152a x  + 64a x)y(x)
+--R             + 
+--R                       2 8        2 6        2 4      2 2     7
+--R               (- 2048a x  - 3072a x  - 1152a x  - 64a x )y(x)
+--R             + 
+--R                       7          5          3              6
+--R               (5120a x  + 7680a x  + 2880a x  + 160a x)y(x)
+--R             + 
+--R                       2 8        2 6        2 4       2 2     5
+--R               (- 4096a x  - 6144a x  - 2304a x  - 128a x )y(x)
+--R             + 
+--R                       7          5          3              4
+--R               (4224a x  + 6336a x  + 2376a x  + 132a x)y(x)
+--R             + 
+--R                       2 8        2 6        2 4      2 2     3
+--R               (- 2432a x  - 3648a x  - 1368a x  - 76a x )y(x)
+--R             + 
+--R                       7          5         3             2
+--R               (1216a x  + 1824a x  + 684a x  + 38a x)y(x)
+--R             + 
+--R                      2 8       2 6       2 4      2 2             7        5
+--R               (- 384a x  - 576a x  - 216a x  - 12a x )y(x) + 64a x  + 96a x
+--R             + 
+--R                    3
+--R               36a x  + 2a x
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  + 1
+--R         + 
+--R                     8          6          4         2     8
+--R           (- 2048a x  - 4096a x  - 2432a x  - 384a x )y(x)
+--R         + 
+--R                 2 9        2 7        2 5       2 3     7
+--R           (2048a x  + 4096a x  + 2432a x  + 384a x )y(x)
+--R         + 
+--R                     8           6          4         2     6
+--R           (- 5120a x  - 10240a x  - 6080a x  - 960a x )y(x)
+--R         + 
+--R                 2 9        2 7        2 5       2 3     5
+--R           (4096a x  + 8192a x  + 4864a x  + 768a x )y(x)
+--R         + 
+--R                     8          6          4         2     4
+--R           (- 4224a x  - 8448a x  - 5016a x  - 792a x )y(x)
+--R         + 
+--R                 2 9        2 7        2 5       2 3     3
+--R           (2432a x  + 4864a x  + 2888a x  + 456a x )y(x)
+--R         + 
+--R                     8          6          4         2     2
+--R           (- 1216a x  - 2432a x  - 1444a x  - 228a x )y(x)
+--R         + 
+--R                2 9       2 7       2 5      2 3             8         6
+--R           (384a x  + 768a x  + 456a x  + 72a x )y(x) - 64a x  - 128a x
+--R         + 
+--R                  4        2
+--R           - 76a x  - 12a x
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                             6          4         2           6
+--R                   (- 1024a x  - 1536a x  - 576a x  - 32a)y(x)
+--R                 + 
+--R                             6          4         2           4
+--R                   (- 1536a x  - 2304a x  - 864a x  - 48a)y(x)
+--R                 + 
+--R                            6         4         2           2        6        4
+--R                   (- 576a x  - 864a x  - 324a x  - 18a)y(x)  - 32a x  - 48a x
+--R                 + 
+--R                          2
+--R                   - 18a x  - a
+--R              *
+--R                  +------+
+--R                  | 2
+--R                 \|x  + 1
+--R             + 
+--R                       7          5          3              6
+--R               (1024a x  + 2048a x  + 1216a x  + 192a x)y(x)
+--R             + 
+--R                       7          5          3              4
+--R               (1536a x  + 3072a x  + 1824a x  + 288a x)y(x)
+--R             + 
+--R                      7          5         3              2        7        5
+--R               (576a x  + 1152a x  + 684a x  + 108a x)y(x)  + 32a x  + 64a x
+--R             + 
+--R                    3
+--R               38a x  + 6a x
+--R          *
+--R                  +------+
+--R                  | 2
+--R             log(\|x  + 1  - x)
+--R         + 
+--R                         6          4         2           8
+--R               (- 1024a x  - 1536a x  - 576a x  - 32a)y(x)
+--R             + 
+--R                     2 7        2 5        2 3       2      7
+--R               (4096a x  + 6144a x  + 2304a x  + 128a x)y(x)
+--R             + 
+--R                            8        7          6        5          4        3
+--R                   - 3072a x  - 2048x  - 8192a x  - 4096x  - 6720a x  - 2432x
+--R                 + 
+--R                            2
+--R                   - 1728a x  - 384x - 64a
+--R              *
+--R                     6
+--R                 y(x)
+--R             + 
+--R                     2 7        2 5        2 3       2      5
+--R               (6144a x  + 9216a x  + 3456a x  + 192a x)y(x)
+--R             + 
+--R                            8        7           6        5          4        3
+--R                   - 4608a x  - 3072x  - 10432a x  - 6144x  - 7296a x  - 3648x
+--R                 + 
+--R                            2
+--R                   - 1548a x  - 576x - 38a
+--R              *
+--R                     4
+--R                 y(x)
+--R             + 
+--R                     2 7        2 5        2 3      2      3
+--R               (2304a x  + 3456a x  + 1296a x  + 72a x)y(x)
+--R             + 
+--R                            8        7          6        5          4        3
+--R                   - 1728a x  - 1152x  - 3648a x  - 2304x  - 2340a x  - 1368x
+--R                 + 
+--R                           2
+--R                   - 432a x  - 216x - 6a
+--R              *
+--R                     2
+--R                 y(x)
+--R             + 
+--R                    2 7       2 5      2 3     2              8      7         6
+--R               (128a x  + 192a x  + 72a x  + 4a x)y(x) - 96a x  - 64x  - 192a x
+--R             + 
+--R                     5         4      3        2
+--R               - 128x  - 114a x  - 76x  - 18a x  - 12x
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  + 1
+--R         + 
+--R                   7          5          3              8
+--R           (1024a x  + 2048a x  + 1216a x  + 192a x)y(x)
+--R         + 
+--R                   2 8        2 6        2 4       2 2     7
+--R           (- 4096a x  - 8192a x  - 4864a x  - 768a x )y(x)
+--R         + 
+--R                      9        8          7        6           5        4
+--R               3072a x  + 2048x  + 9728a x  + 5120x  + 10432a x  + 4224x
+--R             + 
+--R                      3        2
+--R               4256a x  + 1216x  + 480a x + 64
+--R          *
+--R                 6
+--R             y(x)
+--R         + 
+--R                   2 8         2 6        2 4        2 2     5
+--R           (- 6144a x  - 12288a x  - 7296a x  - 1152a x )y(x)
+--R         + 
+--R                      9        8           7        6           5        4
+--R               4608a x  + 3072x  + 12736a x  + 7680x  + 11936a x  + 6336x
+--R             + 
+--R                      3        2
+--R               4180a x  + 1824x  + 372a x + 96
+--R          *
+--R                 4
+--R             y(x)
+--R         + 
+--R                   2 8        2 6        2 4       2 2     3
+--R           (- 2304a x  - 4608a x  - 2736a x  - 432a x )y(x)
+--R         + 
+--R                      9        8          7        6          5        4
+--R               1728a x  + 1152x  + 4512a x  + 2880x  + 3948a x  + 2376x
+--R             + 
+--R                      3       2
+--R               1254a x  + 684x  + 90a x + 36
+--R          *
+--R                 2
+--R             y(x)
+--R         + 
+--R                  2 8       2 6       2 4      2 2             9      8
+--R           (- 128a x  - 256a x  - 152a x  - 24a x )y(x) + 96a x  + 64x
+--R         + 
+--R                 7       6         5       4        3      2
+--R           240a x  + 160x  + 198a x  + 132x  + 57a x  + 38x  + 3a x + 2
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  + 1
+--R     + 
+--R                       6          4         2           7
+--R               (1024a x  + 1536a x  + 576a x  + 32a)y(x)
+--R             + 
+--R                       6          4          2           5
+--R               (2048a x  + 3072a x  + 1152a x  + 64a)y(x)
+--R             + 
+--R                       6          4         2           3
+--R               (1216a x  + 1824a x  + 684a x  + 38a)y(x)
+--R             + 
+--R                      6         4         2
+--R               (192a x  + 288a x  + 108a x  + 6a)y(x)
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  + 1
+--R         + 
+--R                     7          5          3              7
+--R           (- 1024a x  - 2048a x  - 1216a x  - 192a x)y(x)
+--R         + 
+--R                     7          5          3              5
+--R           (- 2048a x  - 4096a x  - 2432a x  - 384a x)y(x)
+--R         + 
+--R                     7          5          3              3
+--R           (- 1216a x  - 2432a x  - 1444a x  - 228a x)y(x)
+--R         + 
+--R                    7         5         3
+--R           (- 192a x  - 384a x  - 228a x  - 36a x)y(x)
+--R      *
+--R              +------+
+--R              | 2
+--R         log(\|x  + 1  - x)
+--R     + 
+--R                   6          4         2           9
+--R           (1024a x  + 1536a x  + 576a x  + 32a)y(x)
+--R         + 
+--R                   2 7        2 5        2 3       2      8
+--R           (- 4096a x  - 6144a x  - 2304a x  - 128a x)y(x)
+--R         + 
+--R                      8        7          6        5          4        3
+--R               3072a x  + 2048x  + 8704a x  + 4096x  + 7488a x  + 2432x
+--R             + 
+--R                      2
+--R               2016a x  + 384x + 80a
+--R          *
+--R                 7
+--R             y(x)
+--R         + 
+--R                   2 7         2 5        2 3       2      6
+--R           (- 8192a x  - 12288a x  - 4608a x  - 256a x)y(x)
+--R         + 
+--R                      8        7           6        5           4        3
+--R               6144a x  + 4096x  + 14400a x  + 8192x  + 10464a x  + 4864x
+--R             + 
+--R                      2
+--R               2340a x  + 768x + 66a
+--R          *
+--R                 5
+--R             y(x)
+--R         + 
+--R                   2 7        2 5        2 3       2      4
+--R           (- 4864a x  - 7296a x  - 2736a x  - 152a x)y(x)
+--R         + 
+--R                      8        7          6        5          4        3
+--R               3648a x  + 2432x  + 7904a x  + 4864x  + 5244a x  + 2888x
+--R             + 
+--R                      2
+--R               1026a x  + 456x + 19a
+--R          *
+--R                 3
+--R             y(x)
+--R         + 
+--R                  2 7        2 5       2 3      2      2
+--R           (- 768a x  - 1152a x  - 432a x  - 24a x)y(x)
+--R         + 
+--R                     8       7          6       5         4       3         2
+--R               576a x  + 384x  + 1184a x  + 768x  + 732a x  + 456x  + 126a x
+--R             + 
+--R               72x + a
+--R          *
+--R             y(x)
+--R      *
+--R          +------+
+--R          | 2
+--R         \|x  + 1
+--R     + 
+--R                 7          5          3              9
+--R       (- 1024a x  - 2048a x  - 1216a x  - 192a x)y(x)
+--R     + 
+--R             2 8        2 6        2 4       2 2     8
+--R       (4096a x  + 8192a x  + 4864a x  + 768a x )y(x)
+--R     + 
+--R                    9        8           7        6           5        4
+--R           - 3072a x  - 2048x  - 10240a x  - 5120x  - 11456a x  - 4224x
+--R         + 
+--R                    3        2
+--R           - 4864a x  - 1216x  - 576a x - 64
+--R      *
+--R             7
+--R         y(x)
+--R     + 
+--R             2 8         2 6        2 4        2 2     6
+--R       (8192a x  + 16384a x  + 9728a x  + 1536a x )y(x)
+--R     + 
+--R                    9        8           7         6           5        4
+--R           - 6144a x  - 4096x  - 17472a x  - 10240x  - 16896a x  - 8448x
+--R         + 
+--R                    3        2
+--R           - 6156a x  - 2432x  - 588a x - 128
+--R      *
+--R             5
+--R         y(x)
+--R     + 
+--R             2 8        2 6        2 4       2 2     4
+--R       (4864a x  + 9728a x  + 5776a x  + 912a x )y(x)
+--R     + 
+--R                    9        8          7        6          5        4
+--R           - 3648a x  - 2432x  - 9728a x  - 6080x  - 8740a x  - 5016x
+--R         + 
+--R                    3        2
+--R           - 2888a x  - 1444x  - 228a x - 76
+--R      *
+--R             3
+--R         y(x)
+--R     + 
+--R            2 8        2 6       2 4       2 2     2
+--R       (768a x  + 1536a x  + 912a x  + 144a x )y(x)
+--R     + 
+--R                   9       8          7       6          5       4         3
+--R           - 576a x  - 384x  - 1472a x  - 960x  - 1252a x  - 792x  - 380a x
+--R         + 
+--R                 2
+--R           - 228x  - 24a x - 12
+--R      *
+--R         y(x)
+--R  /
+--R                     6        4        2          6
+--R               (2048x  + 3072x  + 1152x  + 64)y(x)
+--R             + 
+--R                     6        4        2          4
+--R               (3072x  + 4608x  + 1728x  + 96)y(x)
+--R             + 
+--R                     6        4       2          2      6      4      2
+--R               (1152x  + 1728x  + 648x  + 36)y(x)  + 64x  + 96x  + 36x  + 2
+--R          *
+--R              +------+
+--R              | 2
+--R             \|x  + 1
+--R         + 
+--R                   7        5        3            6
+--R           (- 2048x  - 4096x  - 2432x  - 384x)y(x)
+--R         + 
+--R                   7        5        3            4
+--R           (- 3072x  - 6144x  - 3648x  - 576x)y(x)
+--R         + 
+--R                   7        5        3            2      7       5      3
+--R           (- 1152x  - 2304x  - 1368x  - 216x)y(x)  - 64x  - 128x  - 76x  - 12x
+--R      *
+--R          +---------+
+--R          |    2
+--R         \|y(x)  + 1
+--R     + 
+--R                   6        4        2          7
+--R           (- 2048x  - 3072x  - 1152x  - 64)y(x)
+--R         + 
+--R                   6        4        2           5
+--R           (- 4096x  - 6144x  - 2304x  - 128)y(x)
+--R         + 
+--R                   6        4        2          3
+--R           (- 2432x  - 3648x  - 1368x  - 76)y(x)
+--R         + 
+--R                  6       4       2
+--R           (- 384x  - 576x  - 216x  - 12)y(x)
+--R      *
+--R          +------+
+--R          | 2
+--R         \|x  + 1
+--R     + 
+--R             7        5        3            7
+--R       (2048x  + 4096x  + 2432x  + 384x)y(x)
+--R     + 
+--R             7        5        3            5
+--R       (4096x  + 8192x  + 4864x  + 768x)y(x)
+--R     + 
+--R           7        5        3            3        7       5       3
+--R     (2432x  + 4864x  + 2888x  + 456x)y(x)  + (384x  + 768x  + 456x  + 72x)y(x)
+--R                                                     Type: Expression Integer
+--E 85
+
+--S 86 of 120
+--Rode337 := (sqrt(y(x)**2+x**2)+x)*D(y(x),x)-y(x)
+--R 
+--R
+--R           +----------+
+--R           |    2    2       ,
+--R   (85)  (\|y(x)  + x   + x)y (x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 86
+
+--S 87 of 120
+--Rsolve(ode337,y,x)
+--R 
+--R
+--R   (86)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 87
+
+--S 88 of 120
+--Rode338 := (y(x)*sqrt(y(x)**2+x**2)+(y(x)**2-x**2)*sin(alpha)-_
+--R            2*x*y(x)*cos(alpha))*D(y(x),x)+x*sqrt(y(x)**2+x**2)+_
+--R            2*x*y(x)*sin(alpha)+(y(x)**2-x**2)*cos(alpha)
+--R 
+--R
+--R   (87)
+--R           +----------+
+--R           |    2    2         2    2                                 ,
+--R     (y(x)\|y(x)  + x   + (y(x)  - x )sin(alpha) - 2x y(x)cos(alpha))y (x)
+--R
+--R   + 
+--R       +----------+
+--R       |    2    2                             2    2
+--R     x\|y(x)  + x   + 2x y(x)sin(alpha) + (y(x)  - x )cos(alpha)
+--R                                                     Type: Expression Integer
+--E 88
+
+--S 89 of 120
+--Rsolve(ode338,y,x)
+--R 
+--R
+--R   (88)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 89
+
+--S 90 of 120
+--Rode339 := (x*sqrt(x**2+y(x)**2+1)-y(x)*(x**2+y(x)**2))*D(y(x),x)-_
+--R            y(x)*sqrt(x**2+y(x)**2+1)-x*(x**2+y(x)**2)
+--R 
+--R
+--R   (89)
+--R        +--------------+                               +--------------+
+--R        |    2    2            3    2      ,           |    2    2
+--R     (x\|y(x)  + x  + 1  - y(x)  - x y(x))y (x) - y(x)\|y(x)  + x  + 1
+--R
+--R   + 
+--R             2    3
+--R     - x y(x)  - x
+--R                                                     Type: Expression Integer
+--E 90
+
+--S 91 of 120
+--Rsolve(ode339,y,x)
+--R 
+--R
+--R   (90)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 91
+
+--S 92 of 120
+--Rode340 := (e1*(x+a)/((x+a)**2+y(x)**2)**(3/2)+e2*(x-a)/_
+--R           ((x-a)**2+y(x)**2)**(3/2))*D(y(x),x)-y(x)*_
+--R           (e1/((x+a)**2+y(x)**2)**(3/2)+e2/((x-a)**2+y(x)**2)**(3/2))
+--R 
+--R
+--R   (91)
+--R                               2       3         2    2        3
+--R             ((e2 x - a e2)y(x)  + e2 x  + a e2 x  - a e2 x - a e2)
+--R          *
+--R              +----------------------+
+--R              |    2    2           2
+--R             \|y(x)  + x  + 2a x + a
+--R         + 
+--R                               2       3         2    2        3
+--R             ((e1 x + a e1)y(x)  + e1 x  - a e1 x  - a e1 x + a e1)
+--R          *
+--R              +----------------------+
+--R              |    2    2           2
+--R             \|y(x)  + x  - 2a x + a
+--R      *
+--R          ,
+--R         y (x)
+--R
+--R     + 
+--R                                                     +----------------------+
+--R                 3          2              2         |    2    2           2
+--R       (- e2 y(x)  + (- e2 x  - 2a e2 x - a e2)y(x))\|y(x)  + x  + 2a x + a
+--R     + 
+--R                                                     +----------------------+
+--R                 3          2              2         |    2    2           2
+--R       (- e1 y(x)  + (- e1 x  + 2a e1 x - a e1)y(x))\|y(x)  + x  - 2a x + a
+--R  /
+--R                                                    +----------------------+
+--R            4      2     2     2    4     2 2    4  |    2    2           2
+--R       (y(x)  + (2x  + 2a )y(x)  + x  - 2a x  + a )\|y(x)  + x  - 2a x + a
+--R    *
+--R        +----------------------+
+--R        |    2    2           2
+--R       \|y(x)  + x  + 2a x + a
+--R                                                     Type: Expression Integer
+--E 92
+
+--S 93 of 120
+--Rsolve(ode340,y,x)
+--R 
+--R
+--R   (92)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 93
+
+--S 94 of 120
+--Rode341 := (x*exp(y(x))+exp(x))*D(y(x),x)+exp(y(x))+y(x)*exp(x)
+--R 
+--R
+--R              y(x)     x  ,        y(x)         x
+--R   (93)  (x %e     + %e )y (x) + %e     + y(x)%e
+--R
+--R                                                     Type: Expression Integer
+--E 94
+
+--S 95 of 120
+--Ryx:=solve(ode341,y,x)
+--R 
+--R
+--R             y(x)         x
+--R   (94)  x %e     + y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 95
+
+--S 96 of 120
+--Rode341expr := (x*exp(yx)+exp(x))*D(yx,x)+exp(yx)+yx*exp(x)
+--R 
+--R
+--R   (95)
+--R                                                               y(x)         x
+--R        2  y(x)       x  ,          y(x)           x       x %e     + y(x)%e
+--R     ((x %e     + x %e )y (x) + x %e     + x y(x)%e  + 1)%e
+--R
+--R   + 
+--R          x  y(x)      x 2  ,               x  y(x)           x 2
+--R     (x %e %e     + (%e ) )y (x) + (x + 1)%e %e     + 2y(x)(%e )
+--R
+--R                                                     Type: Expression Integer
+--E 96
+
+--S 97 of 120
+--Rode342 := x*(3*exp(x*y(x))+2*exp(-x*y(x)))*(x*D(y(x),x)+y(x))+1
+--R 
+--R
+--R   (96)
+--R      2  x y(x)     2  - x y(x)  ,               x y(x)            - x y(x)
+--R   (3x %e       + 2x %e        )y (x) + 3x y(x)%e       + 2x y(x)%e         + 1
+--R
+--R                                                     Type: Expression Integer
+--E 97
+
+--S 98 of 120
+--Ryx:=solve(ode342,y,x)
+--R 
+--R
+--R             x y(x) 2           x y(x)
+--R         3(%e      )  + log(x)%e       - 2
+--R   (97)  ---------------------------------
+--R                        x y(x)
+--R                      %e
+--R                                          Type: Union(Expression Integer,...)
+--E 98
+
+--S 99 of 120
+--Rode342expr := x*(3*exp(x*yx)+2*exp(-x*yx))*(x*D(yx,x)+yx)+1
+--R 
+--R
+--R   (98)
+--R              3   x y(x) 2     3  ,         2             x y(x) 2
+--R           (9x (%e      )  + 6x )y (x) + (9x y(x) + 9x)(%e      )
+--R
+--R         + 
+--R                             x y(x)     2
+--R           (3x log(x) + 3x)%e       + 6x y(x) - 6x
+--R      *
+--R                 x y(x) 2             x y(x)
+--R           3x (%e      )  + x log(x)%e       - 2x
+--R           --------------------------------------
+--R                            x y(x)
+--R                          %e
+--R         %e
+--R     + 
+--R              3   x y(x) 2     3  ,         2             x y(x) 2
+--R           (6x (%e      )  + 4x )y (x) + (6x y(x) + 6x)(%e      )
+--R
+--R         + 
+--R                             x y(x)     2
+--R           (2x log(x) + 2x)%e       + 4x y(x) - 4x
+--R      *
+--R                   x y(x) 2             x y(x)
+--R           - 3x (%e      )  - x log(x)%e       + 2x
+--R           ----------------------------------------
+--R                             x y(x)
+--R                           %e
+--R         %e
+--R     + 
+--R         x y(x)
+--R       %e
+--R  /
+--R       x y(x)
+--R     %e
+--R                                                     Type: Expression Integer
+--E 99
+
+--S 100 of 120
+--Rode343 := (log(y(x))+x)*D(y(x),x)-1
+--R 
+--R
+--R                         ,
+--R   (99)  (log(y(x)) + x)y (x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 100
+
+--S 101 of 120
+--Ryx:=solve(ode343,y,x)
+--R 
+--R
+--R              - y(x)                - y(x)
+--R   (100)  - %e      log(y(x)) - x %e       + Ei(- y(x))
+--R                                          Type: Union(Expression Integer,...)
+--E 101
+
+--S 102 of 120
+--Rode343expr := (log(yx)+x)*D(yx,x)-1
+--R 
+--R
+--R   (101)
+--R           - y(x)                - y(x)  ,        - y(x)
+--R       ((%e      log(y(x)) + x %e      )y (x) - %e      )
+--R
+--R    *
+--R               - y(x)                - y(x)
+--R       log(- %e      log(y(x)) - x %e       + Ei(- y(x)))
+--R   + 
+--R          - y(x)             2  - y(x)  ,          - y(x)
+--R     (x %e      log(y(x)) + x %e      )y (x) - x %e       - 1
+--R
+--R                                                     Type: Expression Integer
+--E 102
+
+--S 103 of 120
+--Rode344 := (log(y(x))+2*x-1)*D(y(x),x)-2*y(x)
+--R 
+--R
+--R                               ,
+--R   (102)  (log(y(x)) + 2x - 1)y (x) - 2y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 103
+
+--S 104 of 120
+--Ryx:=solve(ode344,y,x)
+--R 
+--R
+--R          - log(y(x)) - 2x
+--R   (103)  ----------------
+--R                y(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 104
+
+--S 105 of 120
+--Rode344expr := (log(yx)+2*x-1)*D(yx,x)-2*yx
+--R 
+--R
+--R   (104)
+--R                             ,                - log(y(x)) - 2x
+--R       ((log(y(x)) + 2x - 1)y (x) - 2y(x))log(----------------)
+--R                                                    y(x)
+--R     + 
+--R                              2           ,
+--R       ((2x - 1)log(y(x)) + 4x  - 4x + 1)y (x) + 2y(x)log(y(x)) + 2y(x)
+--R
+--R  /
+--R         2
+--R     y(x)
+--R                                                     Type: Expression Integer
+--E 105
+
+--S 106 of 120
+--Rode345 := x*(2*x**2*y(x)*log(y(x))+1)*D(y(x),x)-2*y(x)
+--R 
+--R
+--R             3                   ,
+--R   (105)  (2x y(x)log(y(x)) + x)y (x) - 2y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 106
+
+--S 107 of 120
+--Ryx:=solve(ode345,y,x)
+--R 
+--R
+--R            2    2             2    2
+--R          2x y(x) log(y(x)) - x y(x)  + 2y(x)
+--R   (106)  -----------------------------------
+--R                            2
+--R                          2x
+--R                                          Type: Union(Expression Integer,...)
+--E 107
+
+--S 108 of 120
+--Rode345expr := x*(2*x**2*yx*log(yx)+1)*D(yx,x)-2*yx
+--R 
+--R
+--R   (107)
+--R                 5    3         2        5    3     3    2              3    2
+--R               4x y(x) log(y(x))  + (- 2x y(x)  + 6x y(x) )log(y(x)) - x y(x)
+--R             + 
+--R               2x y(x)
+--R          *
+--R              ,
+--R             y (x)
+--R
+--R         + 
+--R               2    3              2    3        2
+--R           - 4x y(x) log(y(x)) + 2x y(x)  - 4y(x)
+--R      *
+--R               2    2             2    2
+--R             2x y(x) log(y(x)) - x y(x)  + 2y(x)
+--R         log(-----------------------------------)
+--R                               2
+--R                             2x
+--R     + 
+--R          3                   ,        2    2             2    2
+--R       (2x y(x)log(y(x)) + x)y (x) - 2x y(x) log(y(x)) + x y(x)  - 4y(x)
+--R
+--R  /
+--R      2
+--R     x
+--R                                                     Type: Expression Integer
+--E 108
+
+--S 109 of 120
+--Rode346 := x*(y(x)*log(x*y(x))+y(x)-a*x)*D(y(x),x)-_
+--R              y(x)*(a*x*log(x*y(x))-y(x)+a*x)
+--R 
+--R
+--R   (108)
+--R                                      2  ,                                2
+--R     (x y(x)log(x y(x)) + x y(x) - a x )y (x) - a x y(x)log(x y(x)) + y(x)
+--R
+--R   + 
+--R     - a x y(x)
+--R                                                     Type: Expression Integer
+--E 109
+
+--S 110 of 120
+--Rsolve(ode346,y,x)
+--R 
+--R
+--R   (109)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 110
+
+--S 111 of 120
+--Rode347 := D(y(x),x)*(1+sin(x))*sin(y(x))+cos(x)*(cos(y(x))-1)
+--R 
+--R
+--R                                ,
+--R   (110)  (sin(x) + 1)sin(y(x))y (x) + cos(x)cos(y(x)) - cos(x)
+--R
+--R                                                     Type: Expression Integer
+--E 111
+
+--S 112 of 120
+--Ryx:=solve(ode347,y,x)
+--R 
+--R
+--R   (111)
+--R                     2                     2             2
+--R           (- 4cos(x)  - 8cos(x) - 4)sin(x)  + (- 8cos(x)  - 16cos(x) - 8)sin(x)
+--R         + 
+--R                    2
+--R           - 4cos(x)  - 8cos(x) - 4
+--R      *
+--R         cos(y(x))
+--R     + 
+--R               5                        4             2                      3
+--R       - sin(x)  + (- 4cos(x) - 4)sin(x)  + (- 6cos(x)  - 12cos(x) - 6)sin(x)
+--R     + 
+--R                 3           2                      2
+--R       (- 4cos(x)  - 12cos(x)  - 12cos(x) - 4)sin(x)
+--R     + 
+--R                4          3          2
+--R       (- cos(x)  - 4cos(x)  - 6cos(x)  - 4cos(x) - 1)sin(x)
+--R  /
+--R             5                      4           2                       3
+--R       sin(x)  + (4cos(x) + 5)sin(x)  + (6cos(x)  + 16cos(x) + 10)sin(x)
+--R     + 
+--R               3           2                       2
+--R       (4cos(x)  + 18cos(x)  + 24cos(x) + 10)sin(x)
+--R     + 
+--R              4          3           2                               4
+--R       (cos(x)  + 8cos(x)  + 18cos(x)  + 16cos(x) + 5)sin(x) + cos(x)
+--R     + 
+--R              3          2
+--R       4cos(x)  + 6cos(x)  + 4cos(x) + 1
+--R                                          Type: Union(Expression Integer,...)
+--E 112
+
+--S 113 of 120
+--Rode347expr := D(yx,x)*(1+sin(x))*sin(yx)+cos(x)*(cos(yx)-1)
+--R 
+--R
+--R   (112)
+--R                         2                     4
+--R               (- 4cos(x)  - 8cos(x) - 4)sin(x)
+--R             + 
+--R                         3           2                       3
+--R               (- 4cos(x)  - 24cos(x)  - 36cos(x) - 16)sin(x)
+--R             + 
+--R                          3           2                       2
+--R               (- 12cos(x)  - 48cos(x)  - 60cos(x) - 24)sin(x)
+--R             + 
+--R                          3           2                                 3
+--R               (- 12cos(x)  - 40cos(x)  - 44cos(x) - 16)sin(x) - 4cos(x)
+--R             + 
+--R                         2
+--R               - 12cos(x)  - 12cos(x) - 4
+--R          *
+--R                       ,
+--R             sin(y(x))y (x)
+--R
+--R         + 
+--R                                    5           2                      4
+--R               (- 8cos(x) - 8)sin(x)  + (8cos(x)  - 8cos(x) - 16)sin(x)
+--R             + 
+--R                          3                  3
+--R               (- 12cos(x)  + 12cos(x))sin(x)
+--R             + 
+--R                       4           3           2                      2
+--R               (4cos(x)  - 28cos(x)  - 44cos(x)  + 4cos(x) + 16)sin(x)
+--R             + 
+--R                       4           3           2
+--R               (8cos(x)  - 20cos(x)  - 56cos(x)  - 20cos(x) + 8)sin(x)
+--R             + 
+--R                      4          3           2
+--R               4cos(x)  - 4cos(x)  - 20cos(x)  - 12cos(x)
+--R          *
+--R             cos(y(x))
+--R         + 
+--R                       5           2                 4
+--R           cos(x)sin(x)  + (5cos(x)  + 5cos(x))sin(x)
+--R         + 
+--R                    3           2                  3
+--R           (10cos(x)  + 20cos(x)  + 10cos(x))sin(x)
+--R         + 
+--R                    4           3           2                  2
+--R           (10cos(x)  + 30cos(x)  + 30cos(x)  + 10cos(x))sin(x)
+--R         + 
+--R                   5           4           3           2
+--R           (5cos(x)  + 20cos(x)  + 30cos(x)  + 20cos(x)  + 5cos(x))sin(x)
+--R         + 
+--R                 6          5           4           3          2
+--R           cos(x)  + 5cos(x)  + 10cos(x)  + 10cos(x)  + 5cos(x)  + cos(x)
+--R      *
+--R         sin
+--R                            2                     2
+--R                    (4cos(x)  + 8cos(x) + 4)sin(x)
+--R                  + 
+--R                            2                                2
+--R                    (8cos(x)  + 16cos(x) + 8)sin(x) + 4cos(x)  + 8cos(x) + 4
+--R               *
+--R                  cos(y(x))
+--R              + 
+--R                      5                      4
+--R                sin(x)  + (4cos(x) + 4)sin(x)
+--R              + 
+--R                        2                      3
+--R                (6cos(x)  + 12cos(x) + 6)sin(x)
+--R              + 
+--R                        3           2                      2
+--R                (4cos(x)  + 12cos(x)  + 12cos(x) + 4)sin(x)
+--R              + 
+--R                       4          3          2
+--R                (cos(x)  + 4cos(x)  + 6cos(x)  + 4cos(x) + 1)sin(x)
+--R           /
+--R                      5                      4
+--R                sin(x)  + (4cos(x) + 5)sin(x)
+--R              + 
+--R                        2                       3
+--R                (6cos(x)  + 16cos(x) + 10)sin(x)
+--R              + 
+--R                        3           2                       2
+--R                (4cos(x)  + 18cos(x)  + 24cos(x) + 10)sin(x)
+--R              + 
+--R                       4          3           2                               4
+--R                (cos(x)  + 8cos(x)  + 18cos(x)  + 16cos(x) + 5)sin(x) + cos(x)
+--R              + 
+--R                       3          2
+--R                4cos(x)  + 6cos(x)  + 4cos(x) + 1
+--R     + 
+--R                       6           2                 5
+--R           cos(x)sin(x)  + (5cos(x)  + 6cos(x))sin(x)
+--R         + 
+--R                    3           2                  4
+--R           (10cos(x)  + 25cos(x)  + 15cos(x))sin(x)
+--R         + 
+--R                    4           3           2                  3
+--R           (10cos(x)  + 40cos(x)  + 50cos(x)  + 20cos(x))sin(x)
+--R         + 
+--R                   5           4           3           2                  2
+--R           (5cos(x)  + 30cos(x)  + 60cos(x)  + 50cos(x)  + 15cos(x))sin(x)
+--R         + 
+--R                    6           5           4           3           2
+--R             (cos(x)  + 10cos(x)  + 30cos(x)  + 40cos(x)  + 25cos(x)  + 6cos(x))
+--R          *
+--R             sin(x)
+--R         + 
+--R                 6          5           4           3          2
+--R           cos(x)  + 5cos(x)  + 10cos(x)  + 10cos(x)  + 5cos(x)  + cos(x)
+--R      *
+--R         cos
+--R                            2                     2
+--R                    (4cos(x)  + 8cos(x) + 4)sin(x)
+--R                  + 
+--R                            2                                2
+--R                    (8cos(x)  + 16cos(x) + 8)sin(x) + 4cos(x)  + 8cos(x) + 4
+--R               *
+--R                  cos(y(x))
+--R              + 
+--R                      5                      4
+--R                sin(x)  + (4cos(x) + 4)sin(x)
+--R              + 
+--R                        2                      3
+--R                (6cos(x)  + 12cos(x) + 6)sin(x)
+--R              + 
+--R                        3           2                      2
+--R                (4cos(x)  + 12cos(x)  + 12cos(x) + 4)sin(x)
+--R              + 
+--R                       4          3          2
+--R                (cos(x)  + 4cos(x)  + 6cos(x)  + 4cos(x) + 1)sin(x)
+--R           /
+--R                      5                      4
+--R                sin(x)  + (4cos(x) + 5)sin(x)
+--R              + 
+--R                        2                       3
+--R                (6cos(x)  + 16cos(x) + 10)sin(x)
+--R              + 
+--R                        3           2                       2
+--R                (4cos(x)  + 18cos(x)  + 24cos(x) + 10)sin(x)
+--R              + 
+--R                       4          3           2                               4
+--R                (cos(x)  + 8cos(x)  + 18cos(x)  + 16cos(x) + 5)sin(x) + cos(x)
+--R              + 
+--R                       3          2
+--R                4cos(x)  + 6cos(x)  + 4cos(x) + 1
+--R     + 
+--R                     6             2                 5
+--R       - cos(x)sin(x)  + (- 5cos(x)  - 6cos(x))sin(x)
+--R     + 
+--R                  3           2                  4
+--R       (- 10cos(x)  - 25cos(x)  - 15cos(x))sin(x)
+--R     + 
+--R                  4           3           2                  3
+--R       (- 10cos(x)  - 40cos(x)  - 50cos(x)  - 20cos(x))sin(x)
+--R     + 
+--R                 5           4           3           2                  2
+--R       (- 5cos(x)  - 30cos(x)  - 60cos(x)  - 50cos(x)  - 15cos(x))sin(x)
+--R     + 
+--R                  6           5           4           3           2
+--R         (- cos(x)  - 10cos(x)  - 30cos(x)  - 40cos(x)  - 25cos(x)  - 6cos(x))
+--R      *
+--R         sin(x)
+--R     + 
+--R               6          5           4           3          2
+--R       - cos(x)  - 5cos(x)  - 10cos(x)  - 10cos(x)  - 5cos(x)  - cos(x)
+--R  /
+--R             6                      5            2                       4
+--R       sin(x)  + (5cos(x) + 6)sin(x)  + (10cos(x)  + 25cos(x) + 15)sin(x)
+--R     + 
+--R                3           2                       3
+--R       (10cos(x)  + 40cos(x)  + 50cos(x) + 20)sin(x)
+--R     + 
+--R               4           3           2                       2
+--R       (5cos(x)  + 30cos(x)  + 60cos(x)  + 50cos(x) + 15)sin(x)
+--R     + 
+--R              5           4           3           2
+--R       (cos(x)  + 10cos(x)  + 30cos(x)  + 40cos(x)  + 25cos(x) + 6)sin(x)
+--R     + 
+--R             5          4           3           2
+--R       cos(x)  + 5cos(x)  + 10cos(x)  + 10cos(x)  + 5cos(x) + 1
+--R                                                     Type: Expression Integer
+--E 113 
+
+--S 114 of 120
+--Rode348 := (x*cos(y(x))+sin(x))*D(y(x),x)+y(x)*cos(x)+sin(y(x))
+--R 
+--R
+--R                                 ,
+--R   (113)  (x cos(y(x)) + sin(x))y (x) + sin(y(x)) + y(x)cos(x)
+--R
+--R                                                     Type: Expression Integer
+--E 114
+
+--S 115 of 120
+--Ryx:=solve(ode348,y,x)
+--R 
+--R
+--R   (114)  x sin(y(x)) + y(x)sin(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 115
+
+--S 116 of 120
+--Rode348expr := (x*cos(yx)+sin(x))*D(yx,x)+yx*cos(x)+sin(yx)
+--R 
+--R
+--R   (115)
+--R     sin(x sin(y(x)) + y(x)sin(x))
+--R   + 
+--R          2                      ,
+--R       ((x cos(y(x)) + x sin(x))y (x) + x sin(y(x)) + x y(x)cos(x))
+--R
+--R    *
+--R       cos(x sin(y(x)) + y(x)sin(x))
+--R   + 
+--R                                2  ,
+--R     (x sin(x)cos(y(x)) + sin(x) )y (x) + (sin(x) + x cos(x))sin(y(x))
+--R
+--R   + 
+--R     2y(x)cos(x)sin(x)
+--R                                                     Type: Expression Integer
+--E 116
+
+--S 117 of 120
+--Rode349 := x*D(y(x),x)*cot(y(x)/x)+2*x*sin(y(x)/x)-y(x)*cot(y(x)/x)
+--R 
+--R
+--R                y(x)  ,             y(x)            y(x)
+--R   (116)  x cot(----)y (x) + 2x sin(----) - y(x)cot(----)
+--R                  x                   x               x
+--R                                                     Type: Expression Integer
+--E 117
+
+--S 118 of 120
+--Rsolve(ode349,y,x)
+--R 
+--R
+--R   (117)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 118
+
+--S 119 of 120
+--Rode350 := D(y(x),x)*cos(y(x))-cos(x)*sin(y(x))**2-sin(y(x))
+--R 
+--R
+--R                    ,                     2
+--R   (118)  cos(y(x))y (x) - cos(x)sin(y(x))  - sin(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 119
+
+--S 120 of 120
+--Rsolve(ode350,y,x)
+--R 
+--R
+--R   (119)  "failed"
+--R                                                    Type: Union("failed",...)
+--E 120
+ 
+
+)spool
+)lisp (bye)
+ 
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/kamke6.input.pdf b/src/axiom-website/CATS/kamke6.input.pdf
new file mode 100644
index 0000000..3dadfbf
--- /dev/null
+++ b/src/axiom-website/CATS/kamke6.input.pdf
@@ -0,0 +1,4095 @@
+%PDF-1.2
+7 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis]
+>>
+endobj
+10 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F1
+/FontDescriptor 9 0 R
+/BaseFont/UVGUYE+CMR17
+/FirstChar 33
+/LastChar 196
+/Widths[249.6 458.6 772.1 458.6 772.1 719.8 249.6 354.1 354.1 458.6 719.8 249.6 301.9
+249.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 458.6 249.6 249.6
+249.6 719.8 432.5 432.5 719.8 693.3 654.3 667.6 706.6 628.2 602.1 726.3 693.3 327.6
+471.5 719.4 576 850 693.3 719.8 628.2 719.8 680.5 510.9 667.6 693.3 693.3 954.5 693.3
+693.3 563.1 249.6 458.6 249.6 458.6 249.6 249.6 458.6 510.9 406.4 510.9 406.4 275.8
+458.6 510.9 249.6 275.8 484.7 249.6 772.1 510.9 458.6 510.9 484.7 354.1 359.4 354.1
+510.9 484.7 667.6 484.7 484.7 406.4 458.6 917.2 458.6 458.6 458.6 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 576 772.1 719.8 641.1 615.3 693.3
+667.6 719.8 667.6 719.8 0 0 667.6 525.4 499.3 499.3 748.9 748.9 249.6 275.8 458.6
+458.6 458.6 458.6 458.6 693.3 406.4 458.6 667.6 719.8 458.6 837.2 941.7 719.8 249.6
+458.6]
+>>
+endobj
+13 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F2
+/FontDescriptor 12 0 R
+/BaseFont/HGRDUJ+CMR12
+/FirstChar 33
+/LastChar 196
+/Widths[272 489.6 816 489.6 816 761.6 272 380.8 380.8 489.6 761.6 272 326.4 272 489.6
+489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4
+462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2
+734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6
+272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6
+544 516.8 380.8 386.2 380.8 544 516.8 707.2 516.8 516.8 435.2 489.6 979.2 489.6 489.6
+489.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 611.8 816
+761.6 679.6 652.8 734 707.2 761.6 707.2 761.6 0 0 707.2 571.2 544 544 816 816 272
+299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6
+761.6 272 489.6]
+>>
+endobj
+16 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F3
+/FontDescriptor 15 0 R
+/BaseFont/ZMUMXI+CMBX9
+/FirstChar 33
+/LastChar 196
+/Widths[360.2 617.6 986.1 591.7 986.1 920.4 328.7 460.2 460.2 591.7 920.4 328.7 394.4
+328.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 591.7 328.7 328.7
+360.2 920.4 558.8 558.8 920.4 892.9 840.9 854.6 906.6 776.5 743.7 929.9 924.4 446.3
+610.8 925.8 710.8 1121.6 924.4 888.9 808 888.9 886.7 657.4 823.1 908.6 892.9 1221.6
+892.9 892.9 723.1 328.7 617.6 328.7 591.7 328.7 328.7 575.2 657.4 525.9 657.4 543
+361.6 591.7 657.4 328.7 361.6 624.5 328.7 986.1 657.4 591.7 657.4 624.5 488.1 466.8
+460.2 657.4 624.5 854.6 624.5 624.5 525.9 591.7 1183.3 591.7 591.7 591.7 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 710.8 986.1 920.4 827.2
+788.9 924.4 854.6 920.4 854.6 920.4 0 0 854.6 690.3 657.4 657.4 986.1 986.1 328.7
+361.6 591.7 591.7 591.7 591.7 591.7 892.9 525.9 616.8 854.6 920.4 591.7 1071 1202.5
+920.4 328.7 591.7]
+>>
+endobj
+19 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F4
+/FontDescriptor 18 0 R
+/BaseFont/TPWNPF+CMR9
+/FirstChar 33
+/LastChar 196
+/Widths[285.5 513.9 856.5 513.9 856.5 799.4 285.5 399.7 399.7 513.9 799.4 285.5 342.6
+285.5 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 513.9 285.5 285.5
+285.5 799.4 485.3 485.3 799.4 770.7 727.9 742.3 785 699.4 670.8 806.5 770.7 371 528.1
+799.2 642.3 942 770.7 799.4 699.4 799.4 756.5 571 742.3 770.7 770.7 1056.2 770.7
+770.7 628.1 285.5 513.9 285.5 513.9 285.5 285.5 513.9 571 456.8 571 457.2 314 513.9
+571 285.5 314 542.4 285.5 856.5 571 513.9 571 542.4 402 405.4 399.7 571 542.4 742.3
+542.4 542.4 456.8 513.9 1027.8 513.9 513.9 513.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642.3 856.5 799.4 713.6 685.2 770.7 742.3 799.4
+742.3 799.4 0 0 742.3 599.5 571 571 856.5 856.5 285.5 314 513.9 513.9 513.9 513.9
+513.9 770.7 456.8 513.9 742.3 799.4 513.9 927.8 1042 799.4 285.5 513.9]
+>>
+endobj
+22 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F5
+/FontDescriptor 21 0 R
+/BaseFont/VQQJAA+CMR10
+/FirstChar 33
+/LastChar 196
+/Widths[277.8 500 833.3 500 833.3 777.8 277.8 388.9 388.9 500 777.8 277.8 333.3 277.8
+500 500 500 500 500 500 500 500 500 500 500 277.8 277.8 277.8 777.8 472.2 472.2 777.8
+750 708.3 722.2 763.9 680.6 652.8 784.7 750 361.1 513.9 777.8 625 916.7 750 777.8
+680.6 777.8 736.1 555.6 722.2 750 750 1027.8 750 750 611.1 277.8 500 277.8 500 277.8
+277.8 500 555.6 444.4 555.6 444.4 305.6 500 555.6 277.8 305.6 527.8 277.8 833.3 555.6
+500 555.6 527.8 391.7 394.4 388.9 555.6 527.8 722.2 527.8 527.8 444.4 500 1000 500
+500 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 625 833.3
+777.8 694.4 666.7 750 722.2 777.8 722.2 777.8 0 0 722.2 583.3 555.6 555.6 833.3 833.3
+277.8 305.6 500 500 500 500 500 750 444.4 500 722.2 777.8 500 902.8 1013.9 777.8
+277.8 500]
+>>
+endobj
+24 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 496
+>>
+stream
+xÚURMÓ0½ó+|à0‘ˆk;_Î±Ð]$¸ m$ËœÖÛX›&Åvèî¿g&.±çë½—7f‚ÁÎl=>³Ýî^2Ùp%Y÷Ì¤*xÝ²\Š’Wšu‡Gxÿð-k4ì»à;7]—˜å…ð’UÌå%S5Øš§ÊS÷ew¯˜”¼­°)x#Y^”\—+\ç.s2ÕÀÂ¨
+f|£1$U\"7J(SïÁí…Zû,'O5â]PBèÄX0ÍÛš•æ¢FÂŠëjÙ÷!zsÜ¤•s‰|Š×*I\Èò²ðçŒƒ¥‹DJ‰"eçç”Üª¾®.4@¡n!ÚSGX\ÜzLH©ëÒ.ö”ÒýæÍÝñÔòÀ7?
+®íbõ~lŸw™®Ð
+oúGù„uQ£rKBÁ`2¥á}ˆ×DÞµ`íDaÞÞ¼‹1…
+–à¦sªì_Ý|IÙð6B4¯Á÷Áz»ªIP½
+º"¶†9×–în›ªi!3E7ª™&¦žÕ8º\î¸ŒÆ§8ÌãÝ<¥—¶˜_Gª™èÂU56ü‡‚ûðîì&3þ«/6û<½´RÁÉáx?2‘ªèpóìÏÅ+OO¤bíöDdYò7Pè‚«fE”+É]÷î7º¯Ùì
+endstream
+endobj
+26 0 obj
+<<
+/F1 10 0 R
+/F2 13 0 R
+/F3 16 0 R
+/F4 19 0 R
+/F5 22 0 R
+>>
+endobj
+6 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 26 0 R
+>>
+endobj
+31 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F6
+/FontDescriptor 30 0 R
+/BaseFont/OXXWTX+CMBX12
+/FirstChar 33
+/LastChar 196
+/Widths[342.6 581 937.5 562.5 937.5 875 312.5 437.5 437.5 562.5 875 312.5 375 312.5
+562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 562.5 312.5 312.5 342.6
+875 531.3 531.3 875 849.5 799.8 812.5 862.3 738.4 707.2 884.3 879.6 419 581 880.8
+675.9 1067.1 879.6 844.9 768.5 844.9 839.1 625 782.4 864.6 849.5 1162 849.5 849.5
+687.5 312.5 581 312.5 562.5 312.5 312.5 546.9 625 500 625 513.3 343.8 562.5 625 312.5
+343.8 593.8 312.5 937.5 625 562.5 625 593.8 459.5 443.8 437.5 625 593.8 812.5 593.8
+593.8 500 562.5 1125 562.5 562.5 562.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 675.9 937.5 875 787 750 879.6 812.5 875 812.5 875 0 0 812.5
+656.3 625 625 937.5 937.5 312.5 343.8 562.5 562.5 562.5 562.5 562.5 849.5 500 574.1
+812.5 875 562.5 1018.5 1143.5 875 312.5 562.5]
+>>
+endobj
+32 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 97
+>>
+stream
+xÚ%Ë+€0EQÏ*žÁÐié4µ|J‚G€û)¨cî…!cpàcB§MpK®…î¦àQ‹Íè°”ýuVŽËgû¹«Uç&yDŠ’–HÎ¢ö(ð·ØÜ`ÔâúY-
+endstream
+endobj
+33 0 obj
+<<
+/F6 31 0 R
+/F5 22 0 R
+>>
+endobj
+28 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 33 0 R
+>>
+endobj
+36 0 obj
+<<
+/Type/Encoding
+/Differences[0/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft
+161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus
+173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade]
+>>
+endobj
+39 0 obj
+<<
+/Encoding 36 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F7
+/FontDescriptor 38 0 R
+/BaseFont/AAGTGA+CMSY10
+/FirstChar 33
+/LastChar 196
+/Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8
+275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8
+611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9
+820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7
+666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8
+500 500 611.1 500 277.8 833.3 750 833.3 416.7 666.7 666.7 777.8 777.8 444.4 444.4
+444.4 611.1 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 777.8 277.8 777.8 500 777.8 500 777.8 777.8 777.8 777.8 0 0 777.8
+777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8
+777.8 777.8 1000 1000 777.8 777.8 1000 777.8]
+>>
+endobj
+40 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis]
+>>
+endobj
+43 0 obj
+<<
+/Encoding 40 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F8
+/FontDescriptor 42 0 R
+/BaseFont/FFPBTO+CMTI10
+/FirstChar 33
+/LastChar 196
+/Widths[306.7 514.4 817.8 769.1 817.8 766.7 306.7 408.9 408.9 511.1 766.7 306.7 357.8
+306.7 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 511.1 306.7 306.7
+306.7 766.7 511.1 511.1 766.7 743.3 703.9 715.6 755 678.3 652.8 773.6 743.3 385.6
+525 768.9 627.2 896.7 743.3 766.7 678.3 766.7 729.4 562.2 715.6 743.3 743.3 998.9
+743.3 743.3 613.3 306.7 514.4 306.7 511.1 306.7 306.7 511.1 460 460 511.1 460 306.7
+460 511.1 306.7 306.7 460 255.6 817.8 562.2 511.1 511.1 460 421.7 408.9 332.2 536.7
+460 664.4 463.9 485.6 408.9 511.1 1022.2 511.1 511.1 511.1 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627.2 817.8 766.7 692.2 664.4 743.3 715.6
+766.7 715.6 766.7 0 0 715.6 613.3 562.2 587.8 881.7 894.4 306.7 332.2 511.1 511.1
+511.1 511.1 511.1 831.3 460 536.7 715.6 715.6 511.1 882.8 985 766.7 255.6 511.1]
+>>
+endobj
+44 0 obj
+<<
+/Type/Encoding
+/Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace
+160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis]
+>>
+endobj
+47 0 obj
+<<
+/Encoding 44 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F9
+/FontDescriptor 46 0 R
+/BaseFont/JNEICV+CMTT10
+/FirstChar 33
+/LastChar 196
+/Widths[525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 525 525 525 525 525 525 525 525 525 525 0 0 525
+525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525
+525 525]
+>>
+endobj
+48 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 489
+>>
+stream
+xÚ­UMs›0½÷Whr© –"„Ä‡grÉÄé´—Î¤Üªh"¨Ç8bîÀ¿¯ŒqL=©°ËîÛeßî‚ Á„€tâ¸KnBã8 I‡ €Drÿþvž’o7Ñ€ðqÒù\ã;ŠÆ<²¾µ 3þxð#‚YçáØdNU*U8ˆS7év#¬öu¹¯¡:Õ{¬¬ò×N¦£îdµßÊYôVVFI÷µ2šÊ²©çB¦;‹-ŠA}{¡Æëõiì#%ãtíòV•r—ÖÊ¦üÜŽA=þÓFäñC=áhpO¤D>a,†I[Ê¥yù]Z­Ÿ¿÷õL­zfG¬ß“¦³¤‡*³ïìc¼ùˆ7xg—æMg¦íŸ1mýö|D<¿ÔÀýx~1â3ÝðOo;oÔ‹ô‰ýL–·F
+¸Û
+ØÇuéu£oZ»ÐØúBÖ­9¿!‘ÿ½C#ä°ÃÔ3²kçBW†ìðôâ±¡ÿšCcØ˜ê¬ùÚØ¬K8mÏ¸ƒTd;;f]“›0]#ÊŽ§¾jJýG¬ÖêÕ<}­e.çŸ5?oÔ•*þHÍÄíâÃ²}çC§®²t]È—+s¤ðáHñxŒý@Wã(êâÍ(WÉ§¿8-¢X
+endstream
+endobj
+49 0 obj
+<<
+/F7 39 0 R
+/F8 43 0 R
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+35 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 49 0 R
+>>
+endobj
+52 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 491
+>>
+stream
+xÚµVËNÃ0¼ó§¼ìúÛ1DAp„p"šV•P[Q„’¿g§©Û&¡å­½»¶7;3N%”¢ªÍ=ºIGwbJ§H3¢ÂŠ-Qzûêaüäc®¹1^Z®ò+K.½—Å|¹È¼Ëéûü#Ÿ\F„Ì÷ßÒGDfŒ˜Íâ±Í—›Ä4¡gRÖ,§Ö2N»öyZNrA¹Í¹º¶6óŠ àA	6óaVæ6ó¬#‚'´CwGÕ¾V×1ÝÎê4êÁéœÑÚ
+ó¨'™I]Õ¦à\Ì($B¶à¦ë­eû:U°†;ù¿ª\¤»H‹Õg¾^\vþ°øÊgùç Vª+}VëåÇwžy²¨ŒÎ@ÓTÝ¶oÃ½žü?SV»m`»}HNà¬8ä¬…³š´A±GÙVWyG2á(‹-¹‚’jUÅøŒ…Ò²å¹èáXEò¿±õñ½˜Cï!ê(æä^œCI¿*Ì T—*Ä¡*äTaþOj·¦¿Œž Šx_Œ‚á^æ[„ ’ƒ«];:a±]|Â•ÙÝ(•@U®P+µŽ+¡ÄÜñC^¬k!¢Ä¨£F‡¾	½’áCš‘GoÙ×žÑl˜4D(@Ú$©“âzÝ8½øé|éP
+endstream
+endobj
+53 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+51 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 53 0 R
+>>
+endobj
+56 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 604
+>>
+stream
+xÚ­–MoÛ0†ïûBOv©õ —¡é°[ï4ï0 NQ HŠfä?Y–<Ç±f[.6EQ!¾T‚(¡=¡ðø„>×wYb*¶H3¢Â
+ˆ–¨¸ý–a|ŸcÐDVÔ¯Õ:Çd¶q¯oÕáð¼ßµöçÝÏê©zË¿_E˜1bSø¦ÝÁhr'6ú¢µÏý6Ú@ÇNº?ì_~Ue¶¬8«zåÊ¼¿Ou	/b&µÌJŸ‚?3*ivµýñüR=^M€kû,¾î<†²[BŽó’`}l€Þ‡"0ížõMû,³ºÌ<“Å‚c¾h^nÓRƒÊ¯µÆÒ-p£QÄXsÏŠûS•¸ò¶Ñ"ƒ3”¡£œ2‹&nKà~¥NÕoóšœuomÙ>Ü%½þ2†¹æñ÷5¯vë›¾–å©–åßh9´DäØp¯P>Ñ7¡û(à+×¾ŒpîLgùŸÓÆ?Sñ>„ö°[TŒMÛDçÎŸëŸ¸dø*ŸÂÉ ºãásiðÜ?Ým1uóac›ÄýÍ ­7×IP¯L`h qÁzhM°ÍÄ7KíOÝé¦I§«]òr‚{™ÜfÒë3ÒÐ¡¿'J°l ËñüBQË©Á0þU¬P‡Í¢C¢b°Œ¶ŒDt´Å&ÄLò†)aÆüpf®x¦èdñê’âm m›6{a=„ bÑ&ÕEçª.3Õ”Ý/…ù;Gwœ¿dF47úHiB)©fÐ„ÐV"õéO³àÎ
+áúNvÿk˜´„+?õ–6Ë¿)>ü—8
+endstream
+endobj
+57 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+55 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 57 0 R
+>>
+endobj
+60 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 607
+>>
+stream
+xÚ¥VÁŽÓ0½ó9¦%Ií±=ÎTÚÚ.‚#„áFv…„ÚÕ.Béß3±6MíÒB¥ÖvÞŒ3oÞxÜLTBdO™ÞgïšÕeTfÍcfeeeV"TÖdÍý×¼,?-ÊšÀä°øÖ|ÌDVJYÑ4Öš\c OX(iD¾L¹ƒEÔ–_¼wFy›÷íbj‡»¸3 {½M€¶¢V!8`kA”Kž`ÍnRðËAˆœ-@òHl‰ìbÂºNqŒJq-÷>èR;„âž‚íý$
+’Äv”@g°Ð4zKQŸ¢×&g‰ÀÒ:	t®ÃCV0¬ÍYPšÎ‚æ¤A“Ö"†þô¿±š€¨œf¾ÚXSV[‡5UamÃ.±ks©‡¸N¨("¬ûÓøÍÚEŒ)%/e„U˜¤Ž·T:ùBá
+—ÇÂvã_HŽ$ÄŒ¬’¼cdfàPÅè3©[$Gô$WêTÃpv«K:Þ)ÜÖ\±Íþ¹[û7múç—îõõÇnë×¶¿º§î%–ËMˆM ¨Šö9`Æ»ÇQ^d÷½S½Íúnla>YË¥*{þáÙýø¬àïð–—ªü†ög•9¶/’Z8auRu'—¶9Ôb=”¡*YýisvÓS‹+Éü§~f¦Ÿ™ê'gâuîûõÝëîçï®Í½–Å¾¸Jü°ºûCõ¹tF€kZâ¨&½gŸ„£»ð1%WÎD /[Ö¦MéTTUï\›ƒ éÓfo9mGpvâúÙië''Í5 Õƒ9üÿ‘†*…	Uuí6÷Ámš7 yêÉ
+endstream
+endobj
+61 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+59 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 61 0 R
+>>
+endobj
+64 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 596
+>>
+stream
+xÚµVMÚ0½÷Wäh 6¶ãO¤½TËVí±MOM+5»ªTÁj©*óï;‰íXÛ»H-8Ìx<ïùAE	¥Õc5.ª÷íúÎV–XUµ•fD³
++N´¬ÚÛoãÏ‹ïí§ŠV˜1b_1b&µDbº[dvh;x³À\q‰†•QŠ8]à†	‹T00=$E6Da<ZX&…ÔâØ!EøŠ0!T;¿žùVÞÆLÊ9
+(¯92
+¥ç¬(u*Jh>D¤+6v6	+-¦QðR›¡3ÎÔe…CE«Œ7}à8ïe.g]jîèS2¤OQÍMFðqa,ì–‘&ÐÆDƒŒ,aÑÂCcñ5Ž÷tFS*+Œ·€¾ÊÒf ê´œ"F6E8ÉÂ9eY—º^äÜÚ íÛãS¿ñ™¶îé¹?~îwþûÇÝïþ±N…oCó::yClð}‰—Í¯û‡8(šlbÿ£o¨ö{67‘_¾ëå’¯ÜðqÏÁt5¼W—;ñ°Ó]AÍŒ‚5’¢(`|¼‡nVÍŒªÍ+i&P»$Ærç¨Ýïƒu~ÑÆÇUš¦³ðxZà×}´&©óÿ8a
+œ°ENL…Ýææ°ÿõ§ï§G}¬³—à
+X•¤â$ ûv‚SÑÈi±À$ŽüH>!YDˆ§ JÉNçà7¼rR!pXä€çF1þë0ïrø×„ô/ÀvB:Ë‚áÀÛ•¡‡
+^¨ƒ;W7ª‚‹Šàþ±8õ-¯ïäôgŠIK]ZbÌá%qÛ¾û¥ ›
+endstream
+endobj
+65 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+63 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 65 0 R
+>>
+endobj
+68 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 668
+>>
+stream
+xÚ¥—Ë’Û E÷ù
+–Ò8h i^ÛT2©Ê2å]”…6“_ðü} €°”¬\†sïiº1acä	ßÉ—ûë›%v°ŠÜß‰æƒæ„*´$÷¯¿:JöT-;.{*¸dôTÚŽ7 Üö…‰ 
+Ü
+Þÿ¾ÿ ŒPÎ»ÙOj·êcìcßS.Ý—›ßSvc§n„¹MâˆžÆ¾	|Š`Ó<—mÁM_vªŸ
+5øíë“Á…¢ê€yß¤[DÝ¶%{ì„Ìˆ²~ð#AÀ‚ÔA&
+R{A×&À	(Fú¢@È…ÐHêÇ%@M~Æ,±TcŸ›)Ã­¦ÿí·bg.Œ[ëZ“~Î€­3É©õ
+ÔQëmë“8É“5_\&«'¾ f¢Ñ¾[ïÐ£•msà`6ˆDÇã ;Àá¥e<X©,õâ†½9D¢mÈæˆÔD”	©Êªî3 Z¾é°Ù€ÜŒÏ|±äþ	Ø‚¨aS¦pùí†«·CAkhptC\}¶¦…å#@>—-Lä<øT§C€Ù”µùnoAãÝâk^XfÜo[îÙ0ºåX±•']ë\¥†âÁ¸ØÔÖÍ/H}iýÜºz)5ÉÕÿŸãŒøûŸŒT¬÷9:ÎýªhÇ¹×Ç‚ñä#$»ñ›Æ¥ŠÎ¢²\ÓQ¶Ü–1ô.$7B˜i™PéÑõ^´OÙZw):‘KÜËóûd£½—È¬ûŠµD‡\Qg5Óö»äiÿ-Ê´€¬þâlŠØéÀ#uÅ#÷ºžÕÛ½I:ëg2ëgb-sáÛ¦”WsE»Ò5·N5µµªÎ±×7¹ü½áÒB
+v0&Ï×äÛýÓ_>N½7
+endstream
+endobj
+69 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+67 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 69 0 R
+>>
+endobj
+72 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 625
+>>
+stream
+xÚ­–ÉnÛ0†ï}
+%Û¤¹S4K§h­z*s0%(PØA\ÒÛ—â¢Í”ì5`KœE"¿áÏ1ÀcðÜåøXn4ÐHKP>E" JŠ” åýÂ¯9TàŒ°rŠíÉ!#ÖB[Ï´J%2®*¸¹KÌÄ0ÚGµCÖ™Ë/ HÒƒwºG™LÕ9$ÂÞÂŽþ&Ú×	;¶Ïv“y›$7¹‹â:>•òIv°k™¶3í&oLû;³
+*i;Å´ÓÓa­„Aµ˜¹²|#WÝsu™jÂ-‘œ`TiŠ¤HÛM
+`rk0‡È‹Ã/‰(ñ²0ƒEÈAºÂøn	é`÷ÆíR½$ŸóªÂ.¹l^«Ç¾~}«ÎçŸ§£>þ®^ª·Ôö`tR†tð}>â¯§çP>x4‘ÓSÅpácvw!wå÷ájÅV÷&óƒý®ëÎ3#µ$ð4 Å¼rÛ7nr{Lh=+`·Œ]”‡‡NƒT\z·AgYw[Ïùdõÿª#&Õ!ÃêIyèmåiêÝÝùôëOe2_©M³yßRÒpðí(ÁóÇ¦=1Dz¨®úJh— ûÏÒ>˜›¥íÉ:¨Ã÷£-™+Ç!”¦³ï¸/…½G3•Â…nê¨™:ê¥¾E+×Ê¹²Ùæà(ªþÔw…uíÒòãaÌâ¡âZÙn¼Ø7‰LíÊÇê9	]pŽ}¶ëÍÉ·øwý^ñšBùNçþŠðÀH„¤È(2TËeFtÒ“xßÎ'½J^DOž–ÚmÊ»Ú‰\#Ú>ˆîÿ1i• QQ¸`íò÷å‡¿ü}*Ý
+endstream
+endobj
+73 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+71 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 73 0 R
+>>
+endobj
+76 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 606
+>>
+stream
+xÚ­VËnÛ0¼÷+x”l“áûa —"IÑSåTõV%(PØA\òßw)R2ÍPª‹Ä€A.¹+îìÌRB”PŠžÐ0|B›«;‡q5È0bÂš£Psó­Âø¾ÆÜX.«æøÜmk¬¸ªnûç—îpø¹ßûóîw÷Ô½Ôß›/ˆ"ÌqcømðàbÜä‚¸¸÷5îÉ0îÃÈ8-=é~ÿ£ÔŸíuÛŠ¯ŽmÕ·õj%Öaó›¶
+óü1_õ°‹ûô©z‚W:ª¼ˆ5ª5–ŽÞÀÈœ«ÄŒ3SfÈO¶5TQo„¬¢½Æ¬#¤ÁÃOq,P¢Ýÿ3gý¾äÉòÔeäûíõaÿëO×VÇÍÑsófJ´…CA@BCµ9Àe”z›S †ÏüÍS‘Wû’âOt«S|ù7!ô<ã”EN¥KY|Øí™BÈyqsJÕ¥úú±ƒ
+=ÙýØÇ^ìß·ÇZë2Fð°ŠÉ@›’û‰ˆ½ê…¡ù ”AŒÍÄ+ãå4ÉÁŸ%bJ‹í¨©%Ø@]ttÐæ!~A™ëXµÎdå¢mã¨#Äs?È{	é”?S€ÓBD &gËí	úz”Íˆ}¦6ŒÏ>úÒâ¤w³xUùŠoµ\—C°ÙBAäû%úBA³<¦ÌhÄ`ã‚N.·“¸ˆØ¡Ö^±)‰#‘yp™¹ó7Qç_«eàp¢è¼\ÜsÀ%|%¼)¾Üü•ëíAæË0ñ­æá°¹Y|%¥_ àwu§¦O3¦4±îkG¬âX¸–o›Ôú*
+endstream
+endobj
+77 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+75 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 77 0 R
+>>
+endobj
+80 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 652
+>>
+stream
+xÚ­VËŽÓ0ÝóY¦iú:ñ«ÒlÐt,!¬;2#$ÔŽ¦¥Ïµc§yØi+¨”Ú÷Ç>ç>œÐœÒä%±Ã‡ä}µ}Ò‰ÎµHªçDB.!!‚å’'Õã·”Ï«ïÕ§„& ×%a‚ñt1Š‚Ò´X‘R¢0œ€ÖFÁ§)Ð) 'Ò-ÃÝèTdÙBHžÖ)±n)kW(º;¹­WçÚü£šK³9«îýÅÄ¿ˆ¾Ðy–ÚkôìÍèJ·‚%.F.ñÛÒA2€Á+S#C0œƒvCì CÛbW.c=jîl &ŠrÖÛVŸ“{ô¦¸¯Ã<LDv?˜ÓÈ‚5´rhÌÉàPø	¸‰¾)# \NìJ•qF±ÈÚq´Ê‰¬'2n$v‹0ÚÄ§çü
+Ëb~ÞðjÖi»Ä};‘TÈqu~mvÝ7öíë[s:ý<:ùãáwóÒ¼…ÖÞ;t…7²"×ÎöÅÙd7Ÿ=¥4¸Ëã¦0%Îøì|¶°¬c3ËŠ5ÏÚ,ó
+T=Öi7ßàc­Þ—­Ñ3‚{„0lRIô>f’jƒÙ¢:ÙU!ÜF:“}	@!TL˜ÑŸëìÏn=9ãaÇñ"íÕÃòc\L—Œ«Û?·»‡Óñ×Ÿ¦N;ò7çM´~ÝÎ%‘…-è]ó4™‘b7-—R7ÈÐûqïÙWý$ü[HçxWbÌ”¶_È]ãq“çù×)›jM}Oþ6¸ƒ@·Ãüm]î¶—¼mÿ[Îzàu´*íZ—-À>.L³W†ÒŒieV!œ"ÖÒìEDèNÄÔ,vVÀ,Œš±ëbO›ñûÛ'Þ_;‹\IäLçJÙýàžÍ÷Õ»¿³šYÇ
+endstream
+endobj
+81 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+79 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 81 0 R
+>>
+endobj
+84 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 655
+>>
+stream
+xÚ¥VËŽ›0Ý÷+XÁŽ}ýŽ4›j2U»léªTÝ”Uª’Ñ¤ªÈß×Cb›´] ×÷uÎñ…Œ`B²§Ì-ï²·õöÁd™Õ™¢XÑIÀJdõý—¡â
+D¾)¾Ö2’!J±™µ±F] &•È¡@ çÊ;Qbo€œ;ƒÈE$ŠPÖ»É%Pè
+D‰ 6!}Iºá®)ÎMÞ5Åk{“Saú-T(19ÙœK¯pâtoÜ–NÁ÷ }sÌ6Km”û®õÜ]^5E,Ê¢×šW.76äJ+c0ƒ5V)(ÎcÑá^»1•¶LpYü€sVØ´Gšø"”ÇNÇzìÃð	À\’è„•Qrè÷éVOB µ5š½’¤€Ò}”*ÊüòˆÀï659HAçG“5©q!»%>°æÄ¼@y"Ï?À4À!¼Œ_YJ‹Ú¯ `–É°»ÛµM•ÉbxƒÒ–¿úüÜî†,ûîù¥=~ÃóûÃ¯ö©}	ßûmF#0l¼í“¯™ëñqšgÁ2ß[Ö‹§ß³»¹R”%C¬ì¦'ØHûT‚±ém%³–ûÆ„Ê^è[¤i§á)²‹u‰l^Eæ.òê Yy9kÅF¢jrùuüü€Ÿ#Ìs\÷‰Ù¾dz ¯Î ò-'ÈLsrap9[—S2µîÝqn3Ý0¢Ùxæ2¢ùÿW5#	UÓ¤ª§êÎÝîîtüù»mòAàÕ¹ºås´¦&Å„ûµ1jÅ}|FM°é%-I:± BêHÐÅþÂ6£²‹" ÜÌIû|°|51î*ŒqËýÄRœA2¸}Ó/$keÖÚyÓaˆîë7 ŒµR‡
+endstream
+endobj
+85 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+83 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 85 0 R
+>>
+endobj
+88 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 790
+>>
+stream
+xÚ­W¹nÜ0íó*%Ù”9¼†&p e°]d¤‰“2A*íß‡ÇH¦H-×1¼wyç½9·ãçÝ¯.Ÿ»§»×¹É™îô³C˜:fÄ„º;ÝëûúûÇ“xZþü˜ºÿ!s/øx^ÆQ29.ñ›¸1cü›07Êyïçþ¼Ü.óÀ¾§/ïÀä6û³Šó>ZŠç“%·YRÑÒñÙ—O2Ðœ–bòæy‡Sš÷ †R¹TÄÉ{10ÞCSè‘ËuB\¸*îÒÜÎsï‘Óå,'Ñ/-éûný&Íèö‰X®û!M<Ô`Ýc4V(§7‡~·¦S´	ÎðÆ¹7hMð¸gŠ BpŽ\ŸýM Õv‚¦­Ð„g;v¢ëˆŒwMøQF ªwE¤yEÀl—ã†—¸„ÚhÏÐe0æŠŠÁMÝÅËŠ&µ…		¥£uCÆ$­›|Zk+·¹E˜ÌUüZðÚÖj7åÝþVŒøM‘(Y¬‰’ÚÑŒ¥QÓÕÎ áˆ“¬t)”9f­íN —†ŒL,ù>³µyJÐbð’v9¢$dƒ/Ê-d;,•tæ¯eÉ‚6Uv¼ I»Bp#Üb–FÑŽ„*tBª¥è³J™ê^ ãeÈ9EŒÇäeKšú,¬Yƒ©tëR=h¸UlPÀ\«:EÃ¯<nþ¼ÊiØe{~Ã±QÇK B•Þ¶8=¯%s‘ûcÎÉÙVFåªÉU=ö	¹FæRnÅè¬Ù¤m_©2mé¶Ø\ö]ÇßRˆ¾’‘M|¯IBÆ(ôÂq ô‰‡R:ÜÒã¢ïøyÝ.ë¿V²z0$Í,zèþ”ÑÕ)-_(«×ÙAÂX.Vkä"—[ §`’ÛFŠË©QºÍÒN3Œqõ³J>2Ë*ýU˜‚ýÃAeRÑ½ÌêLf›T(g«w(Ž26±–ŠJ¤ÂÈå˜ó²5½XF¯'EñpPUÄÄÝƒÞþ>yMœ,vL¸ÉÚh’Ô~:½û±ÆÝÞ
+endstream
+endobj
+89 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+87 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 89 0 R
+>>
+endobj
+92 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 685
+>>
+stream
+xÚµVMoÛ0½ïW=ÉqäHÔ‡­»M‡í¸e§y(’Ö-
+MÑƒûïG}XqœÈm‡î`Ð|¢(¿GŠpÆJÆ²›Ì™ÏÙ§ÕâÜd¦4:[]g/+žQe¥²ÕÙOBé·œ‚EZÕ¬Ë)W•"4§
+Q#•E˜b¤ð9B\ˆ}iòç†tMžÿZ}ÍXF9/Íà—·H,jÁáS¡1Ê8+‰FËñ$>R$v\T2ø^!t„ÿÊ@ïU…‹\œ
+U  ÃWÂ4©aÌ@ÝÅ³=¢Ùÿ¨îÇÈž/µe Q=G(¹rÙ¬~]™Sä¬QäF•St^X=¨;Q´±fÀÇ"v‰ÒBUƒ$«ç‡öÔG.»‡Çöéév{ïý/÷¿Û›öñíe8=ÖDiÂÚ÷¾!½Ý^÷íÈŽ
+¸½j…ÕÜÆœ~b/Æl‹MÑY³F/ÂgýÛŸÂ>îYÓM“/Ðh1ê"A\×Ã#örÑd“½ôkP€dÃÖçÄ¾òˆ¾»¾³ëÜûŸ'’¹vvü½x›½ZÛkØv×fê“4ùhœì²ïÂå ÜçGÛ§I©_PÍi‘ºÄU])ÒÏQ/œŒÂˆî›jZ¦p«õ¢V1r¨Ö–nHôŽÍ²H4nß“,ŽÇŠ5@;ßa ˆ‰ 'Bäù´½ûÓ6ÄÏ…ùóü=¯¤Œ5=¹^ßÞµW'I-À˜¡?îQ†&n›—ey¼¿—‘mZ	õ†Ñ(Æ£fëY?E!Ðë¢tƒÂ—ÖÀÁx»Hý¨Ø‘8L{¹K‰G¸¤ ¼/Þp»§«¢’ƒÒ}* m5`÷ßÔHWÊyøÑB\V0œ˜tq®â"Wº¬+¬ˆ)ëÚÂ}•–«±Lu
+endstream
+endobj
+93 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+91 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 93 0 R
+>>
+endobj
+96 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 593
+>>
+stream
+xÚ­VÉnÛ0½÷+ˆœ$Ûd¸/r)âí±QOeYäÀ@`qQÈ_Š¤E¢”¥ñ…9Cß¼yc€ÆàøáøZœ^`‘ ØE" JŠ” ÅùïÂŸ9¤’ŠÌfô:‡ÂÍŽ6«mžC‚Î–aÅ½:aÃÚMgÑw¼}ágócœÿfÝG—s38#×M*®«âÀ ‚Ìó3“‹%ÜaéM®š+&6=j´»¿g${FJSžÇÇr7õãSy8ìª}øþ¾ÿSÞ—O©;6ñ‰¢Ý¤™¸w÷d«m	ÅÉhÕÃßÒfÕ]É[Wä<H3ÈYB—““íõî¡¼;™LQcúXüÚ;lç¶B¥“·é^ÛC‚ PoƒÂcÀƒÍú,foˆ³X°Å¹,j@Z¶ëÖ‹Ãnÿ^z¥PZ5´òW¯v;Žð	µ0«æAúùTUEÛ.tÿµüh±|›Õ\õÛrx¬×g}Jó1¥ÿ+1Æ¨&!7Í¡æ7ß”øqF,l<‘!4ÒE˜ÌƒÍxýRJ¹9Ûü¶:Œ}'u/Á ý¬ØüM)áC÷IC)—ýw^W=Ç ó(]#%¨[¨ƒÔŸ\ým:ÌtÂ\ŽpDÊAG…rNÇ‰ŽÝ‡EŠNµ(oÜ£$Óži¡åù5j¸!´]l•4ŽÍS&˜6œ{Æñ¦“÷Ø8N(©&K¨l^+Ú×²öµ$N\J%s&^9N/D÷o†‰´r<0Hk 	½rS|ùëu¿
+endstream
+endobj
+97 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+95 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 97 0 R
+>>
+endobj
+100 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 603
+>>
+stream
+xÚµV±’Ô0íù
+—És’lÉvËÀ1CÉlÇRÝ×Üþ=²ïgcv¨âØŠ­÷ôž€ùfÊãƒy{¸H&MIÌá«	84Vh
+lï>Ö~mLÄÃq@¢ŸG‹x°£e¥äR|'ý@˜šÐ}pyæX%ºœ_ãøåðÑ€±ˆSZåœ~s·³ˆú­ÛY-éŸŽÃ³n^yüù4¿]Ž—HÊjQÚ£GëƒBEW¶„q´$ºö ÄItZbœDñ¿Q¨(G©‚OÊÊ©—pI`›”tWêA}úþc³û
+±âlèX3ïDóCYÂÐk6ADªÐSÀ{ùU&Vä,D$ÂY3|Cp„©dÑ£4ä"¹¨ç+¿qì¢ó’Ò ;Ä”Ì_ô{ƒn­Ce‘þ›~×Gä¬¥ê×WýRÀ%!ËFÈ•_vÒ‚‚ø¶O ž¥Ö±bôµ!œE~;Fä$cD­_ÆX©G»Þ¬¹n¤¥Ò&Ík½(WØ¯´Û,¹Pq­ÙºÛ¥åÙíFÄ­[²ÛZì”€|ãÀ¹—7‘’pJ”mlùÏbåž»˜ü®½»­±«¸Oƒ\/Á¿Pæ¶~«”£×NXêGypñ)ƒt6áœÝ^o(E>®%»Ðîb[Ÿõ=cÛ{fåËóä|#ß¾Õ\ï$,WhQ±{±çrgháLPö¦Í,òû“uç×3–¸ü»œÛÑ©w'–šÜõ4÷¦ÇÐi¡vŸI¼àó²L1KiŠ±á|+½?¼úOË\
+endstream
+endobj
+101 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+99 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 101 0 R
+>>
+endobj
+104 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 582
+>>
+stream
+xÚ­V;Ô0îù.“;%çyxÆÓ"8$J´K…¢âšåßã8N6çÝX·+*'¶3ž™ïá8?zï~º<|rïOÏæl4q‡NaTpƒà¨Á>|í†áK? `èûo‡ÏÎ»`´Í¢™†¸²u€ÓCðø~ò¾‹e”ï%¦à ùÔR°!‡èT–ÉÇyLÄÇW“œÎH8Mûtv	DÀ§¸×Oªûe„‰·«R%Ùˆ%È^|‚áagQc:œwYSø—_¿ÝéØïì¹e“ ŸP	*´ +5h+½ÒG@Œ±Âá58KÃÙ‹â<Éë×dÁ<8 <µx±‹C:!”]ô†"ˆL)
+r•Çfþz+sßZI~ÿóÒ*ƒÙVO*„Á*œ2=­ŒZ ç—k±~aŒ½ÕZb5$¬0¤@ÑxîRbNÙª^5fLoÇþo«àKÞK…	ýWÞoy‘MÝ“Š‹-MýÄÒ¢-58³í_é‹h8;ÔÂaV²ð}i)Fï«ÏÕ$%ÎþÔ2”ÝªR1Rvq±Y¦zÏ²[Ë0ÖÔšZŽ!ÑÃ«Ñ®™5eYŒ·jDÞ¨‘¨Y$w‚
+jÃº‚33’Ä
+ÓY)5¦ ’š‰þ>C©/ÅZ%H$ÂwA­á9³¢á\ÊÍ¶É5ò‚N¼hoû'EÛÞV{­ê:_1/|$ÌÞ”ëfsªy’yüôÖŸ"2FuÚcÞóµùñðî›dø*
+endstream
+endobj
+105 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+103 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 105 0 R
+>>
+endobj
+108 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 603
+>>
+stream
+xÚ­V=“Ó0íù*ícìÓj¿´-Ç%“ŽP1s×ÿI¶âD‰M¨¤H+iß¾·Ïq~ôÞ}weøèÞíŸÌÙhâvÏNaTpƒ„QÙíÞé†ás?î^~üÜw¯û¾ÿºûä¼ F;Š	’bÞ®lø´š®³x¾°X5M ½ïlå)jHÑéT`yMw²æË
+CðÍ¥Ûâ´F‡ƒ^#5‘‰˜}Z¾ü´Ä™!#H÷ëÅóˆW €` @Ï¾¦ƒEtN>¯Ïñ,<ù“xêM1JXÍ?öÝÃÊ¦™®§[°|ûõrÆ»4Ú¸÷’Í}¼ƒ…J]]al¥ ¤TõAËIF]N×ÐTÅT7=ñÇÐPÈ
+ñ9}^©Î‰lI5ÈÂk•D‘ûè‹–¥Þ)(láø=‘Xž¼D)_Iiyq¥“µ0Olö„¸RšÂÿ¾‡bK­†Ø¶´Ç¥ÍkQ@íh:´‚jÖ@þ±ïÿtJLgè(Yº\k€3RX# ÚB8³³*ë¬’%ý'Ëg.?V¤ð°Õ­ÿâäEÐ •u*dúÜÐ~îˆ8²U“#èW±å=«œ/LaqøZ9‰ÞlÄ‘w
+&Cµl wÐ>™•>¢Ó&kåœ¾œ&â›÷A,Š!„¦÷#’°\MeËmú‹ÖÏy–Ûx.“«xf8sîHØúqàè/ø€XÊ¡áY U“C[f/I xÍåKH[(Ô«Æ¬ÎË%Ûd«xp5jÜÊï·Z||âÃ8`£º!Øc	†Éƒ?ìÞüŠ
+endstream
+endobj
+109 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+107 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 109 0 R
+>>
+endobj
+112 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 565
+>>
+stream
+xÚÅVKoœ0¾÷W œÌÃ^{üÂ+åReSµÇ–žJUÃF‘¢%ÊVüûÛ°„’´‘ºÒ
+Ïxlü=lQBit¹Ç‡è}±¹6‘!FEÅ>ÒŒhaDË¨¸ú†0þcÅ)ELÅX@×¶¡A 1– m††FcP »'g6†ø{ñ)¢fŒ˜Ñ„\i‰JyÞÄ˜I`7R†AŸJ}JJ0jRÆ”ÌOcÓI²Ê¸-QSÆ]$ÐÏúè£ùå¸5§RkéÀ»E;ðÌÞs,ô5À<S«°•˜ÀÑê‹ä3µ$ž ¸pÀâ
+{’úâö§:½ßUlÖH ¹´vÐ¹%²hª­å®yx¬ŽÇ»úàã‡_Õmõ87|ç+¸é;ÃBçß)¼‡P½ ]I}SYkùšíeAÒ$z’pÜ$‰°­«2Ð‘Ù?î»EÚ'<iW,ñò$ÎM-H/É™óébÇ+_RD:G:Èk±?Q=8åäîùà<3*¸c2ã+À½ê‚ŽUŸˆÎVEˆ:Ö÷¿«yí³6{ÝzêÙÀÖÅþÇÝ}us±ÈØ}?ââëÁÒPÃ2BÈüÖÛh—™€WØ_­Ú?õ­é°¶ïKàïÈSç¦w÷@@x†ixÎäé87çñÞÏÿÇÈ°v|ñ—é×6ÛË±›Õ¿¸y$ˆ+×­æ³7Ã´w¿p“/M•Úuú/Ó”›k9|C0©H®-K†ä¹ÉüÁ¿+Þý#ï3
+endstream
+endobj
+113 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+111 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 113 0 R
+>>
+endobj
+116 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 653
+>>
+stream
+xÚ•–;oÛ0€÷þ
+-(;dø~èRÄ)Ú1U§²[• ‹$¤ßIÉ’*Ò®Š¼îôÝUQBiõ\…åKõ¹¹}p•#NWÍSe1¬Âš£ªæþ'Âø±ÆÒp…dWcëÇ¶Æ‚)Šöqxñ ¯ë_Í·ŠV˜1âfæL2#ÏI•QÈ#)À3
+Žñæ“3šuÎ9•5ýk{£ýq|9=:t¯oíû;¼Çã¯Ç?ísûvCY¦¡“¯CÔ“brA\’}O2×ÓS\§›Q~·‚é"ˆzwŸâêßu»¾ÛíÄ¾ï|½»÷¨ïnàmÏÃq&Éh/|k™gå$XÅŒâ^{‘32ŒzºÀÐ: ’v%ƒˆ55ÄœÑ;'l%(¨¤È‡2¸2•ã£1!è³ÎEÚá	mT¶^‚èlªö))z®x=¶‚¯}h®Ãf©å‘ÓAOn:‘vr2ë ¥¿,n¡)1dÃaÌ§³uF¡w÷WJe&W!ÞÑcm	I´JF3Ò8	ÖàUc^JmP‹j¾Brãg¥@ïZè2Y`Ëø–•Ž.8°ÝŒ¢Dù°¢0ÿ¥¶lma4‘vU ñìã®MÂ©=§¦ÇŒkZèÐ™¥±fAD2ç¦ÏdDlSÉÿ³Yá‹wT•`óeïÕ@-Kó 3¡Õê¶™•y˜7»\.„7%ÞýsWêýKNç‹ØQ£æ=]ÆÅîœ™}1¡¥+Ïó ?Žs¸qÝUÅ2Žë±aô¸¡ÜBI\UA¸Ö…™ì–{ÍàÕëŸ	~5…¹ÐØù Ì()s¾,@åöAM?fLib¡S¹#ÖÆ®‡æÃ_)¿$§
+endstream
+endobj
+117 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+115 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 117 0 R
+>>
+endobj
+120 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 585
+>>
+stream
+xÚ½V]kÛ0}ß¯…íDŠ¾eú2šŽíqóžæ>ê”@IJ3†óï§OGñlÏÒäÁÖ½:WÒ¹ç(až€{|ŸªÕ½i	ª-P) ¤H	PÝýÌ ü–CB±Í¡ îaÇÜ¤Ì'¨¾ !H'¡<€Ió<ÕY[çÍµ–Ú•F:DQÞúå<x³«ýz¶ÁgŸ®3FÛË‘àaæ›}lrH¥š,IžØÃ.Ò¤L’ZS>U¥É†ã­-ÌÎµ,RkÆ”`(†ªLé.¤¹©™6UÕqä(5pYv|þ‡ü¹ÜªýkˆðH|‚©sÛFÎ8úoÝavíbŽÂˆ£ÙÐ#]d„L»¹ÕTùäñ}¿ªÓK³ö;Ý´/¯Íñ¸;ìýøËþwóÔ¼Á7“”!MBò{H
+ÿ<lƒR)ÜÉá±aDù9ëÛH6-ÚÂo¿(Ø"¾›—‚šÐ]Úµ´Á8Â8oøÈóƒÞµÌ©È·Â’½t›ëu$í p‚â¢ÓN_]—’ê¥i…ŒXä£?ã¢ªwÅißB
+bJ
+ržŽ‡ç?MyE,OË·èdlŠìØºÙþÚ=77£d˜{.%ãÇÞðPw°%BhØÄ›î´	=&Ô¦(û¦`©) ïF‹ø0fŒ"†­IèVåLhm.ðèžCN§n¬Ð
+•øƒMø£ŽÂæ—/9ÿâ]åú>ÎèËAMÈ¡œ'‡S»¾MÍQžÍ±ºÝ"$*•YH£²tXJ\½Mõá/Ï$
+endstream
+endobj
+121 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+119 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 121 0 R
+>>
+endobj
+124 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 685
+>>
+stream
+xÚVMs›0½÷Wp`aiõ™^:q:í±%§ª·:™^ìLÒÌäÇw¢ÅÂN¹´OË~=k+‹°|.>µÛ;W¸Æé¢}(o/¨†Æ¨¢½ýA(ýVþl¿¬ œ7îÂ&åÊ(â‰´¾Ì €I#IM§«Îà¬dŒÈ’‹p(©àŠ‘W<ÏqŸÀg…8Šˆ¹}r"t‡–T!ª—Þ“Ã£œ¡‡zÜó¢5b¹/ÏáÀ—Þ¿.,ñ ,oÞ%Ýé]Ó‘ªÓWf*§ö¼1d:ù]u¢ÜfŒxœåš£Ø¬œÃu%î1¤µ£ùeÃPÙ¶ÚßŒÀûÃïãÁ“]÷ô¼yÁûqûËáÏþqÿ¼išæ|ev#NÚÉ¢q<¿G£×ãCì°³aí·{aÄÝ|œ:/ª®ê»ªT†»ºÇL«[Oúnƒwõ`ƒjxÄ•B®‰ÿÁH—e¡b39/©46ÇÒÊØ@gLE*Ê¸Šh7™Q	Î\J‡!¨”‚uËž‡ )3œ•Ý|r$q:u¡S+ôÉqKÛ¡÷$b] æ­æû*°!°Cdœ…zxb [=ÎR;ðé[›øÐváBÓ½;oäëyH–æ!ßùU¦®Ê½Ð¸Y‹½ŸŠÑ]ÁÐbõc*'F@LVÆÎOÏÙ	9Qa °kDy%x:Ï\¼‰ÅÁÓ‰èBA2\]G‰Õ
+…‚,F£c= ¨v¨KPqÈô ÔÁÏ"œÆ8ÍÚv9
+¼¡‘°ËñƒÜI)—‚oçÀ“Xg{h,Ör¦;ÁY“7—š¥Ò(¶ª4z¡4.U3hKH•¦ï¨ª&©	Ï£ÜDDk‡.éMüÃÿ3,â&~å ÞÞ©ÿ™\éÆÌÜ5Ö†Ã0NÉ®ýðü’V¯
+endstream
+endobj
+125 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+123 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 125 0 R
+>>
+endobj
+128 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 717
+>>
+stream
+xÚ¥VMoÛ0½ïWø¨$µKRßzšÛqËNËns‹CS´Ã`ÿûQ¶dçC6š&Y”Hñ=>J) (‹nøT|Ü\ßûÂWÞ›‡Âbe±(UV›»¢,¿.JÔV‹­Ð°]ð4ðÄ6‹R“íV4ƒyuhße?h6´ýçÞâ*#9DãÏÍ—Š±òcFYcIÖ‘›ö¹¾éc¬›ç—úõõ÷î©Ÿ~ú[?Ö/9÷u<Ò"ÉÊc\ü±wýˆÙLÚææöu÷ç_½»_µDÕ^%Ïy>Ô.J…Þ½(Šç–í´ïdF§na¦Z”£!ëWIgé#Ÿ<Œ¤&£¾ç7ÝI«8ý)(¿¯‘ïO,í”T®ªªÊYš˜½M0½JjN¡ßws›:Å.›eÛ,—rÕ6¥^2©Ë»­h› §UXPlm›‹¥•jB‡`÷täŠEG¬A6$ÈDªdHrv¨™râhmùhåN’ŠÚ’FMlH‚µò1TŠÁi8x“D»¦YMq…Zw}GÀ}H\c+{nb#–dÂˆÛÀ Ì1`Hãô<[AÆ`÷IRòäëö„%%¤7f80çr`ˆ9@/'‹ž8@7™ @ˆ6ÐÀ§+H’=$!= œ°ðž:sÐQ¿h;Œ*€îêf›˜˜¯ã ]Cú
+É ×†7×‰Lß”œ”ËºÕÑ(MTóuB"¯”µn¯1s¢ãæ6j€waë„Ë¢ÛÕÁ±Î†ž™ &fo½¡l¿ØŒMš «æ"áðe5>Ðé)]™„ó¤Gö¤wHy¥k4p‚üAeèTl•#¨ÔUîl¤æ©Š)3À †éÇ÷_ŸRI›Ñ=b.§êxYiR?×¨+‘»¯ïõð7µ©œå7ÝWÎuÞñùZo>ü±'uF
+endstream
+endobj
+129 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+127 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 129 0 R
+>>
+endobj
+132 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 601
+>>
+stream
+xÚ­V½’Ó0îy
+•2‡|Ú•v%µ3”L:L¯{{ôgÇÑYJŽÆã•c}»²Ð³ÖâÈ—oâóéù%ˆ0§ßÂÁì@(ÆÙ‘8}ù)•ú1)rŽä"#éô;O
+4iù‘$¸RnëKËôºÈó2M¿Nß…
+`»w[Ÿ{ê,‚´ÒLÊùˆÀwžªðTÙÓ5Î
+¦.Xªçwãád­¥Í[Z‰“ò6Þ»1.ôzý5òða•,G¶ÿ ôJ8¶AÒ¤Ø'ê•ïðÀæº!Öšº¡ŽÏ|/\ÔAôÙ›`õ´¬C¶¸Maú?fÂ¹H.Þ“º.þ×ÏÙk…;Ö“‡›I—@f¸¦oéLÛ*»¾=èr¼òùšáÆ;Ý=@(5i"RŒÀ±ð5§-úF×\¼vâÜÙÞ@|ÍÇžlñ¿òÓˆÕkÙdÀþ˜ò@’Üº1‘IŸ·ÊC±¸ª±=A®Û#Ëi¨ê7¶) GÛ4ê­¯½úÆ@ûû‚1TÁ¤i“e±—FÅjÏFF¤+v,i`_$iï÷Ûb=ßÉ—0µ®mk‡CÑ[dmë7Ìææ:‘¸9©VRi¶ÞšTC>ù_Ý_G½©á×Ñ¨dÔé:îû>mGQ9Zþæ‡È}¥Ã"U¼…Ýpƒ: Ž-é^\àƒæ»<7à£Ò ³vµÃ±
+;0k‰ôcºFHùx-i SãU`Èóÿù…¶T ž½
+Ãì}~Oo_OþØNÿ
+endstream
+endobj
+133 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+131 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 133 0 R
+>>
+endobj
+136 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 598
+>>
+stream
+xÚµVÉnÛ0¼÷+ˆœ(Å¤¹è‘b€^Š8E{lÕS•CÈA€Àâ¢°ÿ¾O¤(ku¥lŠRœ™7$L‚Üß|&ŸŠå#Ž;CŠ5±’[I˜QÜ)®RÆ¾%L´¤,a €ÊLÄÏ>aR€ˆˆ1&· öer()þ"
+¸ò2 %Õ.«ñãºQ8Ô®¹-¾A˜”Üu((£êMƒR
+D5>(pŽJ93¯¯ÃXgútØ‘Ž¬;Q´‚×4’¸ƒ YÂr§2*…ÀÍfrlÝiÎF¦Gól€f]
+DÐ0’›Á[í÷ÊjûµDiùi%‘ÅX‰„®ñÍ v÷ž¢gÎNÀÑx›0‹U¯}·h*5geåèþÈ=-F¡ïhB½²³\í_÷Ž¹‡wúRœ5`ÔDìALå^¼K8j÷5RÌš´û°Ü[ý#öÇ´Ã"F©ïÞD~ÙtA6ˆÙ+Ï÷q¼AzI>]ÏmyjC¯tn‚Í1ÓÅá©º
+{­öOÏÕn÷°Ý„þ—Íïê¾zžZ¾jÊÞ–@iîd~o@Úí:Ú4Íd{Wi„üœ«Ñé}šª4¨OS}¹ož±w]6®,ðËfîëóØp¤•7ö3º˜‹$øln³Tz¥ê%¦aBZuõÄîQ™®ðÿ+œînP·ìdÝZv»íãŸª¤¡|‹Ãb6û/¨E´7k¼Xÿzx¬î.f½Px5t¼ø±AÊvÙ‚s>}~V­Úy'à	–Ã«t”áNW1ÄGiŽxˆõòÚWÏ-²t<ÏýÆ*ÜÙ«âÃ_÷M 
+endstream
+endobj
+137 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+135 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 137 0 R
+>>
+endobj
+140 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 564
+>>
+stream
+xÚ­VÉnÛ0½÷+ˆœdÙdÈÑ@.Eœ¢=¶ê©Ê¡@ä @`qQP_nZj‹rÄJ3¤4ó–‘%”¢Gä—/èsu}§‘&Z¢j‹#Š!,(ªÛ_Æß÷Õ7DfŒè3A,J3X``v-â
+ÃZHÅ³Uâ0Jdu&D½°7TP{fˆ¬­3Ó‡—!6•Â!6Ò†Ë˜u—]²=±³]Ê¡PP%ð¬j_šu8½1/¯Íáð´ß…û¯»?Ícó:õÌMØ!D—„‚è˜ûs2¬ûm¬èdu‡ýóß¦ÎöMlÕ®\O“_@`Çì½Úþ~zn®@Öc,~î,ulEù¿®c$ä	v…z{Ö7ñŒæ&Ï!|çy‹þ0Øå¶Žòqà-…ÝÞåùÒ\€[Â¥SÛàÎ,TÎÌâºŠyžYÇ„¹ÑÍ“F˜òAô˜õÖ}~„Ôœ
+Ê·© 5ë›±)àÔïâQ(5ðÈ-ø”àùœ>ÄU
+âã14òö”'sF!åðÙ_Êò ýpNp”Où;Añy»—sDëKìÞØ’–7Ñîflu3ØÜ|ŒÅ;tjöâR»FhT^<+» R‘] ˜U¡ ÔOw/ WD7” 'SÂå£˜Ü;Žò3ú]¦Ú¶¯§®?Òl =]þ¹Ô·Û5e?ùÁ<~‡ÿÎ^ß‰þ’”ÊªA“²ô/€ðAØTŸþÆLö8
+endstream
+endobj
+141 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+139 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 141 0 R
+>>
+endobj
+144 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 724
+>>
+stream
+xÚ­—AsÛ …ïýq[ÉìôØiÒißêÝL/i&éAþ÷’,„ä´>Å$ñ½·¼˜h…`,þùÌ>ö÷Ž¹Ö;üdZ¬!lf‡OßyÓ|Û5ÚÍ¼ñ¿PsÒBˆn×€Ð"iŒCáçqw>òî¸ó´¿í]åo›Œ’ËR.)[<éÇá+¬hÝdWÊ`xÐòdØœà6®R\í$¿D|²àä'ü–9¦	WyÌ%9ô9JØD'š(–FQˆæ¤Î¸c›î
+¼ñÇœ×\Å‹¦tZZïõŒ”š O&Ž\ÎMWl©†´ê®;7ÀbPÅs}PZ®\!¬I ÊÐ|¹"M]/Ç/½–œxUâæK2¥ùò*p¹à=Æ95n,œïM¾¨›tø?ßM:Ì^pã5%p<Ò‡‘_·¢ø˜vsÀZ5wÓVEèÓìâ~‡E\„«¦×¨ço#UQ!R½­™ŽÀû5qÏyÏU–oŽ5UË'²1]›pŒ|~¦£iò€Né<àÍ#_yaEœ9¹kE­í×$U/"¸ÃV,Íç*^ŸŠA‰I¿šÂµA^
+5-aéýqÉ
+J°&¬Éá3u™±ªóÕYkZËðçx™^ƒìQ	}z…´PML©õÖœH¥+C)loU‰ðVæšÏVF>›ÒgŽg6ðŒ.2Sê¥îj4!ž+T75Òú³MÐiÉêŠ]è’ 5naù€-ú³µ7±1T£*Ú¨R’ÎédE·DW:Xà:´[´P´#Ô€·ªÙ‰#dì)2YêÒõ¦•j©ém I,‹z±Qæ¾¨çïÀ"™»•¯¾_+ußª**šPä‡óÓéCÿ–»îéùôòòë÷cýåñÏéáô¼tû]úXŠ‘¶¿×Ãg—ï_­5Ìÿ×ZcŸw‡7Ú0ç‚
+endstream
+endobj
+145 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+143 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 145 0 R
+>>
+endobj
+148 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 491
+>>
+stream
+xÚ½–QOƒ0ÇßýO…ÑÚ^i&¾§ÑGÅ'ñA7fLÌfœ1ìÛ[8@6‘]| ××Ò»ûýÛÁ… O¤4ä49:IÌcC’±’[I˜n5IÎî(c7Ó ©h3´„wŸ\A˜”<®£¯ÓLÂ˜ã´)}ðs•Ò<õ|_&ÎäþYJÑ¸g”ÒGçóUVÆà°ó3œÌDnà1BP·µPÆ1œµÎ¯*?´'›¯ÉRÛ"#ÜF˜ZÙ`Z9šj—ør„¾I‘z«ºeL1¬Bw]dpØBš¬^³c\bœ¿¾eËåóbŽ¿/çïÙSöÖ5}Ü´»z	ŠÇrƒ¹ËÅËG–RD"XûhfÝÙTëpöðü’Mh Xpínãvîê6ÓÎy÷¾ÆM¶­RlT¨"ÜT´‰w#V˜uY|Ù‘³M
+µPkBIWÉ ÒÆ—¿¿ÐÒtÌ¶Ë oÞÿo6Ú=íVÃÁÿ~ÇA¤zÁ×û_õT"ì­„Y_¯ƒ_Á\s^P˜£¿HK’ÿù±ÊUÏ% / %ÃòB(/Šþpüaþ.x×Áþ¥ò!šÞÇ±_f}t®›RYâ©2¢rqrð	0õì
+endstream
+endobj
+149 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+147 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 149 0 R
+>>
+endobj
+152 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 519
+>>
+stream
+xÚµV]oÛ }ß¯@}Âq €˜J{™šNÛãê==$ªSUª’ª™&çßïòaÇM§n²§÷0÷À9	b”1ôˆ|øŠ¾”×wj*—Hsª9"JP-QyûrŸ)$V2Äõ2D.Xò»üŽ"œSÓ lÖÏ+‹×U&ät;­mÒ‹‘$\j‰-ö"œI†¯–ó§çêáª»@í-ŒÁåö¥º	§ý¹zZ¯l»lJ)í?×¬í6EFÍê}Lx
+"öæsˆ[‹‰…næ“0I—šdn Æ·6{i}Þdüš~">À±:v_$S€È€\ÎÎ!*hH$$0Ï|=wsÒ&"Ì•¹dmœù†C³]¶â•§!—ÅÚ"„úHë0ÝÄÂ&žG¸M¶²Åu 5=Á¨Ô‘ÙÈ(,Ê»z\d6Ûî¦ùI"»}Íc_ÿ—Z7N÷ GN©à¸£ÓYýòZm6 Ö0ÿ¶úS=V¯CJU]¥ò=©êñ¦¥Î1-u((=hZò’¦¥L«aZú­iÁµ¶V“§Â¹”ØyOÚŒÓúÀºŒ£³]ªÈßz`@HAgÞTÜq–',®hoÄ=r1TëyëõžKtk}{RrêI]B.ÅÀ1ãÕ¢ÕrÖÏ¹¼Z®ïdûÿ†KEÍZ~3aüfå§fY
+endstream
+endobj
+153 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+151 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 153 0 R
+>>
+endobj
+156 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 492
+>>
+stream
+xÚ½UÏOƒ0¾ûW4žºŽvm–.ñb†FŠ'ë#è’-›1Ûo·ƒ	ìGÔyí{×öû¾×J(ï`knÁu4¸Q@%@”Éˆd N¤¢Ñ3Ä8ìaŸûP¨ÞKt(ÀÜ%*=Ú˜¤ÖÎRk§E2cD•fo‰Ë›3¼²6F+„8Zk¸Ò=„24ÒÐNóanÂ5OßëW¢É¹ËÄ"0‹s³ £f=ì
+éC§%™ù&¨Í9ÍÂ˜QŸšIl÷¿²&ß•bëãÆ³¶Ã<ºök?:Fe\ÜƒÑzžm‰p5_$Ëåx–Ùù]ö™¼'‹&Â’¨vÙq$.g“¯DCË¥³v~ƒŒ_VBx™ÆãIòvÙŠWªŠÅSf`Ðåo!¤y_ayÚv$x'¢&gU—s¡ãéFÖÒ[}×üš‹ÝãÉü£!!ùŒÑÉúhJÙ,—ùÔÈ~ƒ›“Ëçï¦…·Ê¾Iý¹À·gË³:úàµZ¡£Ü”¶ÎÐ9ûzázqOïõ³sÄ9ü¹ÿ×9n	¶…wüKàÒzëh˜fûes˜Ë`¯1jñóZCT ó˜ô^ù^Eû©.¥YQðþœu¨½½Â=ƒ¿|Ü™/H oŠÁ¶œkÙ	£‹ohé;
+endstream
+endobj
+157 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+155 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 157 0 R
+>>
+endobj
+160 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 264
+>>
+stream
+xÚQËnƒ0¼÷+öRìØ€qé!‡¤¤R·¦XB¶äºþ¾ˆ5iUEmO³»3ž±½À(cÐÁw°­Öû
+ZäPµ 9•HžP) º}Œ)c"É,~ªîIRZî8h[Dž°EÌ9-§‡;¼©cd•¦l5®>ŽñEÝ÷a~iø¥$\Hm6\:g–òêäUƒÝ»ö½6XúÙÕnÄæ4]ææ7ëƒu‹–„#µ1ÖcÝ×¦Ö¾¯ÃT¯:7QØŽÊÿùÌŸ±;k¼6¯ÚtÁÜ":U7K\Èmõ (¥ÿþ´ò¼´‰\ïÅyù\äôZÉÒœ&Ù¬NùìPVWŸe~Št
+endstream
+endobj
+161 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+159 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 161 0 R
+>>
+endobj
+164 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 672
+>>
+stream
+xÚµUÛNã0}ß¯ˆxÁ¹ØøÛ1/+ÊŠ}d»O5ZªmJ+±)ÐZi?'ãfÓ4”Vb+U¾œñŒçÌ™8 „Òà>¨†oÁ×þÙ•1*è­ˆ2Vœhô/è:ÄB4†\£—g(‡bãt”aö:.ÊYŠùñuº˜xd2‡·ýïgW¦Ž‰Ñ,ÀL#ª˜³Q.±ä_ÀxiÑÚ¢•÷~ÏŠ—üyaÑ`¾ücÑxP,o+4£(*–Éi±<½`„<Úð6¹‹ïlˆ•±FS"3‘Y¶üÝïõ÷TûƒLô¿L5$ó¹ðÊól²ÚFL´Â¢öyU^°)`²ë\Ü>§Ëjf¹Jwfœ0ùªÊ
+ã›Š	Ú$ãÀµV0ÎÆ02N»¬oª:‰í:YÄ£UY$Ïxƒ>‹D¹ŽÄý&.­²úò´Ã„X	JÑªöÒð*½×ÍÇ0ëvÔØÜËƒÉ¤.“Ñò=_X0I1W.íÇŒÝÏÍ9£*yjPâSà›–qªÝ‚ï¿	_ÁÈÏÚ¿~íf>e§>w#ïzËæØ#6\ojµƒíž:6Rá­½Ãk¹ÎxŠúëÇü\ôVÏù|>°¾.ù}þÜå³W«×ƒ\ÓR¶>LÙóÙÃKnáC$’uò™ŠR5K'ãáô!¼s€knL“‹Ÿ…£ÁÖÇBH÷½zu¶&X‹Šìˆ&OÛM>*¿–Pß¸ü³v3ÇìCÆ>ØÄRkß#¾Oª–K>àW×üÚ¦d«~«Û0ëjˆvL…?C¼Ùñš½S]âM¯<P¼Ùÿ¯j1aÞg"£GhWnk·©Üò½Ø.‹•Ûï0“ª|‰1w/}Vðåîõ¿¼Ç¿9m
+endstream
+endobj
+165 0 obj
+<<
+/F5 22 0 R
+/F9 47 0 R
+/F7 39 0 R
+/F8 43 0 R
+>>
+endobj
+163 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 165 0 R
+>>
+endobj
+168 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 573
+>>
+stream
+xÚ­VKoÜ ¾÷Wp´»‹˜á)—ª›ª=¶¾Õ½ÕYEŠâ([U¶”_x×c;Q÷ÂxðÌ÷ #R‚ŽÈ_Ð§êêV#]hª;$i!)Â‚Põùg†ñ÷üWõ„)-ôÊ$$Ûáñ·Ë1—Æ™ÝRÖKŽ%$c9.©‰÷f’ófÝLÏçRÕ™Ôunbëú¥¯³îc·uCïÿÀð×¯›´.Î˜¼R¬tÎ¤b<«ú§æÚeº§çætºo]üõñOslžçÒî	EÆEVÚ¯ýðk¾üöÎ×ÆÈlu}w}sjþ6uÖþnÊöý~èt;‡‹0+’ÚË"G.L›˜khaMŸwf‹G3‚4o¼ˆ"¡iËâ'×Ò:Ç¤w#ù~žwá«s¿E>«"jbRˆ“y<fRWL@)q „ªw-2ÿ32±àÇ¤½,Q«Û€â]Øÿ¡0E@&¬ãœý1Q¼,£Ãcá±5aX´Úc½pLÃ‘ö”»ELïTÁ P>®×é !ÍVöR9ÙÃ;Y~3§êGÄºXõABò@Y±T[plPZÈù0ZÉ$ìP&Ùnƒ¼íð™NbøÞƒ‰âFÄüÍ®yo¥ž×ø¦{¡ñ¤ý¶mª&Â+F•rþ\ÂîX…™k&:VÏ-ùÏnU¿ºwâ#ñ¿ÜDs\_´G–…í–]DœÕ¡e¯náüµHAJšÏ](e“JçÈCõáAÑ
+endstream
+endobj
+169 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+167 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 169 0 R
+>>
+endobj
+172 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 657
+>>
+stream
+xÚ¥V=“Ú0íó+\Úød¤Õ÷Í¤É—IÊÄ©âtñÝ¤\3üøÈ’f‘l˜Ð­Vk½·oWÊhEiöšùásö©^>ÛÌVVeõK¦Y¥YFTZfõÓÏœoÑFË\D ¥9/ˆas((Ýœ3Iócg—Y™0
+Ý¶_õ×Œf„±ÊŽbråb6¹Ø‡m‡&ß7EAu¡Ê`krþtN~¡Ÿƒsm äçšæˆŒ¬›ºó'?2;}#Àƒ/‹. õŒé@…w~n>KÉZ– °gð£°êÖ;-ß4Â¥´$þWfì0÷¦‰mï`©gæ–g`š‹Ì'òƒA¸Å@cŠÝœÁ1kœ9Lå6à÷<g e†ŽºT=ˆÛx2ÈAÄõdv.„Ôù :§úðÖ>Çë?›u“¯öoÛv·sÿƒùËú½}m·UUÅkfÕ#<¥xeY¿ø½_„0n^zp@£ÇÚün9—­;Bð{üÆÝßí{“ö‹Ö‹§nòà°“°2,Ä±Þn$L£XcIpj}wÔ û„ì¾WðÔw€Žå¡pÖî&Þ›Ü*äy6”Ù3-1:Ñó0à› q@€8$åçÙ
+ç»HžXJ:WÅÁé8]{¬ü&ZC9IB§æó¾cH¤‘ÁÎSÈ­gòJ(±¢ã4¥Š¤Ž*Ì~FwAŽ{õ®E`$¦æN£9ÖÍü5çÝæî3ûÎ«Ç?‘¦©=UCçPçW…Wœæ÷©C	D¥™ÑsÕ(ðÃÔÿk¾|6¥+³ª±f4  6~bt&VáËgyz$3©*£Ýýe+cü9xHÂªþð;§s·
+endstream
+endobj
+173 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+171 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 173 0 R
+>>
+endobj
+176 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 491
+>>
+stream
+xÚÍVÁNÃ0½ó9¶Œt‰“8ÉÁ8¢Þ(Wø…MÚÇcÒ´ÛÜ¥-$vX´Øqü^ží	Õ(%>DZžÄ}»ÝE›ˆ¢}^7^‰Ðx'Ú‡×JÊ—ZzãTu[¿µÏB	©uÏŒÑ’q#Óg3çs¬¥WAÁ'D2vÝq_K­È]öîºàŽŒ÷áÉ¨µ"««¥Ñ6V†"yï*¬¥¥Ò>Òïaß®ðŒÝÚ!³M¿‘¥j`ßÕ‡®¢ïsOK14Ž+‹GŒÇ×bv×0£·#6¨%àÀÝeVaõ<7­xþ`'@y,âñú«‘±,³¤Á»9b}ø¯¶~NI üTI6Ÿ:±ÊÙ.ÔAL,Ÿ¤$¹”2‰)ý†Ý×Í”`Q_€ª¬Ÿ„lÝ‹Ï6ü‡eRd˜‹Ìæç‡,›æ•Û¡€t¡ÑL›«O*º’Z&R;¶áÁ²KøIJBÀ\/6×Ìu9ªò5×sd˜K¸ÜF²¨¸®¹‘®@+UÌ>ñ@Âº`~A]Ófã–ÆÖ0®øØ2?¶&¾Úòp6\Zøí©ÕC^ÉÀ4–&.ÒÕ"YRÈ\ç²ÿm$
+.ñ§9”Ös;öó(M¼nwnüŸ§6Á	±	!]bú™õØÞ|/€#l
+endstream
+endobj
+177 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+175 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 177 0 R
+>>
+endobj
+180 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 582
+>>
+stream
+xÚ­V=oä íó+(í¬pø =Ýå¤k"EîÎi“&RÚ”ŸYÆƒWÑîÈóæ½a l`Œ¼?ü%¿Æ‡GGÜà€Œ¯ÄðÁpBAF“ñ÷ÿŽÒçžjct7u Î=åL³ŽâœÐ6Îœæ#²%vê?§î<õÛuS´;ð”‹îrœå§p±x}ÿF(çƒ[¬®:UŒÆ"è©äèQ]F<]Tè2*å"Ä$![¡bôÇß¯x~z÷7_&¥Öƒ6h»Lž¨ÿÍi0å'r-„êd %Ã)8‚Åñk»–.€1ÌÄ"LZ@ŠÉ9`9¥/2ËüO_9åµ ¸ö>ö“ÆµÁ TH­Hø$ Þ4ßèCP%Á…ú«Ò.ÄRÀ?Ò†sð}5P†ÖÀøBzmÒ*˜ËyJ‘‚–„Nå4Te¦Búã7Ò"ÀÓÒ¢xJÚIr;Ê­à¨\ÉË¹UaF&š‰8ß‚/æt¹Í¥ Ò¸)‘È‰ªyÃpØ^znŽ®ûWòµŸÛ+Ò š°*‚à­îq}iRÅkÜ9×”¨‡øþñ6í—é%ÖÍg¼Wkd=c¾±XÿØm,³©€a-†¿j,±â¯j,
+póªàËW¨UüagY—¨¯âJŒFb%Æ«LxWlé ‡% \«BåpÃ
+j‰®*aF^h~Ñ±>¥Q·ç¦dÑ–-£<iR¯ÑHˆÀ’Ö‹q×Ã£^ž·\Ã`ña$Ü`­÷"Á{þ3Þ}Æ?]Ã
+endstream
+endobj
+181 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+179 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 181 0 R
+>>
+endobj
+184 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 473
+>>
+stream
+xÚÍV=OÃ0Ýù*§öÅŸ+‚"1¢l„•.H¬EêçâÆib×¶ŠŠD‡V±¯ö»{÷Þ…ð–s²'þç™<ôÛ#®ušôÄˆÖÂ4´F‘þñ2öÚ0!µst ¬a
+`¸È§›ÓŠ–‡¡ù(~¯7†eðôwiÏÁïýá„	Ñºå}–Èì‹»ªaÀC»\Ô3"\#“#,±‚¸Qô~¹«—·#é†ùO°:ž®ƒbÎÃpŒª%rñBùd2»
+@R‰5Òf¼s<ŠcÍ2Y€æ|ÁÉR-t­`e`°z"ON¿`–Ì	 G%/7`ný·ŽÛ)Å]Æ;¡8×Óò¤œÑT`:·cÒ¬S;–:ÒÇaGÇ¬ XlÉ•²™B9YbßvÈ~‡'¼_Î¬Ÿž¡&ieF‰\°”‚ÿ\ïY#%%OÙá¢Y­ñÿÕO¼lc?Ág	œ'ëPñ™¬ŒSf²­–Û›Õì¢u±‡œtVà¬LX*ì¿™3>ãÏ¯ý4Ç(êÔ‚ÉjÙ‚ªõ<|‚ºƒú¯FW©<7÷ÑoÐq2Áºªo%¥äâÎ³e™‘‘¶˜7ŸíNÍïuBéÖÂÀµÖz8ñŸú»„#$
+endstream
+endobj
+185 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+183 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 185 0 R
+>>
+endobj
+188 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 535
+>>
+stream
+xÚ­V=Ü íó+(ñ­ðñ5´Qr‘RFîBÚ\sRÚt?>cÖöcŒ÷”ÝÂ^à=æÍ›e²—’½²ôøÆ>Ï/…> ~3§z§˜@Ý;`Ã—Ÿ\ˆÁê~ß™dB©>¬&•–4{és9zïhàº¤ $ñýJï’^Åo¹ªÄK1Ù‰¸ÚÌ*g¹í„A79ž,9vÂj™žÙ¸­A"é†¸Ò~ÆvÉGlXb0v#¿Æ.ŒëÕÕý´]VŸ%[Ò39"o]ºoaÔ|zÒ¸Æ£<<NÚïsV¸!¬íf+Úh?ÎŸÕÜÙiB•oºÒ·?¯qÔ^Fc¾üç-¤š!gê²@ŽæÆÁ¬nÄ4UÐ Me`ètGtÌ”Vz¢×íªÒ˜²9ÚMÖŒ¾Ö´z(2:/¡ï¦T¡Zª·Ò®¦	²“<õß,ãiü˜àä¸•Ø}àX¬qÅ¶F·:ñ¬S¦ê\2Þ(Â|Ê1gé¶™qyÄRÖ>êÌJ{0ù%,Z¬¡G*¸=Ë£l44Wúõ×†+*ƒ¤ ª¾Ð˜tÔÂ\èÅŽxÄˆä6O‡©Õ'Oe=‘ýoÅ‡z§QBE^lõÞ°‚…­{k˜Ãh~«Þ5›DÂi¦P¶ª"½…a|0nÝ¬ü1÷ò²¸ÎmOmýcxÀ“(èù–¿ƒ
+°÷Ôtè½O‹ŒO}>ý¿k/
+endstream
+endobj
+189 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+187 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 189 0 R
+>>
+endobj
+192 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 531
+>>
+stream
+xÚÅV»n¥0ì÷+\š\™øq|l·QRÊˆ.¤Ý4+m{#åãsð5°14¡±ðsf<s€ÉVJöÎbóÄîºÛÇÀBu™S­SL neÝý+â¥
+”þÙ«-×Í[÷Ì$Jµa>IY+ù¿ÿï=ïûÏ3uHzÃ"àjþjù¹o*» Y§Ú€!pC{8g¹‹{Inaµc¿­­Ö(%ï9BaDc4áùè#ªÌÓe g(íÏË!ZSt\7™¹@ÛÜ\â2pBâBœÐÈÛQN¾+I™!H­A¶‡![k+ôÔäˆ5K|Kˆ{€C 7U±$žD|N›“y}ÍæëÜ·]md„$£n8ÝšÃÔ?O®¯ìFpääÜdŒIÕÂý¾æýRÿ€…©Š;Û» }%|2¤vdl~ÈØ@NYû<Úï„ww´ö€[Ñ!XàßÆ]D|†W)Ìu.)ÜQÞùhÄÜ¤däáÀleC+)«¼¢T”…«F”5pf³Îè¡`¤òSiŒïdÚÖíqÉjaE­¬e`2Sõ[1Æ(»!øN‘Â_+Rö[‡dñ±HÁÔ.Š×x'P#™¬_È[Üßù2×êÛìbÖw ûú±Û‰®BÎeÝƒªP?þˆ+"½Õ¿4{ü/mŠëí£½þ<*‹­wLèÐz'›7xèþ|E87_
+endstream
+endobj
+193 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+191 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 193 0 R
+>>
+endobj
+196 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 589
+>>
+stream
+xÚ½V»ŽÛ0ìó,¥”ùm\€”º(m®9 ­ÜÇgÅ£ÌçRŽˆZ.¥Ý™¡›#ÏÄ_¾’OËõÉ79M–_ÄðÉpBµ˜ÌL–Ï?J¿”kaÔ G:3z¤J06Ì#•|f·¸.ß#”óÉ¥»…†ìu 'ÔÀ…Ý È`çeÀÕ¶ŽÖþó…µô-`YÜÀg¿YõàJ0"ÜÇøãàò ×ZXÈ‘Å@È[Z…ŽU8%DKd°z¡þwé&½†÷t¹®¯Y¡€Éwªì{R3—¶*è¯~ë7¼™íä:®Y%”Ár¢Ýåbƒ1š[’™Tê„m5è¹}€ðÊˆH6®º7‡ mÌ(·*]ad3ö¿Í÷ñå÷óZªÏoñaÙ††>Š·ÑÖ‚Í!¼Í§ˆ¾¥Èô'Ñš—²Ûûè´#0‰Wí´DZ²sÍPÄQ.8$U™ÂS{DüÞ6}áðš²pøoî5á ¨B³HõÂiQ(¼˜W&€ÂJÉØ†a#<ìiÆ»÷‰d|Î=Ši‰ÑqW¾¥*H£²‰;£ò×èÞí§YÕžO%ÛrhÕsèêÕKÛÄ$|#lhDâÜøñ¤;À±"!oË1#Ê£G¾ˆ?¼Ï€Ò³Õ‘Ô,=Æ¡SIÒ”º’¼}N[ôûèÖ íîÎ”_O¢Pòr\H¶?9®íÅ=eLRÁÚL%}šoá”;9)C¨p“µ>U1¿ýËòá/†wi
+endstream
+endobj
+197 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+195 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 197 0 R
+>>
+endobj
+200 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 573
+>>
+stream
+xÚVMÜ ½÷WpL&"À|]«v+õXå¶Ùk÷/ÌJûãB$šiÁ8¶ß{öiœ&òApùC~Î/¯–ØÑ*2ÿ'ššªø¨%™½u”þë)
+l'zªÄ4ùUr‰«2\v_¸ïxÿ>ÿ%¡Œ6½<Iwiq_.Õ}Ýwt½Ã¸¹/ýçÒ¹_âÞ2¬'Kj.…#ñŽû._¹ÏJÐE%H`:è©PÚ§3î‚ßŸ·S$yÇ'.¿`#xš÷n¹¤	WKÀT¼D¤öˆ´qáÞj•°îp Ûgh™9p9sÉñVU‡\NÐ"GBÕ¸mï‘i…Ó‚"§Üv—ºŸ^`’Á!Ÿ€ã‹Bhª„âþ,
+)£Ùä®®¼‡¨Ø×ƒN6T âÍ Ê£,o	Ïc]Àq¥Ø<—ÇìébÔÊŽÉÕHQ«Wî°	¶ô5]• µF,@óð|íMøœg²E½Å7ÍclYù{­%ÑƒÝÇû '>L­ð8Aª½ ûªheuš¾öB$ì­Iƒ¶ÑædæaV'RLòD`kï3ÖÏ¼ 8¬àáÒ¦ÄÃùªH<¯ˆÔ‰š*€-gÎljd	ÎöQWŽ¯ÝÍ=·Y äŠ-ÈËªjÅÄi$eÞÁ3ä•ðÍ·áÎ§-šM[¬Ã•i«.¶$×±¥ îUhA~ÝZxŽL×»ÄRÚ2ˆtÚ”Lä3¶¼¼Êø×–I5M(·£1hkÉ~Ï?¾(?W¢
+endstream
+endobj
+201 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+199 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 201 0 R
+>>
+endobj
+204 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 546
+>>
+stream
+xÚ½V»RÄ íý
+ÊÄ²@xZ:®Ž–šÎXî:6ê¨Å:ãÇKy] ÙUGQ¸ÜÇ9œ{ƒHAzDn¹BçÕúÒ S‰ªR´PaÉ
+%PuqŸa|›cm˜ÈDŽK*HVæÕ"SZ˜‘‘PJdu†í_ÖºdûSbíWí×Ý†· r_çŸuf'<ºp§©p¬ñÝÏjÎæ«ÇÆ6r°áÊÖõÌ.á’I{¸šƒ@ÚÄ¥]¹/€¹¼ÁÏÅŸ7+óy¦puFu&9Ìi ±bÀD÷ Oìz’Œ¨i]pÓG!0
+e´…ÉD4D³¥—°®ŸS)_ÈÑÙ®‡†Orkéãž¾é¾£ÏÌýšªEj‡|„È š%ÚüKÒ
+z˜'J0 vŠ—JJIQ•ËRt61),E2žVã–Õ¼;ÞKnº?pmqA¯Hòfà+´7Ee@Ð"\N±åa]ÿ²¡ÐS%iávM5–>M€;ÛYÝŠtTØig;étBôª¢:$ÚoŠ\l’³Tû£y4ÍhK”ÿ1mÅN[8J Ä»)Û½NâÇN×`4Îh99M9ôj?‚Žž"YñqC“}#þ6–¤ÒVfÕçëö¬½²Ù¿¾mßßŸ^žÛÿ¯Ÿ?¶Û·X&¯¡þ%°²0þìÎŸ•íú²ëDCãõ¥è¿G©…Vö²)´v·yëpS|ÝÙK@
+endstream
+endobj
+205 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+203 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 205 0 R
+>>
+endobj
+208 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 649
+>>
+stream
+xÚ½VÉnÛ0½÷+t”,Sá¾È¥ˆS´ÇV·°‡ UŒAœÚA!ùøR¤Ò%¥[€€&93â¼yóÈ&»Ä’÷åÕ­JT¡xR>$%€ãB°¤¼¹Kø¼ÿVÂ3À0K7×nÔéñÇáE§'Ö:[­pŽt–ß¯šÉM·¼6ÿ¹³«·—}-?%0ªÿÒ‚¥9èþòH¢T·’Oy½f #Sœ.1M× Ü­7¹aß—¾ˆ‰&q‰Íé‚š‰Ö¯m>n%w!P8½wƒ1;uðY—ægkbÕKb¼=€E“cyz®6.Ä¶~>TÇã÷ý“›|z©vÕaÌ}ë,$é61)j7¿´›Ôû‡öÜŽžäTo®ûÇŸ•N£Ö§õß BWÆò‡XƒcOE©
+¨	lÝzR4Ü¡íèsh‚h:Î›Ö~õfk­­ƒ¿b8×úf£”£&ÄøA¨°$‹¤H‘Éi¦g”6Ó#ÔƒÃ´ŽíÌˆùDï´p„8œ¥¸Q»\ú=@þr4œÇP"ÈØ¬"›‚ô™ÀÉšÍñÂ¢õ¸ßÍJ£¶}šÀïÍœÎ*dŒõBFò¿¾C¬>'} VTN¦» «ØÍˆ4!HÛx¸B(6£YçÂ?(Ì]vwFÜ$Ú´Ôâöß€Èr»kvb?£ú¤qÛ?tLØ¨Œ–9’ž…_lêÝª½{Ãïø9½ãxÅ'5ÁX¢	Öl‘&Då ÂÙ‹Æ÷¹Š9_’y™—´-eðr/¤K™ï3›¢»¥ÿ¡î³iÝ7l }­G%„-—ñ«[Ö?˜ã…æa¤
+)­1u¥mùîH©f
+endstream
+endobj
+209 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+207 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 209 0 R
+>>
+endobj
+212 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 720
+>>
+stream
+xÚµWMoÛ0½ïWøèÄ“«Š’
+ì2´¶ã–æ
+,-vi»¶‡è-ù+²”ÁÖcR’ùÞ#)·à5çÅ}áÍ§âãæâÆ®vXlî
+#j#
+†²6ºØ\ý(ûºú¹ùR(‹µƒ‚{gÅü_å#¬1!j7nbÆ]ÂŠ)$+WLrçJEÏBóÖjIVŽq0Rñ7'wû>;ÛïiJØ…eû¦Ü5«œ¶²à³·Á¦–TÁ˜zÖ¤ƒôaZB¿SF'Q¼iÞ"§ÈÀ‘HÁ*DÅùÀñ	"ðèýdA’…î~Ýq8#®‡µ;„)#ôO2§–Ü¾ƒ÷€´É¾÷\~ˆëH‘‡ã…“Æ#çxÚGI<>§_â]d°@éäiqýóÐSó3ý¶¡+ZKVÂCn)|‘mª7Uiõbµ gÇ’þ¬:J´í” aÊžø=¤·Ð=cí/ª	ºÜe<Ù¸-Òí0tAu|¸IÙ.ÚìŸ¶—aá÷‡ßMy½{zÞ¾¼Ðïàþüðº½ß>¿¯ë:Ý9×BèƒRÕ®‹}ëb:ØÇ»›äIæm•Â-eÖ]~èÁ¿üy~mÊýn½–•hVÕíš€¯¯Z×{úU…ø$¼Ï´Ír':4d'†@i Äq:z+»[Çdª‹ÐOKƒt°ÑäRÜÄc@»N4!ø±NðÉ›.YÝYå»žÏíê’o³žŽ·±àÚäÓƒ¯ÅŽà|ÆŸ)¥GÛ¹z™ÀFz €Ù%¦xìÒþGAà„ 1í£ €<s³
+#3‡ç‚KD€ÔSJÆ‚ßBaì2øoõè¿½òDòq±zäYGÈÔQ9p1"m(ì.§ÉW³?¯‚<z™,ÊÆ\Ú`Ü%gMrøÕ3 ¹:<-áÅþÃkkè.rµµ~5„ºÞ¼û¥O¶
+endstream
+endobj
+213 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+211 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 213 0 R
+>>
+endobj
+216 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 541
+>>
+stream
+xÚ½VÁŽÜ ½÷+8’ŽÈ‚1®U»•z¬rkzØËö¶Ò~|Â&)„L¦SíÆ
+8ŽŸÏFè^kñK$óU|£ˆ}$1<ozo„"è½ÃçR©ï2H1JÛý¾	-”1}Üî‚öNZzê”'_xEc”—ù–åý·#:-?¶BÇ»•~—C§×ü¹­m4ïŽãkJo
+:û›FÐy³ùEk ¥ï‚ÖÒek;E–­o!\¦Q‚ÆP$:Ò_K(-^6àËØý%ÿŸÎz[8¤`ZR¶ÈÙûT8Ä–Ž³W¹ÌbË7R+–§C±3AÚ‡‘­“¹æirÜ1¼Š	'ƒ‰Pƒ°ðòvÉ¡³YŸ"O‘cµošâ>9–Z„:OïEŽ½¢œZ¬œ*}9zrà9Ü­ä€ÕrŒ¥9`þ'9@©})K'rØº‰œ„ d¸”IÃF%3Ü©[Õ)täJ±yX‰Jo÷ñhfshÿé˜O°CB—®|ÇÛƒù–†_oå„£Â®;â÷V½3SŽÂU­®tÏòé7O¹©-`CáEx¿R}ÎÑek3Rçl[k­Ð¦ª×“{ßÜãÂûbf×Rt|C«µ¨ë¾YzÒw%Ý"#iÂ"c¹NÜ0Ë–FzÔ.¶ÀÝr6Žúà…‚Ø‡²Â9Ó/Ã‡?‘¾^`
+endstream
+endobj
+217 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+215 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 217 0 R
+>>
+endobj
+220 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 586
+>>
+stream
+xÚ½–ÍrÜ Çï}
+Žvwp@!®4é±³·º‡\ÒWØÎäá+³xãÅ`o>&{aÍ‡ôÓPf0FýU©ù¡¾ï¢ŠC$u|RÁÁ*M0¯Ž÷¿;­õš#øîÐÿ9þTFik‡¸´ÎvÔkc:Ì-ôÚ‡àå»¾*F;À“Ø0ÞÈÚË>ä]ua.P1Ë:ûcwûÆÛN{Ù¸É–é|n]¯‰e•[®¢•Óúì ƒÇóßÙ¹<âùñìz1bq}M ¹ÿ]q•0‰Ëãƒmì*Í\ðã\süj—IµH1N(0È,Ÿ[—½’Pœõf¯ŽæÄ3Ö³ëszW@$äú
++és®Ò2	QR÷`Öïq%hd28™óµe
+':ý[sž+›”ÑŒãsY(éIOÍàÁH|z+%àsÕN*tÒr+L¾R¡A.Ð¡‰Tb­^uáT+{R»ÁyNÆâT§Ib˜ëW$4Éº±:1y_Ôßá%ˆúHyîÈî‡JùOÍ«ã£œ Ù*áÐv\³ìÄH©+Xö‘aSÐ‰d>ŽßŽ¢Í€m„7&¬Ó	Ë£ÿãèÔ¤ƒ7ÑY^¾¹‹q¥&o,pB„O€ãv¤³¾~Òaæ:ô´‡>ä\ƒ›à,/ãÖ!&³±€Àïƒ“n$Îº§¥|×…ü´ðù~vÛ‡õúb®‰â
+¢§†Œ *}éòz¾¤“W®Ó[Ò“ºm™H®â»y][O¥!Ìi2žÏÑïÇ/ÿŽKp¥
+endstream
+endobj
+221 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+219 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 221 0 R
+>>
+endobj
+224 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 581
+>>
+stream
+xÚµ–ÁrÛ †ï}
+ŽR]X–®$é±£[Õƒ/í+83yø’b²EnÇ¾0¬½ÿ~»?jPJüyù&¾ŽÏA„!§§…$œããÏNÊ½tÆªîKÿkü.”Z¡Ø$¶{é¥ËÔ]¦¾~®Œ.F›µÃŽòW«—âêœí\E×¨\JúóœÕ%~•Š‘§ùÑ(å†uGkõÂóÔ¿ìÈ“>|¨ÄE½ Tg—ÕÄâ™¸R#jQ"ç’ 5«åª@«„õ`§ŒÇËÍÉÓQv?y^ìkI‘”o`pÐ@èŽð†$ˆ˜4"Ã`hË:ªb ›’/0äÙY1˜ýäÛÍ‹}Å@Íº'8D!éaõ£8mˆS ýŸ@Å<"Ô!d
+“–ãEÊC!¶ªI%ÿÄ”\¥Õæ•÷˜
+_=WùyíKdâ5ðr8Ú¹4rÎ—ÀçLÙÈüiùH>óºd¼[˜é•7éÞÝÓDe4ä>Ëc—Õ,J\K¦ç¦Ëj^xo}'Yðy¶uâ5äƒÚ
++Y«¸ë—¤¥‹^ÌBi_`y,U¶±¹¹I g‘Fˆ;ÅÍrs²‡8U®™Âœë;f5¸§hÕ{œè¨°Cœp_`yßœÖ¡õœCœ“dœÝ“iTè=§Ê=TØw}'¹xSìÄž§#œ²—ÃÛž]Nå´Ú²ßpã8'ò“y‡éáÙ¾ý=×–ï„„0xŸSÀÙÇžÆOï4~Ï
+endstream
+endobj
+225 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+223 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 225 0 R
+>>
+endobj
+228 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 542
+>>
+stream
+xÚµV±nÜ0ÝûírDŠ¢¤5HS cá­îÐ¥ý…+¯,ËÁE2}N¹áxGÉ”È÷ÈgeFcÔ•ÍWõ8=<GÇÈjú­<Œ”f½SÓÓNëï½æ€®úŸÓ7e”ãÕ" ñ®ó½&Ô¹dÑ˜Îö:Æä½¶œ,KBÒâÜé^»tÓ¯õÇ%Å7Îl~À°¿à9û©}`Û?÷çå{ý;lçlû‹ØÔ‹áÎ‡e‰”bàõ"WÙÚP…B¨´fºÏRáì@oŸáhÛK¯ŒÊ	ÍóËV©7uRI¨pÃBÂ„K
+T,&ë37Îp	 [ãQà	8Ü'DbÖ+þU ƒ+Ù!Æk²³MÖÁ=çL*ÈÉD®Y@ãÞ¸l Ë]·–`È·æS0,7Ý/6	íŠÖÔ—áqpÇ8ì=@¬‹N¡™žÃÇàÛáÜh\è!´K–Ã>in¾;!>ƒ=Nh‡è;5Çš¦q|È™ö«bQ™ax
+†Ô’ûµv^hY£îÂ …ZFÏ¢¯Y³ÎÞ¨ý2QZn·e®öà­ºŸ–ª[:Õè!·2u9P(wR¡òKŠÏ¸dçl¹‡$P™'óž2â°ÄöFÝ(r›W	…Ò‘\:’ŠÅ’ ?NìJykv§·½ÊEˆÔ0¸ÑÝw'u¥¬_Ïîõ%Á+q!¡É/Ó§jøQ˜
+endstream
+endobj
+229 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+227 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 229 0 R
+>>
+endobj
+232 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 615
+>>
+stream
+xÚ­–=oÜ0†÷þ
+vr$ŠúZ‹6º¼Õº4K®W ?¾”,É’k/D)úøò!uf¢‚½²¸|aûÇ'Ï|çë2+;+7ÐYÍúOßÎ_Z®­ÕÍÐ ðæí@7×–K¡Es·Nz({Ð,{¬q“chÿáû½ÿÊãRv~õõhéÐ¥âôžrsñ6†V¢Á´BÊ]W‚“0žr%}S’É$ ÈlÑe&@y$¸›e™L–BOé‡GŠFµÜ*äÊ	ÙÜJœs•mîÊIz_ä4
+|§Bµp9&-äŽ&"f&kJ¢Ì{E!=É¦æÓé0Q2.¤y,F¹óÁ¨’È"à.„‚"¤Œ“D«„â
+•òlÉ¦¬¾Þä\¬Ïá¸ÝðœQ’?©|y~îËþ`T¨;)ÉŒÿÆºðäÊ*5c•«T–‰õ[RRÉH‚¡.ècÆÑP'vÔÊ³ÖÔ¡Yº<™¨¡§³ôÞrw…‘”:ªä¦-eƒ©¦°4q\û±²'y«ÁÌ®¦–ÏõØìxÒñ¦y¨æ+È›ˆÏÐ5‹ç+º¯ªêce‰Ä^nqäsV§±n3\hÄ=Ñ÷‡ù,Õ\ÚŸ¶[Ø>dB™ƒ¹…‰©0¹‚;›³‰Çõ(bkÇ@?®.ÆõÀLh0­µ3¤%–‹`°»ª“R]½•CÝu·ÿ—ºDµ’ZwÓôïð_S³ýõûu(Ob¸7}:Ý 5ª.>þvÐK2èÂoÇã“ž_¤9Hì”£ÕwÎÅ£ècøçþÃ_Yÿq’
+endstream
+endobj
+233 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+231 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 233 0 R
+>>
+endobj
+236 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 537
+>>
+stream
+xÚ½VMoÜ ½÷Wpd³Â1Ÿ×ªI¥+ßêrI.‘ru¤üøŒYŒmX ^U]K‹Ì—ß¼™÷€ðŽsòB|ó“|îqÓdx&FtF¦¡3Š?þPÆ~Ÿ˜0V:ÚŸ˜2FÍm¯/­¶ èöc§¿Ã/Â	¢sÛÅR;GG|Ø	ß¹âô|Y£å4žÞGŠÿûqÚwõçâ3~$Ã¢ôù^#ösiÔô ©ßŠÏ‘Iƒ{Îýß¡º÷HY€°ÆWîÑ¥€Y¤d¿"ë°q‡*½Ac¹+aÖ`$=3ÿ;W'µë£}{ÁÜ^IÇs‚v»‹P~U!ŸŸ¥òV\ÏùœŸÌhŸ§zé*¼€”~
+Ø³œ®~É•t,@µJ*Hìh@7é±|jJ™“iHà<R©
+Òh!½FÚ¾ºd¶ì ÃK*NO­LÔ…!Å„á']FÆë‹Ê%i1µ(UŒQc¶ïò¨%Ý$QOI.‡‚là[ä%i^ÈI¥DÿŠ^rnF§tæÎ#­=ð”Vÿƒhh ^”—K2
+éß­ª`Ktõ(ÝœzB¤lÊ4Ð°;çjê÷ÞÔ_3 ? 8úT™AÈÍLmÀÉZòmoÖƒP®ÿ‡Ý8¿d4ÎÃ¯¬‰u>Ývz”Ë-Çïqÿ¨âÝT(ÝYC¸ÎZ¿Jq¿ÓÃðí»UN»
+endstream
+endobj
+237 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+235 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 237 0 R
+>>
+endobj
+240 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 470
+>>
+stream
+xÚÅV±NÃ0Ýù
+•SûlŸíA‘Q6ÂÀB$Ö"õãq‡¦Nì¦¥‚.iÎç½wïÎ!¼æœlI¸<’»f½qÄÕIóNŒ¨ ¡6š4÷/”±çŠ	àFÓÛêµy"œ0!j7^UÂ(ºbá·*&í+¦ASÈ%ITŽ¶í~çÿsÍéªÏ¹|¡CÒhG«@QU1‰¦{g·ïîp>‰g1úì–
+°•8 Š‘Nl«¯–îÚê8ÞÎå–ž^Lw¢pGKœ¤#0å‚	ÈˆêÜß8!PýøÜ¶;(o‡þ–õ{äsªdCú=Œ§„#{˜ Œú«>a!ªQ¡ÚåÌ ß"ô‰'!÷W†uô¹'Š²÷ý,Qy)Q	<‰ÿÂÜC‘!rf \ÊY8H"Êf)KÈ0Æk;;»¿\Ì¦¬Ò€'yÉ§Å©)’M¹°´ß1s`Î@þu¼8¸ÇÃóDéÊ¸†ÊkvmjKs'â*4i§XÜÌ‚¹ñlÐ˜Š‰QÌé[?UZ•ˆê	¤G’º¾ÌòdÆ³<;#sÝçÊ<ˆZúˆ±‹U^oôÏ‡£ÐX[C¸ÚÚ¬û.}hn¾5—
+endstream
+endobj
+241 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+239 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 241 0 R
+>>
+endobj
+244 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 589
+>>
+stream
+xÚ½VË®Ó0Ýó^:TÎµÇãq¼Ep‘X¢ì6ÜÛ"õã™Øy:q’
+‰VªÛ™±{Î™‡#t­µxqù,>´/¯A„:h
+ojo„"¨½íÇoR©¯•2H!HW)­¥­T@§%UÊ^±R@à$TßÛ/BeL–»µã]T•rfáGúrO®dÇ‚ÝIÍ]õ§ë?ÓÏ[Záƒ034÷.ßx'ß—@ƒfïM¯ÛaÜƒ%Ð,ÑJš£¢^¿~¿u²ë#‹%H³æœB8¨€ÜÆ»ÎÞhÑÕÆ°¯7Þ–ÔàÚÐpÐ§€ÿÝ3^-¥•ˆôÜQ‚b‚;II|#/‹´-	w½+Ó€¦X~wÜ]ÐÖWVƒ‰yFƒC©—°‡H,®³ý˜ÙP¢„YmnM‰íTüÙ†§ö!…pTµh<ÎßéKÊƒÏrÕKw•Ì«ö 4¥ÈÛEíñ”!«ãT‰)‚)÷³©“š¬`89'Ù Gû3‡›qËqRŒ¥Xó¡#A77ÕÐdÏb¸ùlÓ÷ç‘-½ƒ¦‚IHÝÐgH÷D[wIAÌ,+„[zÅQÒ:Îã‹ýqtÖQ×“)å.O)óu‡x”fýKWSiQ(s&rÕÉ|nžžñZÀ“©9¶Êm!g•rËŸž‡K9\äÌeµ×†ýVD:—5Àÿúìz;o#ô¶%§F:úÉÛu)ô¿Ü¦Æl.Ã<pùv|yuÓS­qT7^(uÓÄ`—0~jßý¡pZ¾
+endstream
+endobj
+245 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+243 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 245 0 R
+>>
+endobj
+248 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 573
+>>
+stream
+xÚµV=Ý ìó+(q,||ím”\¤”‘»8Eš»&RÚé~|ÖßÃð°ýN97°ÀìÎ0Àä %{fñ÷•}C@6>1§§˜@=8`ãç\ˆïPV9Ë{¿¾û9~c’	¥†P½t4pÝ
+R ’ÿþó<ñiz¹P‡¤v?O²\¥¦XÖ¸L]c•`ã¤ZÃ9à®h¤ä¶ÖE`B#ý1ŸÙl=q´œ8àFž¿SD•¡ŠMx5à¯„|›ˆÒþ:§¬í©™8BEyXMH!ý×öš7´f§ü¦7O‘pNÝ¥ÌnAŸ÷im«8ª×ýYåuw†€‰¥’-{XÔd ”nPƒòR¥ç
+Jˆ"ƒrŠ¢$ÍAR•Ïr1O-Â¬­©¥Üor†§Ó­8KiGÎô9Î6‡£IM>`ô{Pf\©:¢†Ì`KMâj[Üâ„àQµC ­?6·–4zäÁ1è”ß²ß³n›+Ä UÁ¦úé¤,î4·gÉûÒusHC^ôZÍmí”:|Ë‹kè[îÜ—r:Òþ­ƒšn¿õˆcÊmg~–ÎÈ~V\%7ŽûæÊÃµß	‰'nŽ~“}Gà¯GºUÁ]G%ÁîöwòƒåëÄ%J]Ú]6Åƒv1)[©ÊÛw•ñs_È¬–ÝžÌ[•uMÛwËFO€m=Õá º¾í•sö.)õoE}‡ê|x„×±¼cB‡ÁûËíðeüð4¢_
+endstream
+endobj
+249 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+247 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 249 0 R
+>>
+endobj
+252 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 540
+>>
+stream
+xÚÅV±’Ü íó”v<øÚLr™I™q§Hs×d&íÞÌ~üaë5>¸Í6·ƒ°Þ{’X¡F¥Ä³ˆËwñezxôÂžÅô$,Œ„d­Ó×_”?{	šÉwºÿ=ýJH€Ñ_Ÿ‚1ª{™»ÓÜW\<¡O`©³½$‹¦3aE¥Â×$ë°b-J™p:w€îO/Mˆ<­Æð¸E¤x@åç·(›çþ†o©r½Ô¼8¬lÃÕi}Œ\3Ð˜SK§¢!Üœà\á¤J¿äê«Ö…”>×$óápù7ÔÈXÜÎ½Dhh›çsÊfÇ:Ô’Ó-–MPw)cWvcéä=†t8î[;o|3ô.Üí²-C6¶!Y»Â‘•å‚ ªM‘¡étNÐÆ?Ÿw@U)Ú”_
+˜¤ «Â_!Û³4”V¬0‘b£y(¥JWªº*¡îtØßÃKD ÷´^¡ôÂÕ™ºEñ˜éßÏóAõ¥wåÙÍŽd´[Gr¼K]:3ËnšE”š‹–™^4Sµ!ÑTæùîeˆ¾íq¸¶EmÐ­ Mªëü:Q¨¾¨ÆÃüì¦=ÙÜëñÅÆ{1ƒ/ß;rUÈ+ˆù}À|3àø¾˜4¼ÚbfX|x~žZOíÿ}þÐ±¯!„nÿkÖ6àÅûáÑ\þO‚áÑY!ÑÎÅhCñÆoÓ§Wâ;
+endstream
+endobj
+253 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+251 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 253 0 R
+>>
+endobj
+256 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 556
+>>
+stream
+xÚÅVÍnÜ ¾÷)8ÚYáÀ \«6‘z¬|«{È¥¹TÊÕ‘òð%lÆvº[u/,0óý³„uŒ‘gâ‡Gò¹¿°ÄvIÿ‹hÞiN(B§é¿üh(ýÞRÎcÍÐp0ã4k.-U æiçÚ×¡‡¶ýÙ#ŒPÎ;›f¥ÿùö&W ²Q-•Ú%ZŠÆªò¢ÓÕ ðiú³ô²¶á.€¸þá¤1ICpw	¶T V#ø“™›ï'_’*ŒÌHu ²·§YüšñlÒ5š=ø0Í‘ÔÄ»EŒ¹Še‰Öz–Á¥ Bô; î}AóÄ±ÊúÂášôíuÇOA¹ŸÎUZø)G>VPiãX¿«Aæv/Ô.»Aoáâ=f¿<Í0¼å¯Îj]-vËôN¥]:f.×è§I}®(PžO˜OM6lÔÉâ¿eÃÇ^í>îS,nô°ñ ^Võ)B—íÐŽ98šBIÃÝ!|Y3ìºArí_¯X®ÜQ×¨Ê€’=MÅ•	Èêãí§3]6tBÁŽ»HaÃµ rC?0fäX?¥ Ðscß1GÅß
+èè¶€ÿ~ÑtQ¿Õ<êwò•¯ëçßù÷ÈväËÅit’l¼žHóÿ=:ô9Æ#5‹FvY5¾BËZ)ú›Xödå¯4æx¾ï¥.·ÇmÏÇœéz[ï¨¿Ý?¨ùO<WØM(ØÎ¬¦·ðkÿéÇÊ†®
+endstream
+endobj
+257 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+255 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 257 0 R
+>>
+endobj
+260 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 606
+>>
+stream
+xÚ­W»ŽÛ0ìó,¥”¹|³î.@Ê@]”"Íåà>>+Š’h>»³™»KŠ;3»¤	›#‰|'ßæë‹#nršÌ¯ÄÀd€PÍ'£Èüôk ôçH)Æ9RÒ|¤Òp5Ø‘jvÆÇŸfü=ÿ ŒP€ÉE«X‰ÁË åm[q¸ŒTa|f°ËøonË›%N¥›Ÿ+ýgûµOì9ßíÇÒå=áßWv(ô®éƒsƒÆ'gÛ˜x´QÇ˜û72ŒkÂ±„]Ç  GPò8‰i±BœOön9Ç³0Ð%$ô£HÀ×›@|* ÕÎ¸G–Ñ¶äƒ^ž!í§Ðë“²	­}šËømbI´-‹t—iÌã´µÐ-…§»’¤/å¶Â%Ôà³˜ø×öÜ
+N¢ó£ÜÔ'>&¸Š®d}èÏë'ÖJÆ‚»˜o»Šuç.´×fCÀvÞR²šLÕËd%D‘¾†xÅûÅÉ5ÂgBûVNÚ´0ëð<aD[¢Û™î•‘°<¬Ç‰·Žös0ëÙ‰AB†{QÙ½2ÈÂµì\B¸ÉZô­ÆõŸW\y…j“wq¢ë+ô-”`³+…Ãð–†·øBKvõe—‰=¿Ë[ºX«xªu*ë3jü^0»pN{;·³å·–½5•n@ê\$Ê»nÑ½ÞÔªDçÐˆ?¸/à¶†!¹X§n‘‹RJð¾Ó Öš<	ñc*W4·Ób$•\ùÚŸtÐ™QÓ¸w=ÊÊ¥Ó©·‘Ru\_Ôñw ”ž¬!”û’_§«í:û<ù"E•0
+endstream
+endobj
+261 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+259 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 261 0 R
+>>
+endobj
+264 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 545
+>>
+stream
+xÚ¥–Ár¤ †ïy
+Žš)4ÐÀ5•ÍVíqË[Ìa.»¯0[•‡_Dqi4‰ghiøºÿe¢‚ýeñö“=÷O¯žùÎ#ëÿ0+;+Gè¬aýË[Ãùï–[eDsißû_L0.eçWA)˜F·\¡Õ´Ü@x:ü× Ä<n–ñpW2ÆËÙœ“†ÞBj×gFí¿¡¹íz\kö8~#¶V­‚÷rÄjL¼Y‰*`’Õ6qUeSumØ Öv74|Z84L_§ŸiK)b^§*fc±<EÁu)$ÑRŸóàY}Ž'íz·9PB—y%Ðîó<ëþhô~ä‰9Ì®ÀÅgøÈÚ'½o
+Õà]ÞFªiœÐvµ
+µßÚ"§¼o¬¸þµfÆG*±]Æãu©=ó1Ë¤Æ6™q%‘]­ ­íò™¯fÊ¸ÖE!›6¡]9"AndVM¿4û@ê{"<K¤ˆöžM°°@¹mîDàÜ—‰6¯2V[Eó&¢d^;ßMpïÚ„Î¼rÁ'Åž/{kuÉ¾§;2­p*B}x°nÔÊcõMËÓu©=,RÒÃ0x¸T5ÊÈ±íu#ã,’ü„·_52mˆLHwU¿zOøw’>Ð"Èºés§âßLøw’ Óoù¶Ú’¨ß§W³|äJƒ³Œƒïœ‹YÌÔ¶ýÃ#WÓ
+endstream
+endobj
+265 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+263 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 265 0 R
+>>
+endobj
+268 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 558
+>>
+stream
+xÚÍW½ŽÜ îó”8+|0´Qr‘RFîâ×äšHi/Ò=|0Æ{^›±Ñ]eËš1|?3+t¯µxùñY|îî£ˆ}$1üÞôÞEÐ{'†ß¤R_;åƒwr”=tÊ“O2Úiy™_M ¬G(Ü0.Æî÷(ŸÆ®û>|Z(cú¸Ú•BJ»0Ac\Ú„:…Pb~:	LöB B%„ÀÓ¡ŸÎÐ§$-ß¯ƒ´Âc§-TþqsÎsÁw$Ñ8>oQ3éY#^Q¢~Z!Ñt…-@<ÃÄù¬¬ZäÚÕA‰€ÆPTªj‰»p’ùPì7sœ7Äxø¨#ÐB=bKS¼†µ³MÄxõyø‘sÂ_q,-9•ÜÜÜ®d7Š'¢³ ÷_P#k{½¡ÝÁ$êp¤ÚÏ_ãÔôÒ¦óoÌ),n #$ê¾TÕªºòÐáæAŒmmcµ¿6÷¦ºÒÆõoèjà‰!ñ²&m
+óJ!i
+Yðy‡ÛW,ÖÂ2…gÅˆY¹p¯¾lHïŽ“
+éË–ôüxuÎÒý$d-åçÄº¥`5rÃ?üžâ±§[ç^üAâ®ÆSk_å)µ¶©=¦u~R¦M-1­íéXjÉ»Ká˜;ßr[ãV·>¶³¥VæH1–ÓÏ­N¿ø‹"kÎÔä3{:OLç²w3Ø™œ_+S‹©ü³š¸»w×¿%ÆQ¼Pûr²yOÃ»?ü%³¸
+endstream
+endobj
+269 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+267 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 269 0 R
+>>
+endobj
+272 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 565
+>>
+stream
+xÚÍWËnÜ0¼÷+t´³£EQ× MßêzI!òñ•Uù¹¢ì4Û¢{1´”h‡äÈBuJ‰"=>‰‡þþ)ˆÐý³ðºóZH4w¢üÚHù¥•Z;§ÓJg\­4h`Zšö[ÿY(7uau&ï‹ßïz‰NTôqÉ‡æ¿Ë‡½{ï8Ï0:’éw©íy-DˆË
+Ñ8¯»Ø4ã)¹÷i£"\=@h0yRcªÀ§Æ”¹Æsp)£€Êù¸L‚5kK|{¶X‚Å0>†öçÐ¼íi|¸Ç—)–aZú¸4j®×J‹Ëf›±c»Ìp®S ÙÈ]
+`oy
+ÞL±«Ãä‰$C>!”)öHÇøðMøÞC1œ¢Ø*oÊD¢([,æ²¸¢Øyü×Ûƒ.Þu$Oäª‹‰¨L18üŸ(6§(ŽzÁPl¬b(ÖŠ¾%ÅIÊ(Q
+#Å‰ZX÷›­“à™œgð›i³fwÓ¦›‚pÈ4¶a§ÕÔ.\&Èk=CÑÕ¦4„¥*ôË	-ÖAT©Ùîj7‚,ú{ÝÇÝ¶¨ûF'øQø§œžQÿT&õ¾òyn¸Åæ7ÑŸª~aR^Ê¶TÎR7´¸0VÈr;<yÕ9”{^%fìWƒo®öJS…a}¸xšŠ• U¦T£ªqêþ§«¹wònsxQãõ}–¨³+RïŸÜüå¢vä…4¡#J±¹âýØøi'µ¡
+endstream
+endobj
+273 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+271 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 273 0 R
+>>
+endobj
+276 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 592
+>>
+stream
+xÚÍ—±ŽÛ0†÷>…F»†|EQÔZ´W cá­îÐåú
+-p_Y–;•ôz.C…òãÏ0ÊŒÆ¨Ÿ*/ŸÕ‡éá1ª8FRÓ“
+vVi‚1x5}üÖiýµ×Äà»¡ÿ>}QFikÇ¸3Z0Áw¡×0v~Y½é\¯ƒK+
+§§Cs‡ ø#é~%W&Ö-9Gu¸p°¤[‹Å:Øsÿ{^Þ…ëïˆVOÜk´1n[J[0fÛb¯õ§mZ€Òêöžé*j]žÆó÷-!‹#äºÅ:Z-xiÙ'eYþ=;¦rTë)h3µ`r–EÚŒu¤Ž_Lt—wkýR"ê(àŽhÚz™hö
+wßŽ}ãÇXÇçÕ[Î®°Z°æÝ–>!­ñ|ÛKª y2ÇZ¾ŒXÔhíÞÜ#ÞKž—Æ1èüZÏ<oŒÁÍóóe
+çsaÍZ:YT"ÀrjÓ=Ká†ƒî¤n4Qª¹W”ZÃ;…ß“#œ”/;Ÿ?ÊÆ•ÁqÉ@%ôA}C*2[2ð×¡SpHÍA"Líø6™§*ôo(˜È°`‰dÞbßN’m@"K,ÿÄ-ã]ˆ+“K±0JòöÆ
+ò%3oƒ°»!bQ2G`–„ïé6azÕ6w®Ì17›±Eª€_‘0žÆ=C\ï‘úã8³p\. öÖõS“¥HópÊùC-Ì1'|ci¦+b)‚U	ø•YZÆ’“‡Gúãd=”†82g§dòEŸ¦w AÏs
+endstream
+endobj
+277 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+275 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 277 0 R
+>>
+endobj
+280 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 559
+>>
+stream
+xÚµ–=oÜ0†÷þ
+¾^åHEIk‘¤@ÇÂ[Ýá–d	5òã«ÓIgŸ-ÊnÑÞ¢³©>$_ÑBõJ‰g‘†oâëp÷Dè‰áI8Ý;-$Aï¬îvRþ8H£­ê>~ß…Rë>ÌŒ¢ñcD¶{O“º±{õyõÅ@qÕqn¤É¨- v”ÏÇ|Ägçl|_ß2wvD^<Ò
+ðtùûwTq£b±†’—ë¨¾ÄÀi<¼7 ¥K»—÷ñ¯WÎQXçñÄ„ }•‡öò …pæIKž8"(•ìçqûë¤p	žÑ-ÓÈ…£¼ÿ›ìÂ©ëL”“cÕóOÌÎÎ4´02ýŽ­9¹LZlãøQ|:f_™éä[Âi]JWèl.x“I8á:Ÿ
+¡¢Øì(ôu‹}S6ñÔb	×doHwMd÷áÑZ³Ù;£0Dþ6
+xß"¢½DÚÆÓfDI¼…¨ˆ×åÑ¶	×ª-ñÎ«[È3|Z­ùnƒÆíˆòmÇ#îtÎhƒÓ0ÕGµsiÑ>ÿ·~ÜËëóXñÍ=Ãk Õ «j£íË·+d;¶\;Æ?oÇ
+PÙHÒFBy´¹îóc”…¡KOKJ®‹*0z ÜåVÚ÷ZðoŸºµŸ„ÒHWOi…†æ}¬r{Éé¦.¥ÏnâEÛÑZ¼"ŠÙl·ç»G{ýÞÕ–zï„„Ð{Ÿ&Ó¥©=Ÿ~qªYû
+endstream
+endobj
+281 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+279 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 281 0 R
+>>
+endobj
+284 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 572
+>>
+stream
+xÚµ–ÉnÜ0†ï}
+ír´P”t-Úè±ð­îa.é+¸@¾Z¬x¥â sÓ¤d‘úøKLôB°¿,ýý`_‡çÏ|ï‘¯ÌÊÞJÆQõÖ°áÛï†ó_-—€Þ7ªý3üd‚q){¿òzoMÃ[n”i¤Uî–§0NQ<ÚÁŸ ¼@¸Z†=N)ELxÎc3í:—t!¢«N®òmËA¦¼“i‚©„(¦n¹F›‚µë5T2.J€]aºlz%ñÜ£Ál<à‹GzUc{L×\M7í«›ùkcm³mÒD³­‰Š®÷PPû/¬*YXhuËµ{e•Gbj7Õ€¨ç‰kD^Æâ–kí®s{ôà>®Íçpy.\ë:×J¸Fïâ‘»\¸¶c5¬#Æ—°¾[Ö¤4{¬#ŽçÁ±X‡W ˆ™5>Jµ´p‰j²ý‚$íÄúFÔú‚V«Ob:¬W¬˜j+¦Ä3Ó
+s¤õºÙ;ÁVN“™qyØü£oVó¼“9™Ò7ÜC³þîÃ§œIÉCìƒ¹Ñ‹TŠQ Ü¡à|ñI7ªOu’¢hOíúTÕŽ§_WƒômF»ÆÚ8¾í·˜OÜtµKºÒ.z£ßá#²´6¡AU(É+Ä¼'¡¹™ÜöøÀíñËµ(W;wž­']ôHP-àŽ­VÆ8$ÉËå‚fÊ/>8S–
+<¿˜÷±4Ø;Ë¸ò½s)3Bß‡/ÿ-²\«
+endstream
+endobj
+285 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+283 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 285 0 R
+>>
+endobj
+288 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 607
+>>
+stream
+xÚµ–½nÜ0Ç÷>…F;;ERÒ¤)Ð±¸­îÐ¥}…+‡/-KñÇ™ÎåÐÞbðDQ"õã_2¶·Öü6ùóÅ<_’I}bsþe‚ëƒ3CÈœŸ¿7]÷­íœ#²Mj;t)5±íÄbƒµ‹5Tllœ¿kdZŸQB'oüÌš‹¶ç4™`1nþJâÒS!vã,Ã^	 xQvÅQNÊà”¸/‰ÃQbÄû«;p¼ÝP´³/åÈ^ÕŽç%rÁ”õc’|”ßŸ¡¹­âá )In0m2f_¬&—ó.&®Mù '¥e4"34]‰å7Õëjõ Æý¡ ‰•IŽ&°xhï¯Á5þãÞïÂÙÆ}JÆÆ¸'xÞç?p¼âß%¯ÈÞóíüó}ü»%Ó«Å±ûÖÉ.E`ÁÒ(~Ÿü‡ü³ÎÿT…Ï³såßk­øoþwˆ©s‚Wð¯BøŸèßŠÿhßD¿Ûèù^ÚÒ¢ñûð‹ lá÷	•ÈàÃš}þ¨öË©â1û•Î‹[ôÓ¾òûûÉ‡‘Ï·*?’]_ªPÉ_¢>’ïh©üyéTþŽ7u€sÒDž@™
+ýsÁewšVª/…Ãjå“¥.\.J*v½ý[¡îD@MGùJò“ÖN~ÝM²• \;Û7—ßÁSg,§óp„î©«¿Ó‘Û«È¥³V](^ëI®²UÊ™õWmo°ÓIIuR>¡0±[.÷ƒvä­	JÃ;Ò.a
+Ê].býŽ>Ï:õøBoouGÜÇ`:H}ŒÙ™§ËæóùÓ_„Òz$
+endstream
+endobj
+289 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+287 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 289 0 R
+>>
+endobj
+292 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 536
+>>
+stream
+xÚ½V±nÜ0ÝûíäP”DIkÑ¦@ÇÂ[Ýá–d)Ðõäã#ÉR‘Ø¢â^½Å'“²Þ#I	˜ Ä£È¯âÓ|wD˜‰ùA859%$áä¬˜?ÿ¤ü>J…àì@£´hÂ`ÒÓÂ€ñéâ{;þœ¿	R©)¼Úå|4.‚ñç¼e¸ÄOAÜyZ—¶-JÙ7–xj±9/ãÓ2\–‘9–|t;1Æã¢we¢ûL*bðz4myÓ&¢}“%¢l<„2óŠHŸ@`âžI‘Ïäá½4d‰|äðèt„Ì¿C?û<|½\/Ëó5ãžcÄG¢ÕiØÂ@ Ž£érde×NÅÒ¨‚ºg¯ªj)é2)Ì]©ü1{ˆß@`à£ÑØ¶èR±ÛdLË}¾2†Ë2ú›d,~2In-n[¼
+ï½ßA³¤Õ¨õƒ_¿—fÁ¿Î#Eê„=„Îlýè7*¿b³š™Ö1†(¼¿®ÚðÀõSID*„ºLZB€ºŒµ¢iuÎ9ô‡$Æ—<)¶24®ÿùÛ4›	¬t]iTøÖæ`Êº;éù{Ijƒ›WÞ3áS˜6ÎÎpƒ6u›ËõîàGàî-±'\Ö•œ¯™ç>d©uà_ŸØ­šSK<¦f:¤fÏvL…û{Q-Æ‚¶Ù5ïîíŸK¶²4y'$†Éû‹L†úeþð¨×s…
+endstream
+endobj
+293 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+291 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 293 0 R
+>>
+endobj
+296 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 597
+>>
+stream
+xÚ­–½nÜ0Ç÷>…F;9%QÒ¤)Ð±ðÖë¥}ÈÃW’iÇö™¾ôMêãOþDKA þ¨úø¦^úç·¤R—Hõ¿U0]0JvÁ«þõg£õV»€¾9µ¿úï
+”6¦K§1ÞCs”I©	­ö!ø†² gÛ±m…YB,ƒŒsïy@^mÈCž÷4šm^åX€e´K“+š„Ûhp$ÍÉÂ¶(^UŽK/m¡u°¿j 8ŒÿøÑ»°NöBó$8cÊcýÑöÿž›áÜ
+—¥]HH©HàýrÙô\O6m«-ÁÖäÝ:IJaáÜèÏÌo²Ãž€‰ö=¬à1«Ã¹wŠ>ä¹¤É3V7ðlÉÅýê£³[BC·óè*8«hÆã Ôó^š·z 	gÈÓšf“§ÙÞG3ÝXØä<È4OøN4›1˜Ÿ·ÐœO´ æDæ…'S PîþÊPºaç–(W±žG;¶-Û‡Í ·Œ ÇÞ·‚ÿ"+°VÓ.| iW×´>ÄêõæZáyÒYç>éú;­ÿÁHp>lÓ$„#$§¿ÊI.ÖÔê2Áæg„TxæS‘z:‚“©§§™‹+áPW-î¸þrÑº¸u'@ž8Jµ—ëÉ>¿q¡àòÚ!^>åq·ôEuÊÄ¥v£ÊÈM+pˆíés~øÝæšX(Wx[ÀŒìG{ƒ05†¹Sæó.´JDñ–vÜkì\æõüæç¯ñÔÅ 4¦.Æ:ŠÆÛÔ×þË?å(Us
+endstream
+endobj
+297 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+295 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 297 0 R
+>>
+endobj
+300 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 547
+>>
+stream
+xÚµV;’Û0ís
+–R<’IÀ6³»™I™Q§H³¹‚sûÐ2mÑ!+šM%áCŸ÷@Û[k~›éóÕ|oÁ„>ß»žézöf|ùÑtÝ÷¶óÌ¾éâ|ƒBøëú{n;g½½Y8*Tžiö½|’ž°ý9~3ÖtÎõ!;ipqñgÅH—²bDŽÆ?§æ|j èqÈTì×è$í–DŠ¢á&bÁÚ›icÒ2¢X»S#.@Q¶C*‚uS`e‘ŠÊžÚL>3^v¶MHyJj8§2P’}J\ë]Žr¨ m(Qâ8ž£`ÊÚI‡á®#	TwD9+žrY¯Àpïô–½à %Dª<p »‰à×òÜ…’Ô—D˜À]×‰P™OÑëNÊÿ“OâTJr•TÉ@(›ARÉÿ†5+%	„ÑÖ½½Œá•!ùq %âH,3†:˜6S œ×ÃÞ9†óK
+Dã
+À:˜6MuçKò9»‹ YQCˆñ…”b†ÿ)îÿ“Œ©ÎÃ xVfe¼úÈÑî‚@‹› ¼âË'Í|ÙA	+}}àÈ‚êÊìWº°:úŸC{:ú¨ã…:òÇ§ŒUß0,nÁ¢ð,C‰HçKa•%›»bÆõ˜+b§eÌ¥*Ð&Í1ßüý_½°é ô"“3]«ú:~úòdÕ
+endstream
+endobj
+301 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+299 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 301 0 R
+>>
+endobj
+304 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 580
+>>
+stream
+xÚ­VKOÜ0¾÷Wø˜9ø9csD,U{¬rk8.¨Š€Cøñu¼›õ#	]re2cóøfBXËy ^|'×Ýå­%¶µ@º{‚¼EN(ˆ5én~W”þª)çLè
+jª¸µ•ª©Ô•¨©šRr'!H¤¨ïºŸ„çÞÚÙihœs_q®ÅàÎfÎ´ñGU…‰T b„¾~ë«¡¯G½²GËÈÐBâ)J}X%ør<€ú§Y²yÏ\G0îcß¿Ç9(©Ð},Ýg­K)†úh'c•twH6Ö¥%ú:Ð “3TŠS8Y))"•4jø¨ÈVì°»Ú„]2ŒQW*
+I„áóØ·æ}â¾èð.7Å4§Ç”|Éâ˜¸„8&Ág1æäàí(3y‹Øã‚s"_7ËÅƒIxâÍOgåyá+àˆrÒ
+[¬Um6Í|Õ¦i†…pWÙ’iÂLAÝo9äèûkK_eHáJ®Õ„9›æ¥¤o£Dnø¤œÎPá¬¤«°Ü ÕlùmLFe&NÊ×8Ó+pSêAžzk¼[Z‚í†/`œßuŠ®CLs²Ä8Ÿçþ„jMÚÃMÚÍæÅôÿ Kd 3·1Be’ŸtÍûiÐñ˜*–A?ßH£”K7õ¹Üfc’:éd…/ýœ³ÐSÿÓŸ<7b×²ƒF¨ª{{Ú_\vÃÓóþååÏßÇÃûÇ×ýÃþ9ç¾•òÅ½¼Õ¿Å\CkPa[c¼1ºv×}û
+}dû
+endstream
+endobj
+305 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+303 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 305 0 R
+>>
+endobj
+308 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 510
+>>
+stream
+xÚ½VÝo›0ß_aõÉ|ØÅUÚËÔtÚWö4OS´’.R²PMDê?ƒÁ³JC
+ÇÏöÝïî~
+Hp’€GÐŠ÷à]~}§€ÂŠƒ|Á‚ $2,@~û"t F”ÜÊrc%¡Ið5ÿ€ÁŠuÞŸÊ‡"M…õ¹yk¥†ÕÏã“†'k„!jóÒAÔh·½=6?d?gO>käÎˆ˜FÈ=Ñüfë÷ J’Ò?2å"ƒñÂ&ÂD““d&PD–Eëç.tk‰læuçÝ«:8õ´¾Í'²ââÌ’f0?Š{Äª>‹ªÚ–{«Ø?Åq£•«j·HS¬&~¯ÊÝ¯BC[øøûdÁÏ¤ÖCÌ W›õvW<\-bA•bñyo`Ðn[Œ1žkå²]FB¾ˆõ¾œö~×õ#00!k
+«­	|½;üX›ø¶0O›Në°Ûþ½¬Ü¦éT™»n÷=}Ò\ÈÃÛ_=¼}ñÅÒY¯ïL˜ÁèD¤¦TKóNù Ž~ƒÞ{wNÈ9µ‹ÁÎ	ÐzHãšŽ˜ãšèâšÇÚ’­ß’„Ñ”/ XûA7†ào¤ü>ßÿDŸSÒCÒ ÖP—ó§ôäOß’ÿ?U³x}ÇÜ_	Â8– Œ`™¶ÎÜÂµÊßü §
+endstream
+endobj
+309 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+307 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 309 0 R
+>>
+endobj
+312 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 603
+>>
+stream
+xÚ½V[oÛ ~ß¯@}ò%`ÀL¥½LM§íqóžFUE*©*UI—TS"õÇŒëøŽWu‹àÜ8ßá|	Àcpjñ|ª²k	$’Tk @N‘` ºúAø=†Œ²Hb'·k'	ÅñMõ` 	AòÕúÛöNç¹t6—TÑ!ÙÿÚ=[™Ðôh¤ŠíŠ¨6»¡NÅF\©È,ÌÞzÆç7vá4O¼s‡ü”™0a«+e(,¨¹[
+{ŸÔ8r*ŠñùDŒ—Rb$=IN¥ŒòÓ>'G¹0·ÛûƒSî¤Ô‹CÆ\›8©kÝ¡¿%ÍºmÏ¶'•Ší°†vÙóJ[ÈSÚ¿mJK^šp¯˜äS˜øÊVp%-¢êø¤/áòð´ÓûýÃvãö_6Ïú^ï|îËvÚ%Í‘$ƒQ$óFq¿}ü­Uä&rq´3ô¶ÏF/^âŒ‹õêáQß]ºA…}¥0~lªu[ „ü÷Z¶Õv  Aç“R‡¤¤‰å„t¥âLEÍjÀ‰±È3³H5µÆÐßJ­ç®Ž'"h­1
+±[U“Y—Ìfä·G@‚´çøÍr7¦†£
+Ñ™;ÚpZ ²R[ˆ¦½!lænå„6Åø¸£ãÔ=®½Š‘vóLÂP“¨	•”"g£ß€sœ_ûx8ß¼†"Èå·YDNW½B[Œü©»—¾_¯™¯×Ä#=	ôš„»YLjÙù„ÿ´×ü?ôÎîu'pý/"™ª}a•Ù5kÿ5ÆQ)AKT–µ1—u€eõáÙÛS
+endstream
+endobj
+313 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+311 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 313 0 R
+>>
+endobj
+316 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 586
+>>
+stream
+xÚÕ–AoÛ Çïû¨Ò$;0©—©é´;ï4ï©¤ªT%Q3M¶Ô?†×®ß–žáÁ3ï÷çFƒ'`ÌWð¥XÝK ‘Ì@±‚ A Ì(w¿"bÈåQC®MUeÿ.¾ !HžÇõvBšéYÉSä”E	ìýMÊ¥Ž˜6Ëa2¢1)Ç5Ë|ÓA	6mg¹\Û Xv–f¢I
+Úìµ¶¶iB‚uèÄeÞTµþ¶›nß¹Óz½³Œmpý/ßÞ¿‡ù°ÉeØ6\âÂý?´ù m2…6¹¤ÝÁ¸{h“É´ádÚÁæ13Wƒ´©”×ÒÎRM‘iPÄR6zZË<evîç­»í6š)J¿
+t€»{é¦ŽÚZôšðš„Ø›”‚1ªWJbæô3e#L?No^›.ê£ZÛ›êøªN§çÃÞ¶¿íÿ¨'õÚ7}cGH¿hš"IZçÖ™Z{ØYK(î]ÉéðòW•ÑáQ¥/ëåu·Bn„›(©'v³Û>¿¨Ç›9m‰0~î5‡ÒO["„ú×µñÙ(:$Ø4A{
+­oý-¹PÕÑU'¦ew®»–\³7z”^6‚ÔœÖnšCÃí¾¥ÞÙDÓsNsžW#Ê¤^™Òí×ÏÊß:¾ÝáC¸·»Sìtï5Ÿ3ê ëˆÏ>ŸO¿®Ö·a)‰¥0¦[–÷â$i˜—¦šCRŠY_-p=—ÖêžûïGÂ3”T¢<7±…å¶)>ýªXK
+endstream
+endobj
+317 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+315 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 317 0 R
+>>
+endobj
+320 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 603
+>>
+stream
+xÚ½VMoœ0½÷WøR	v±cÀJ¹T!U{lé©ôV²ª-Q¶ªàß×xŒùf©•‹ÍÌxÆ~~o QB):#;|Dò»Ç¥$U(BšÍVœh‰ò‡ïÆYˆ%—A*ÃùgDæ1Iï«ó)«'§]0c$í2}©~–±`eýò
+q§{‹ >k4uíÌLŠððÐš"o´îÆÅšùb‘¡Q-ûHÌ¤n«§r+W,$aÌøZc…±Ð\µõc0M.8¥7E¨¤~]¬LÅÚ£öø"õN©ÁÙµØ¼/CÌ•™ábuùD6´h]^>0[äÃÆ_ÝÁbä,è·'qN6ÝÙ®8®8MFê±ò 20¶åx£N´˜ÅvxBì&`\¦§.ˆÝDÎg¡2Ì+:‡­ŽÒï'5æ:1¹òæ¥<ÁòÌh«¼^Uxÿtù]žË×¥œ™×îº®õ?èš5]Š vJ=¸S†GÜ›ŒÊÛˆVéÖbÕîãÙ›I\­!Œê¨TUæ8ÐùðH]È”CŸŠéÊ²ÍÍÆ6Ú^Ð±e`·Ýeƒ„ñL¨K™z¯ih=aÿ7õ“}lêÓýµzþSÐ1j¢·øD¨d~å®÷˜ö"v]«Å6‘[¶yÞ8ÀŸ«óðšDÇ~ƒÔÚ'Â·žµL\Q:nê+÷Ì˜4uÖ?<œš/Ù€ß.†Å"BÈ2^™¿÷uN¤›œPã¾4ÿß÷¦zÜ—êQO‚¿s[rg/JàäwÒÿx1©H¢ÍaS’$v…†zYþî/E³>e
+endstream
+endobj
+321 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+319 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 321 0 R
+>>
+endobj
+324 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 500
+>>
+stream
+xÚÅVMoÂ0½ïWä2©Râ|¤]&`ÚŽ[oën+hÒv(ÿ~iÒ"ZšÒI !AÓÚŽß³ýB)E+ä.Oè1/2±Q(Y"±D‹µDÉì="äÍ%8& µŒrL$“Ñ!òû5Ã„){-\¨0Ñ¡ýs5aäQD bs’Jj›"L’F÷&lþ"¨]½IU.øPùww.âdŸCÓ(­)Åõí[µÃtô†#Hf“72»ÕX«3Ö¼ŒùÞ¬ÎñrûÀ¡UZ6kpJxîÖÔŽÎ±ŒjWÑÉ&©ŽòËl-¹	OÀ¦Ì»ö'½>rƒPÆôâ\Ùy¶Ð:Æ hu-É­5u>]êrKDM©°¦Ôkêü$a]šb-šaM‰þš:)¿1ú:š"ÕAî#é–ÖðzÒª‹ëB§ž,¦º|ÔUÄåBû@pæp%w…s¨Ò0]Ì@rØfS¿×<ßî²ýþk³ö÷ÏëŸl•íÚÂçå?™©ŒŒÇ¦´½yPê›eù€ÑVœ›ÏŒî}¦Õ„¹	òìR<´¿ƒYu?²_xè„Ë&ÿ:`ŽÞÀT“sÞvn•’€öîÜ¬)Eá­u¼Ç—+*žhDÄî¼µ?¼æÉÝ/9‹"¸
+endstream
+endobj
+325 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+323 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 325 0 R
+>>
+endobj
+328 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 512
+>>
+stream
+xÚ­–KoÛ0€ïûºãHÕÓ²ô24-ºãæªÝæŠ¸h†Áþ÷Ó«±“ZNÜ&A`‰¢(“ILØ ÿ¸ßª«[4Ö¨¢XQ€
+†•ÕÍDèg†$“Íc0’ý®¾¥X¿©ÿèÚÕõ®yþWØü©¹àËnÙšlTw†).	DáìÎ@g•\ë#Ù`sÑo¦RIh¬Äm£¤7õµÎ§vþÜlL4âtÜZTiš…µ“‡ùúÉžr1F„†U÷R¯‚þ¯íS³5pÝ¾¼Ö»ñýöo½©_—ãq[ëžE\eëcPlÔ>*Nmß!è­®ÃÓÄPXrû[Ü¸±Cˆè§!î9Ðd°¤RòÎâ2C‚rVxvÆ~§çï‘;M“uoÁi²CuæD‚Ù\„‹T®—gÅ`|³÷Ó»öÉc)ž<Ö£Í±·ÞoQÚ	s EîÈ¾D8‹ ç´Çs	GUÑ'Šé,Üª´&- Qû“UÏ†UOËžŸ×Ÿ}Ù‹ñ’ÊÙ¢E4–¾—ùòg‹)sº@Á”°xOôj¶Ï3’µ°èH6ûý/ÃOr»WÅ…îÕa‰¥„ò	Z¼¿Y>‰ƒKa;àtQ_üÞnõêVîÿðPYàRY2—¥×VÖºúòbï )
+endstream
+endobj
+329 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+327 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 329 0 R
+>>
+endobj
+332 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 526
+>>
+stream
+xÚ­VÁŽÛ ½÷+8bÇÀL¤½T›­Úcë=Õ½ÕUZÅ«MUá¿ï;vŒHëf†yóæA£Œ¡rÃô¹Ø>d¨Q¨xAšSÍÑ’jT<þÄ„üˆH&2ÌYæÔ/Ý‚`Ñ¯âbˆpNMÖ™¯W©”•}{÷v»?–øµ>”¸±e´±%¼ŒâÇvžÀ
+qcgÃ­.ª~‘ðL·çp&ËhÞL„8‰H.ÃÄ§æ+1$Žn©Û¤HªÜQåœï¦÷½x›s%ìô˜s L¾ ¡…1Ýá!å
+ÖK, h’5¨×€Âà%ØBËô%–v´=[ŒÍ¨…]B ½MeØ”º¨‘+àr‰u-U4oÕÎç·‡Þ¯N§?õÑÏ¿ÿV‡ê}Î}?ˆ«Û)5Så©;”—Ugcà-¶qs âQ]7gºùY‰WhÕÍj¼¨‹Êáü4"Æhl®^²YK²£ih´µF°ë’ºçúø"Õ‘ú6"»{8Õ¯ÿª{N“&¹K€‘î<»à~T-Þa>ï‰²	#k·æÄØ±z‹v‡nP½YÿBÁ¤2&¨kžªöîÝïB0Ø¾è…ç#´Aj‰„R:j?p¿Ðùbc¨±Â¯ßÖK•Ûxxg?ê£H{¼Û§¬ÿóÀ3EsÍsç¢¥³/>ýéq÷\
+endstream
+endobj
+333 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+331 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 333 0 R
+>>
+endobj
+336 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 563
+>>
+stream
+xÚµV[o›0~ß¯°úd.&¶Á6®´—©é´=n¼©ŠTUŠJÕLSø÷ó¨aØ$•šìsù8ç;ŸM Î0`_Á—js/Ì$Õ’	§™` ºûú¡RRY„(Áæ*- UOªöŽr—÷{å9ÃÎþwõ`€É¤.JÁ`qŽSÉ]Ïud×ÇöP÷m"X%ÖUCdt–÷T@¾€YG3Tmì±¦áËÅòRE$¡Nè%0* ÃØurF³–†
+è¼oXNVs[«þm˜"/¤»7Ã¦žš™#Ì’™:ü‚$ædN¢¯jx+œ}€\zYù‹¢™ˆ”«7³0¸hý7Eqx'œŠÂÛaTw}ö¸ÍqMBUc—R½ ÇïÊV	Í¹Ð2Rê×‚²L¤íM¯RÕ{EåaY§oB2¤!Š½ü-Êª{inmiÛóËks:=µÏvÿíùOsh^—Ò·6‚àrðÒ<“¤÷þ¼Ò.Ú}o x±–ö±Éncn?÷Æ·±áùL'vv±vÞa©¶=øÎ£¾Ôz¸ªÌ9(²‹Ä€^q©y&ÆŒð=ÞH¤´œ™nªÏR‰W&YÃÿ•<±„eèÈy7	è~·€´úÞîêOƒ!,ñ°izÔó‘ú–®¾gò&8(ï±ƒS{üÛÔÐª<íÒw+Œ-(LŽÌÍ~÷tlotÆæžªãY)T2+Kƒ ˜AÝVŸþôÈ.¿
+endstream
+endobj
+337 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+335 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 337 0 R
+>>
+endobj
+340 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 601
+>>
+stream
+xÚ­V]o›0}ß¯°úMplã/"õej:m-{{˜VREª’ªLSø÷3×Lböaß{¹>ÇçØLzAðø‚>ç«‡e8“(ß"E±¢(‘+òûQ’<Æ	S,Ë¢¼~+×q"˜ˆ¾ïw‡}Ýlí^Ëç›%Æ¸ˆãŸù7DPB)Îº—7¶žRÒeYŠ³6ùÔ%©¶m€_¯ÇÃs™rekÖwöy_Du‹xi~·EDÕn3…aÝÎ¿M»DB‡Øå‰¸„?˜P©Ì-CY¡DT4Û`–J(ÄÌ: –È¢å^ÄÔµ_vlTl*VLÒ®ÒšqWéÍñí½¬*#·Ýÿ)_Ê÷Q­é˜ÖlžÖõq}W^ÿ–Ede_ÖËãÿÐ©S‚†6ÆL‰Æì€7©!à/
+:¶›ÎO»nenÃº;
+ñVì¾|ÑÉ}ùžÛŽJ·?U;ýü`¹ùÅoV ã<¯bh˜RóæíÐ¡·ý…LŽ0RÚ`$ætò“’¦N˜ÅÓ2ÙSˆ_)¬Ë¼ýä¤°—Ûà$uf’)HÈ{ölŒý”¡] 3ð+8:jnŒÉÁëa³ñûaXÉÉj‡ä=V$XQ€¼	¬Q‡%Æ½2×Ð6.Ân<'¼ðÝ/ýŸñS–3}ÇÑõ!0Ð‘ jœñAŸ{„T*ZÂ½ÑSL]qò‚‚©þ±€&q=ßW“uÌâl¦Y`õ N¡TH¬•ù|È°Ö° ’ b“úÈÙ{y
+endstream
+endobj
+341 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+339 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 341 0 R
+>>
+endobj
+344 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 535
+>>
+stream
+xÚ­VMSÛ0½÷Wè(ãHH²>™é¥C`àHÝSÝSk.	CzHþ}×’N—ääõÓZzowõÆˆQÆÐò[ô­½¼qÈQ§Qûˆ§†#¢5
+µ×?1!‚I‡ÛÝKU%þ±z^¯:¼Ü¾¼ö›Ä¾[ýíŸú×¥´«ª_í=bˆpN]Ükò8qU4Ô‹ßãb‚õã–Úëaý§o¤éCÈ»úž×ÞmÛ®ºè0¯7Ï@^àÕ‡;ˆëßë!Ã‡Hø>gý¦?ux$\…»A`º CJÃ…ÄÎ€­Ì¤ëw"A“ŒŒá3¦X„í;<¼Æä®ŠªÓ‚ˆ¶V	M0@a *Í)DEotR×i	j¶ûA‚È”c_i®Ò¦qÍ’„<·Óˆ¹mÈj`\ï òc›?¥,Ü€B3ŽÈ˜âÓÁÏk_äØøÑX”„ãmdÎ*¨Oë’¦TkÃjÒl®€ó<sH»€¶Î¯ŽÌí7‘g¿‹NÂQŸßú?Ñâ|Ï¥/÷¾Õù²‹2ÉœÇÙãwk*Fî—»>S¹3ÒŠÎ—a.2n¡ôñü‰${¢¢ñ*[º´¢Ãe:$ÿOæd
+çúÊá †¿‹qb3»”Á·Sí„	µ®dtCe"éÜíWéqTé«uy£Þþ¹ÒÔøisÔZª1žÉ²ýò7áaí
+endstream
+endobj
+345 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+343 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 345 0 R
+>>
+endobj
+348 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 474
+>>
+stream
+xÚ½–?OÃ0Åw>…G§•SÛñùÏŠ HŒ(aB±ÀÐ¾=Žã6nñ9I[1µ½¸—ß{÷b‡ðšsòNÂÇ¹m7[G\í4ißˆµ„iY íÝ3eì©bÊH ëê¥}$œ0!j—\8§MÅÀEeÅœ‚þw~µ_´£‚¿~í:úÝUCß¿‰Dêãú®Ú}|+òw˜«"lyöÐ2ý—žÝ,¬_KŒs¢1GMÅÀ2ÿ›…ó‚&Æ[ç/ê¾¥rQ))•§S;U:‡f^ý¨'ŒåC5ÏÕßaU²Ã[†åWiçú¼
+Á% bÞQ•ç¶c‚û½ÁTMÎ*<$ëI4m9>•=šE¬ÖY6›°uX"°NÉX”UIsh÷xnš’9üU_|P0«¼7£ÐTÒÑ0SQ“S+ƒI†ÁìATahšÌ¢ék %Ë`¢,y‡F>Eœ~±«<nT2˜šÙ¨þš›Dôd'¡ŒˆI5a¯Üü{xá›u.¼Þo…¾sL„Wç=ã×NoÈÄ™éEvK©±ë³ãß’„–ÊÀrl—(SØT 9&ŽÜQíf‡—]º¶†0éjkÃbcCƒûöæ!Š
+endstream
+endobj
+349 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+347 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 349 0 R
+>>
+endobj
+352 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 499
+>>
+stream
+xÚµ–½RÃ0€wžÂ£—Tv,Ù^9(wŒ\6ÂÄ,ðö¸®njÙä
+SSE‘>ýX²€@<‹øs#.ÇõÆß{ã“°ª·Jt¤{‹b¼º—]w·ê”‹rXu¨—zõ0Þ
+R½Ï´œæñí}’Ó*|òbûJ*‹3ííß$UŒMQ§ürÇHÁ‚µ&0vÎmd´ƒÊ½ó÷—×Û$±Köeæ…~¼[&!&5{|˜ð$”™4Ãª°‹‹`M‚Ïz`âo@FŽ\ð7Áxo·±‹Å$ÌyLº^&ßƒNC=©n4¯ÛþT`Â?Ž¹lš\<",KA¹Ú†mÝì˜q¥ÐAû¼Æ~J—ÄùAiæ•2§ç]BÌ|™•|Y:9ù™@˜ÄßÒrPƒª¤,¦#àf€!¿þAšoš]ËMÜ&p…‘Nas–ÆCyÑD#ÐDsLª©Èæò‘­©";×­Â$ÆÍ}ÖO‚æÉÉg€ÂðãChS[ßÜ*,/jÓNÇ`+›b±ØP›¸+„ÒE4j6Ô/Ð²å¼K¢®#š6â/ÐOÎ*¤A¥cRëƒ*‘7¯gÍËœá.sÍhâ¬\sÑü[óâ!Øzƒß·`…Ô;+:í{ç¢ë£ãëñìÌ‘8
+endstream
+endobj
+353 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+351 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 353 0 R
+>>
+endobj
+356 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 515
+>>
+stream
+xÚµ—=sÜ †ûü
+JÉtì.¨ÍÄÎLÊŒº(Ufìq“nòóƒ8|Æ«‘SöVï³_p
+ õ¨ÒÇgõq:ÝjFVÓƒòfðFi¶ƒ'5}úÖiýµ×Þt·ý÷é‹¥ÆbÓXèìò ;'˜ŒVsÇ?~=ÏÝï¹ö¼j²Ô™b}ùþ²sÿüôó¼Q÷{…6ù(-k¤øP˜óF#
+C}ÝâÒ¾HÅÅŽ™Û´±çºÔÐB†RV¨ +×/Æ×ÒòšÖeZ»'¤G¨,!9Â,'!#–÷ôšƒMÕÆ%‚µã¤ßFæ5l¥ÄùÅŒVzEV/(¾Rþˆô¦ÒwÜSf ®Ì
+ŠíK¦É˜%-QŽHGa$TxŸ,äš9#aFZ£Ù«Ð„à;€‰ß5‰œ‰)“nÉë±D_6ˆ ÚMÕŒeÿIy1ÑúFØLGèƒOc'ÆZ íßJf7|ÔUi]pS;Ê¹¿˜žíqÎ&pcèLÎîõªAû³KµT=XžÍÞÛmµ”'ë–tÄmn,N_’FÖË–/´[8¦=je\Wn]Û¡Fu©N@à6´J¯./òØÞ%.]ÐŒmuÈÇR™ZòlÙ¦4þètO—¿†x^i;!$'’ã»éÃ@ÒÑü
+endstream
+endobj
+357 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+355 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 357 0 R
+>>
+endobj
+360 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 513
+>>
+stream
+xÚ½VMoÜ ¼÷WpÄ°€˜•r©²©ÚcëžêžZ'ŠT­£8ªð¿/6ÆkoÀë­ÒV†Çã™™ÙyLx Ããx_îîPX	PÞI±¤ 	†%åí7ˆÐçeBrø£i+¨«(B”p“qÆ!÷‡)¹.>+ÓO]vô½ü@”b5;“ËaÙ=Õ{›xÐOÏuÛ>6G;ÿx|©êgßöÃXšfn•eX‹_ÜbnÍý`d^K¸£4?ë,/lÎþÆ>Œx@Ó€ª(iã0¾uáÔü;Œv›è¶ù±o"*3ÃRZå²?«áaÒÂ¼ØBX¡È	J7¡õ¥x7Ûà¤´Ð)x¾&8ß&x§÷7móëw]A«}Ú¥ú-´rjä“zN‘sŒäjÎÜ×£!­
+˜bŒýµ'¦f4ÒsÅ*|iœÚ"dýÚ8ÚšFŸæ¯x˜J1à:i‚‡—&ES‡@f’(7
+†l<´æj‹uõf_„§}~Þ ÂŒoF	ñ([÷0M…Tj º÷]º&uNãåV9²¦»:K]’|¢7x;ˆ-Í%YƒÅ–R^ê)oÑÅj‘W´µl!zyÉšfñâæ»¾g°XÇ3*ûš.âEjðÿ¼»ãÓåÒÀP¸(†¤Â~¶Êw žZO;
+endstream
+endobj
+361 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+359 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 361 0 R
+>>
+endobj
+364 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 438
+>>
+stream
+xÚ½TMoƒ0½ïWD=AGÒ$%„TÚej;mÇŽ–¶–VHªRMåß0_]¡T;ìdòb;öó3ˆJÑæ	=z“¥BŠ(y[$‘a‡)770^™Þ¢3FTb×¦ÔHµqÒ¦‰Ô°Lì¸Ü®AgÚxtç`B
+CŒ9u’“‰Æ:>êÌcm¦€”IóÏ{0¼ôM‚¨ò ƒ§[™zªP6¼«”´s+Ý¬ªS3—y‹^º÷gðÊâ´?øIÄœŸ££¿óíp§_€c²ºåS¢ÊË×êÒ…x[œv–’Äá·¯xãOme¥V/Ë…¬†æ!ëyŒ¶ŸAèoF½tp¥Út¼Eº³!Ý…-š~[d°ßl¨ÛØÈi|f`çº”@ÎÍx'ÕY›¸8åp!ž
+9>Ú’œÃb3£™nøñnMüY½—;€«=>Î«†¸µ]©á/R¿˜®º"uN¯×éº 7J]Ü*uõRoÚ›
+âB{Ùèöq^†i3’}5÷¯Ô‡Ü“¥¨ÿÖL8Ä•Y­ˆ]¹ °…w÷"i‹
+endstream
+endobj
+365 0 obj
+<<
+/F9 47 0 R
+/F5 22 0 R
+>>
+endobj
+363 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 365 0 R
+>>
+endobj
+370 0 obj
+<<
+/Encoding 7 0 R
+/Type/Font
+/Subtype/Type1
+/Name/F10
+/FontDescriptor 369 0 R
+/BaseFont/NXNDGO+CMBX10
+/FirstChar 33
+/LastChar 196
+/Widths[350 602.8 958.3 575 958.3 894.4 319.4 447.2 447.2 575 894.4 319.4 383.3 319.4
+575 575 575 575 575 575 575 575 575 575 575 319.4 319.4 350 894.4 543.1 543.1 894.4
+869.4 818.1 830.6 881.9 755.6 723.6 904.2 900 436.1 594.4 901.4 691.7 1091.7 900
+863.9 786.1 863.9 862.5 638.9 800 884.7 869.4 1188.9 869.4 869.4 702.8 319.4 602.8
+319.4 575 319.4 319.4 559 638.9 511.1 638.9 527.1 351.4 575 638.9 319.4 351.4 606.9
+319.4 958.3 638.9 575 638.9 606.9 473.6 453.6 447.2 638.9 606.9 830.6 606.9 606.9
+511.1 575 1150 575 575 575 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+0 0 0 0 0 0 691.7 958.3 894.4 805.6 766.7 900 830.6 894.4 830.6 894.4 0 0 830.6 670.8
+638.9 638.9 958.3 958.3 319.4 351.4 575 575 575 575 575 869.4 511.1 597.2 830.6 894.4
+575 1041.7 1169.4 894.4 319.4 575]
+>>
+endobj
+371 0 obj
+<<
+/Filter[/FlateDecode]
+/Length 192
+>>
+stream
+xÚeŽ±‚0†wŸâF¸öJ[©£QLM7Â€Xt@1€aóÙ¥`4ÑåþKîË÷päÎ0ÅÖ–¥Hb,ÁV 	—
+"-|ØM\åZw+]ævÏRö¨D“@$šÈŒò!þaH¡4À§û%Œ)èûûŠ±a°ìðÆ"ü(z×ÖMDƒeÁ~»HŽé·èùW#¾-®UmqdÞ&‚“ëç¥©;œ?¸Öv$‚HI…fr$±'`k/yœJë
+endstream
+endobj
+372 0 obj
+<<
+/F6 31 0 R
+/F5 22 0 R
+/F10 370 0 R
+>>
+endobj
+367 0 obj
+<<
+/ProcSet[/PDF/Text/ImageC]
+/Font 372 0 R
+>>
+endobj
+9 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-33 -250 945 749]
+/FontName/UVGUYE+CMR17
+/ItalicAngle 0
+/StemV 53
+/FontFile 8 0 R
+/Flags 4
+>>
+endobj
+8 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 714
+/Length2 4182
+/Length3 533
+/Length 4735
+>>
+stream
+xÚí’gX“Ûš†C‡ Ò«Aé„H/¡JïEH€P†€t¤
+JW„ M‘"‘Þ{S:
+"*½I•vØ{Ï9sÍ>óg®ù7×|ëÏ÷>ï³žu¯÷ûx¹LEa/G¤¦+*)&)RÓ7‘”IŠI yyÕ0H8å…V‡c‘r IYYIÌ×– IÞ–ƒÈÈ¥€@^š—w åâŠ	¨	þá’Á<‘”Ò‡c]‘žW!Np©—
+‰` “?¶ø€L>HŒ!JJ‚(',Èé‚BÅÿ`ÒF;{¤ÿ’¾Þÿlù!1>W\ +NAÐ%Âí B â^W§!¯XþÇXÿÕßÃ5}=<àžÄÿ1§kÃ=QÿaðòôöÅ"1 }/ƒþ»Õù›>òõü{W÷@9ÁÐ.HÄ_ÊGåD¡°N® g¸‡òO‰Füâjn"ˆ›[h™ßÕþë“þÕ4‚£ÐX³ ïÅþáþ³–üÏúj<”?ÈFBLBBòÊxµþùfû·Ã4ÐN^ÚdŠ…£pâ_Â¿C©ªzù‰B  Q0T$+IKÉ†üWŸ9uß©­‚JHHHËBÿT|1$ûç_pußÖÎ¨«é ‘þH'`V6ŠÀ^„CøÀa¿mò¦eÃð”°ùÕæsèa.ó‡¾J±i·GÑîFû3Ô¿×žp)ÇV‡êË'µÚu°—Í196Ù|;+Oü):ÊPkM(Þº…L¨··©Î…Ù‘Ð|ÙCäb½[v»¹Ùð§“½¡-ŸeÖÂ-ý35Ë¿7äœ&5è¦ãì«HÑ#jkÖ€*0Cˆg$úÂü—Š¨yØø»;îKÙrÉÛ,ãt‘ÕËq»¿Í_8§ž~!ž8Z}33<À0Q’½.UD^yóGöÈÎwâÎLo_hôæ!%B«ïãË*]´âlIÈ«8ú˜†›Eé«Ÿ’Î-*Åï	C²S’=2Ðéd!/©ƒMû…âIŒu`fÅ¸äCÁ¡q"?#[æ’â·DSÐkºlªz× ¾{iYí)^ŽÜ¼â3àOnyUád¦ýñîÒ‘|yšŠ„Ã%U°íý\\°;ãÓD£¢,9?žQNÚ—¼À=;T	i¦ÏéØ”uLNè½fe¶ÆlÛÔÿ¶Æ^IñL¨ÿu\~±#er­²»QJ¬æà¨r@ÛB'3cý¬»1r†L´ï!íYm¼CéÄ‰F,Ž|zD³ ÷ZrsR¼°@_.=ADúœ#mÅ,Å!þe©ŠÓF{»®ÞÂ‹Y=TÛî“;åyÇÉÛtÃBêñ³+o¨¿¾ºíI›J­ä:`ºŒá:àVÖó7‘Ë¥!õé+`¾©BEz¹ítnéùKh†®ÙÏð ‡6	L;më{|Iñ‚f;û¢—	Ü:HéRgO^™lõÙ +guÊÖvéûÂÃCq=	£åçÑˆxÎ±¬SWˆ*nCØÖQÄñÂôâ®OpÆýì]Üy_èÝÌº˜<ën«â±Cè‡R»µ‹O{ñò³s|ÇøÀúµ<R722M—X	Z1­ 2'aãôü¸ô¶·R.c—aDRXk[
+„;ž0ÈŒÈPÚ}öîªOgX53rÞ=Ý×<Áîˆ8â6RUº8y”>GÄÜ3Ÿvæ<ØŸÓê3×¥‘x£žd¾¿Nš!Õ5™4¾w{/0ï°Z'«oÿ§ íÉL%N´,½œ!ùD\Æ„ÀY÷\06°ë‡¼óªvOxÎáïTü¼ö®Å†u$Mt®•É®,4¡°E_­d61¼úé·‹^
+ó½œò"Gg¡Ñ]¥IÙ»Ílïà¡ya;ù÷sL%Cš‡ÞûQ‡zÌŸµ5û(Mn·74†ïçTÌž®z¦;V6E6R:M04, 7ŠˆP4¼pÁË˜Uo]MØ¤ÊŒÓSÒÇd¿vU) .Vz½Þ%àáîRì³Áã ô((IxÎC*…„ÙžñqèÓ3ám_X@íí³½åí!’E6(ª‰FI	§®®`R?ø=„mÃ¨ËÞ¡W8©`MC~ áÌpÍœªZ†¢û$ºƒé¼­¶´uù¦„púv2 ¡ëp¡ÆXÝS‚â9<QIa–À¶o~55h¥ƒµßðÛj®p}æ¡ÚÚ‚•ý5:ÑÕù7ìKøïóX—ÂI<.Fj_Ã¨“fc¨i»º4ÿ¨(¯[­vVa¤I
+&ßy0òÙ%Æ¦Øb%ž’Ä:·rÙh‚d…ÞrøiäâM‘ü–L(·?m³ý% ì.tÑ¼¬Ö¿œš78ÿ€Kº²ÓÜ®RîÆY—òtJÌ9.ñ8pÞePt¹„L¿T:÷ö·>É‚ò«$…9ï T,
+gù÷yš(ýHþe'¹©ÿ;«ûU"Ãý$(Rd¡ý<$lñp»é¤‚|òü«þáóÀY¢_ª`Ýu.UsÊkôÒ‡¨®˜ªãN&IÄˆÛ¦a$³f³@ñkÊ "¾é atv×Sr™¬¥’ëí›;„j^Â‰íG_àÒF¸¦«ßWzÞB«>9µŸÇÓZ3KB?|6c¸ãüñúB€÷À‘wdëIßI×
+†˜À,ÿCEHLqÑ+€íS/ [§HO4ÜKfw–™û±4#ZO7öF)›MR[NÑt'”ê8Y fZöùù¼*\x"øày3¥Ùû¶åèó»­»Û‘œLtòe²“gGö6ÅÊel–ì›A9—€Ó{‹üv^%LÏ3+
+çë}øËª„DÔó7\	R5P¦!ñe!ôÞ®Qf$èüàáÁY4êŸ|)#ÿt¡¶÷2wÒL×íËà{AÑµ£–¹ÓP=›îb»gäË+­Óî»ß,ªS¡±Ä‚Ô‘.ã…ÉóÜEfçö\XË3qD¢¨ÏOï~LþAÙ.öz5'{ö²žÛÓ\ÊÇI‡XÞëØJ›†–¯3C¹}	ŸÊ}¸æ}_èjzÃï¬9™†
+ŒŸyê‰mWc¯çõo¾¡r>Ê}p^¹0V£ñýñb…ú#7ÔÑÈcºŽoêÞ¢5áÝ`¼Uøû¨ŸœÊD¦ÏÎ>˜>5Ñ«àÂšh¼!U	Ø=æÎ£=ŒÔfÚC„ó„x,Æ~ ßšñ›Qá”¨bä¨\ =?÷¦¡uïhFõk_B¿«Û8x†7éŠ¾Íø¬âÌïÅ¦ÄùÖ÷H(HNd(	”(	¢Œ4)˜[ÍLœ–¸:NiçÌm8Ï¦Mp+Ú‚£/¹oÍ²´	¯åHìSØóI%x9à·ªbÄ_VÑ2 úÄªç´ì‚´u†Þ¤&»-¥·MÇûv¸S£/IéŽküO/c½ÍÄrIo¹Ï˜íøEäëâYÞŒøI[Îæ¼oqƒãb9¹ü¤‘„B¦,P&n:â³²­À…©ì4Çh-ã_ÔÆ…®é…Üœ‹ŒÚR¸Ÿ€Sº¡R³Æ¢›íéjÓõP[ëZ¸CöÊ"ð²¯%ŽÎ€.Û[%Ëe\SŠ5þ…s½Ù‹'×ï2k€›nÝI“|Tš7gQhe7$–ø³ûIk^]qÍmþ¾~¶]©ìŒ'¬_TŒµ^$E»¤Y¬Ž—£ÀbÂ§³¬—5>¯”ºî­tÜZ(ðm¸¹ï;p}½ ,Ù2DEÁu"U^E-@CJ½“yCÇpÔj+´š>XwŸÙ”ÀËqa‘MwÑ}
+=OølDÝÎ'T­fè³ÐÏ±õ¼VÝÇ?&8ë6Ž<ÑcÀ·›+ÔÍÓæ¿¿ˆ"d	ú\~n·4U« 6"}¸¢ÿbL–®ÁuýÛiÛÙ¯³Ù“d¿M9ÿ´L{\	¯q:Y]/‘ßÂ<;¾ÄÇ€R<GG‡ÐÚµÔP¦5~J6Æ©Æ=Á¸³ d}CøšÅ.x£>Ò´½.“V!5ihÇ”s¡îñ¤‘K?ð«Ÿ²šjt#§à‚•AS²p$sµb{%¢È…	8ø¥\mÜºq›ìYíxÅ0D`¬¸óVkg;_þ+OY¿2ì)ï‹`®‡f½•q¥	pmJÚœÉOZÀäãŒýÛÚÔ3iÓÇµÔA®FùÆ_õ£|±Š3BÆ—†_FÓIÒ†‰8;ŒÙ€å\Ìuîí­›ZÒ	NZr‰ï
+9;è¡o¿„Çòðè=¸”õÖ0\ògßO–¾Éø§]ÞýÆ—ËÑ–è¤S7U`Ü<Üº¯¹ÓU¹¸š‰v™LïàòÐÚ¾	>/y`¶6bºãµ±”[£·Ê1#;]¹ö>(’<Hjý!szB25ÀmÀ&ÂêKßel’ïýËy>ÊæE¯¿A6.býAÈaÉˆ­~ðF }æV“J@o!wÇxîÁ°êD2•yEhû£A¾]Tq«j ¡×”è]ù\ú¦*þô§—”`þë2ˆ…íåöÓj)ªîû¸™	¥ä«¥O¢/ô5Õ&EüW™]4ô>QÏÝ}4dš­`8<ú]='e>£	QbÊÎNúI„¡ëÊ§ðôÑ)ß¶'DSÔSDöu¿¡-ÑS WÒ7Q¶gçÜ‹É7fýA¦XÈÜõ@~gü{¿ýV”|ƒHÆÿ·´q»Òô"1y¨÷ÊëCœl­:zÑ{¦ù¢ÃpÄç!ÃS¸ÑÈÑ÷º—Öàú¹XŽu°“ZyóCçˆ™£r¯'9Û«kþ¹-oã…°ÜnØÈ7I½Äa›štøXÅQ1À¬	aŽ&`z¬I…ë)N/bJ}®mPr¬u…qÂ?ŸV$cÂJƒKÇ¹³RB8ŠåxÏ(ôßxxL´QÔýPx)‡æ’+jOKÞ.0y”¤ðã“=iFÂz:Â=äq?+L•¹¼¥¥²M…&Œ½+îPrwYFgøÑ3Ç•x`˜½ÝÀ›l­¢ÄRÎÁ›Jö û–pd=@ãøwOªà»q‰=j¹nÿ•FÆ^y‡ˆSÂ†;›•ÙBù€e‰}Kß{ê©»_'újIÕ¹^ÅÀ9ß=s•µªYTÂb{ÂïÒlßóWgÎXµÃrØzS…i>ùaœ¾—ÕO6k„¯là¿±áVÔM(óI{·dÿa›Ààˆà*¬2nkÒ{zû;}ÜÛØ‚qzž»_·EßžŠE^¬l™“Ý1ä‘¢8tß•šs½¿ÉüÔÊ™E1:nÅ`Cs-LÕÚñ& µ?IÛ±ýM¥\æ8­‘üusÉþ¤,<dUbäeiøzWË¼”ÛÞíŸ_·›[ZGÝ³nt‘]ßëé=?‘Ô­)Öó_ýØ?Ãv^pôiÒ\-®¦ø:C”tRŒÜ·}ŠCSÒßïwlýFIÅ·ú·#¾÷ÆŸfm7öÁ“<¹ÅÈš3P;¿õüå;Ãz7·Š]Þ›/üùqt‡Á5³|x²'œÁU]Y¹¼kÍ[—yE¬õøU>_Ø”g_ñëÒúZz‡y®GG}ncg‘YŒ?Bì!M²¶[–{Ì]©}@byýšF÷„7=\î|´où	¸CAÎ#Å~§çïÌçkCcœ4M*u™Æ?’¥Î2ÇÛŸîæ!D=ú©™ZÊ}<»öðVü>[ëÙ¼›çA§Rüxw¦ä8_,Ïäcyµ}ƒc9Ž7SeÌ_òÄù4ûòü²Ø?Ë„UtÇfŒC u 5£ð ÒÆõƒ£¦ŽÖküï¹7æ}úü©²¢`wˆ*)˜Hò%ïòzn^þ êy˜Áj“HUÙÂEœn!6	Ž˜<XÌŠ­<:¦B	¶ÞSÊ£U¼¬™:Öh# í÷³¼"„iõîZ{¾´k†Z<Þ¤:Ý0Äï…#C›û1ûÜëU4ü=QÙ×ßUÍ~ ®ðÝÅ7¤Ô.l”8 aØÞÝ/|5î“ùýÍr
+'™éË°>é¢Ø³k}-þ®6>BSjIuå¸’X¾çá¿}œ;F»ÝF sn<¶¨*²x§Ýá+[så[õ—5j‘P^ˆ>Ñ> dVÿªÞ·ÆÆrAÐrFà(ƒY«kS“–jï“Ó~c7–ÊÇ|"‡jJì®'¶.ÇŽ1ì=,;žÈ=øÚb°¸Úf~ã»Å³.*‰ÿåüÿ€ÿNH8ëå	Ç¸ÿ ¸‹<
+endstream
+endobj
+12 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-34 -251 988 750]
+/FontName/HGRDUJ+CMR12
+/ItalicAngle 0
+/StemV 65
+/FontFile 11 0 R
+/Flags 4
+>>
+endobj
+11 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 714
+/Length2 3898
+/Length3 533
+/Length 4444
+>>
+stream
+xÚí’gX“Ûš†A‘‘:„Þ6%ÒT:H¯¤‡$@ bh¡KUŠ…  Mé¤J€J—‚ˆ‚(Dƒ{Ï9sÍ>óg®ù7×|ëÏ÷>ï³žu¯÷û„øL-$ÕáX„ƒ—K•AšFæ`YXJ $¤‰C@ñH,FŠG(ƒÀJJ`ºHV¾®|MQYF ib½pH7w<HTSì·K¤ŽFà0(dÅ»#Ðç!0(
+d…!ø )H…™ÿÞrdŽ¸‹Àù"àR  ‚#axÂ‰HÿfÒÃ¸bA
+Ép¯¶|¸»ç\ ÑsN1Ð9%‹A€àW€´1öü4Ä9Ëÿë¿¡ú{¸Ž
+eEÿŽÿ=§kCÑHTÀ°h/<2ÂÂ8Ìß­Öˆ¿ØŒp¤úï]=<…„©cÜPÌ_ò®Ò7Eâaî W(ê.âOÿâ|n"HßÖ5×‚èKüõIÿjšB‘¼e€×¿b»ÿ¬ÁÿYŸ‡ôÙÉHÉÈ€ÏçëŸo;LÃÂ‘7ŠCqð	ÿ¥¡õ”¼&’”•ƒ”A
+ò2ÁÿÕÁ ½}zZ y%¹?U˜‡ÀàÿüÎïûÏÚy>ÂdYäNpKì;ï½šà·n~3i
+h+Ü|,|GÚ¢E]’zïåiº7Ew¼ašq$Ê«SM0RIzuàØÀQ6wlµ[ÞW.°&9ÂTo{Aºã"á¥“]­D®| ã¥+ó;ð\¼Wûv/{ÃÏ‰~Bû4¼ÌV¢ýõTíÇ¸Õ2eØ„¶ŸAŠD¶ÓA%æ­&Ü–‰- J–)~-ê²«&		«»ínSSPŸ;$Å¹·\»vûö•wƒz…ÊéAe^Åùv1õš,ìÜu”ö÷4Å¢%xn–«àÊa]Éñ[«6Î¸¤oN©vdtiÅ±ð6¶à&}U4H23T½I”µ­V	ò½ÇaC
+¸°e‰)TÓR;FgXGt½a-ñÐÁÌ·¹÷qS:%Í^°¢CÛY~êÁûë²EmÙôˆûWe‘Äñíéª¨9ÉCr9T6uôM ˜R'®Ýâ¯Y·9¥4ïìn{§¤ §Ï~j¹\œh_š&—Æ*Î‘£6±û0EP³}>ýÀÄ¡?2õT~¯ôñòAÂ5×ï¶§lÓ$í)êñ£%Âs`[žw©†Ïë[ÍÓÆï:aŠFyÇÝµL*l­¡ÔRÏ£ïàÍbv\k¹/¸aªÀÍÔ%k>lÍ°-}Î¡Êu§|B£cE=¨¦Ã´´eC¥¼E¶Úvü³#;÷ÕÄ+q9Ý7ûð°$9a{á1p™jTÛ`/ÏÍE	"ÑÜâhM#|rËâýHDë:«£c«Û(GÎ:±e·…É¦Ÿ©ØF³6Y"Á˜ádqÆ?2§²xïkeÞŸUC_¸z-÷Í‹jc´•ÄN¢ÏK›Ö5§‹ƒ—Oÿ¨¸(R2ÞpQTß,HxÁ§©ï äÅB»þWê8ÚßŸ¬lVË®Þa°K ð¬Ô&W)ë!‡.Í·Oä‚²d–ÑEÄÒŸõ‚Ð½«/’âÑÊR¤‚¿l@Y¦YR‰&jJQôô[×ºh‚p%àS\·6‡g5é1ÑL2×urÎåöÎŒŠÿ0×Åå£ºv!¯§8åãí6\üý]Þïƒ­ùVG´A™¶ƒ‰fÖž	¹ÅäÅ²02¡çš˜üÁn±b¡¶˜„’³ùÖL»Oô$1Ú ‡­ùÖõ-–Ìº5tzà/o£ƒÝ	IÕñ?NÃ6çÅz¾qåd7çi!šˆ.éÁhÖ“‹ä³)>Í„4>Ä\“—Ú„›ÀAÊÆPßÏt«Ì»fí(WJjqVó©u›“rNÿ®—¯>4¡<5	Ð§1m³,ÒÈ[š_B>Oî¼ÆæS°Ï;›ƒ\ÊÚï«®Õíè£ƒçY’1\ïš9ÐM›¾ÖwJûÑå&zjð¦Ù'Ð¼Qu6«îµëgù\ðè*ñt-ªl x¸8±ÃçöÁÕfÄ½qU*6AI@‰ð ¶P’•ÄwF/ Ó·ïùžQo]ô^àpBëS#Ea?¦~F·¤ ±³A_mZh!ÉyÌ°-£öBˆ£<G3øÄ1z`¬°„ÅHp©!Jg}£`7WšŸÝ‰¶}‡àÆ¥ƒQÅ®qÞ—¦k­pW+<²¶­¿Êê‡£ª¬Ò³Y¶dã¸sûyz¢)šÞ¦	îh)g –Ø,Öy¸ü8íÊÃ(›œªÙdÃNû–ÎÊ ò}æYm“›ÂÄwF$ëUñPÞÑþƒr½0×ÂòXÄ…?ÊÄ(éPg„pÂ°eý÷3£=-²­Þ÷€#óß”r¼8^ÂÝ3º
+ñ’ oËŸÙj“üq¦¿†,Þý:ÕINMXwûk¯é$M/mŒŸ*²Ð'C–?Ìðße/åû$Öœå­^©þà²¢]®à¢]I_|yÏñ®èn…mß÷»ÁÑŒøü^ Âkõb.ç¨Øj>Ôõú^ÁfêJ®i…+³]°i«G	ðÚçû‘b¨Šéüœî=1*Ì9r-ë¦L¨Ð-Á±¾“å?‡_×öqS¯ÌJûÛr«8ÒÅ}à÷m¸•P³^{©‰!Ž&šEßqQ9"ëàê (®–k_êÊbHýÀ"È•c´%H¾Z}±ëôÞÌã‰i5ëïÝÔÍ–¾m?I„õ‰èËú‘YÉh×
+1úc“Ãbuÿ`Wjt¬H%{Û’1¨?o;8AÅY¯Ûz§7nð½¬`ê#¦I™é°·9ÓÌ°ž ›×Ù¾‘Q¤rðÖR¸õ2^³9%|¸´–[ÿfÁ%m
+DÑìW•pvAWa¼IÊ`6³¾S4Wvè,Ê-Ú^=‹Š¥Æò¹7¬K¬›Û²ï7|"Þ¼~wän»ßõçÛä	i£3q0wsI¡˜Ø/Ù=§æisì«q
+<å2ªÍZâ|ü¯ÚbñÔzšL'92<!˜>=“'ê±t¥gS~NŸlL)%ÒRp{(ç-êû,Á—^d¢ëÃëFÖ‘dÀ+AÞ>…ø$ýb…ëœ>2ùÌÛOæ'Zfv»ŒKƒ½†?WèqÆQŠtq6½‚žÎAçó8oMÉ“‘ÂË•3oO¯ý<fèzà<™ñÛdÈbýsNÀD{ßPÃÚ,>!@£yiŽ¿ùÚŸ7m!aµ˜VhlÅIÞE„rmxIÍlÐwÀµœ…™àö9dâÍZa¸ Cg;ôÓSMR¿ßÒCbåºRºzXlÝ¶LÌÒÞûŽ÷‡3í8†Æ?,¥ËŽ:‚g´>6Ö{Ã–Jæ)\6æW+qQ½ºBK¶ Õ*ÐE6E?ÚlÍÌÞtsÍºò†ÛØê|‰­p+¥Kidú(¼MoyÁf"âY§LH2{jQ)Âˆg/	$z•-· ñÐG•ž”XžÖö¯—×ÛY
+¶¯røÑCª‘š²sCðH¶ñãœ¨"Í±—xäa¢ýåoU¯d´›ž
+ë?—ê‚G@¿ù)ª†4HÓ»÷¡°‹Cnr‚†yÓ±P:	”uC}ùmŽ½ìt)öþKÿõJ6D©š†àö©Ü5¹XAwíøƒ_ëÊŒòÓ­5‡áJï<?¹#KgQIo–Î¦‡³Õ« 6Ss° –öm/ØS•Äœ(f'‡ÖuÖûxë²†lW$Î4­"¦ú{RiAùuÉ›0»Co›†¶]hÖª3ºbTC%= ×Íªû–# Ì’ë?ë™`_¿läòZ¨”±²ˆùõ”™ò“A¾in¦ H ªR0—ÊÓ¹ êñI"ÊéEòÉþ4˜Æd,ª‡L«ÆÂÓš¤à§9U-©‘(ûœÈ>#§PóõdÔªÂÍwÒ¼)53ûŒ9Qc«'iLÜüie,:ä¿Õ z¼º{Œ)¤Ð^—»5nÐ™ÒTao*{´r¹+©œ.’‰ñÉ3®ùžd÷—©ƒ¶ŽîY*Ÿ–E„j
+å~{ÆïÝAÑ‘³‰;cšKæŒïÃ¬‰zêìf4)6¨Déµô‰õK„…²MÕàI¿	Ç”7#G‹Á#ÄE9óI~²nNÁzOÝ’¾Pê_.­'76ž„ˆsïxÆ]Ó9=:µÿÉh»$£ºœ‘UN¿’Ù–ú0ùp­(6b	¤ÿyfÕÂ¾æn¤ÓP‹^S ±“‡>©QÐê¼ÁÚ[f4ÈheÄÖ”÷ÎËÛÐ“ÐdÍÐñfÏ½«WE|Ý>ž”z¦ß!ô>æá¬Úgœ;˜î.ú©nGE§Ö1û(è»Ó,9Ð×ºshqá÷yòX1Uæé\·¨b¤qé!ëeJïž-=é
+¯v;‰Û±*“…Ø×ü/ŽEdóy¼5þ²”Ñdµá¨VoÈpÃ¹_©Oò:¥¿ä^r€;kN&a¾¶îHÍ mýs4°8÷ˆ`x*ÀŽ6¿¤rÔÜãð-Œÿ°ýU³UØrÉeÂÀÅ)õ<ý9•^pïÊ¶ãu»±K}ÚÒ_=ðÓÄK/´)OÕÖÉÙ_r+®Û‘Š1\±½†:euH¥K{fQÖ!¼JTñÉ ’¡ßœ•#Ì_šuO_²~'¶Æ¹áîqÖµ˜€%Ã<Ú>p Yuøç¥Ç×VêrÕ£æCyºö¢ÆQ­t¯ÃhØ¼OÈ ð‰ˆ'egJiŠSPIÿó±Žýw5,|úÚù]i	-ÃjùaÛ¸©Í"¦Awœjíñá:Â·ÌŽ•&Ì9Íª¨˜kÃÙýIlÒcBB`}ˆ*vWÌû&Ë|rôÝ5a^ØüÉHµ\`>2òbÍèç}tüJ&"còÍ×zø^B·è•oVa7‚yÞNó\†Œñ!ŠVÔµ7ÒS<ºë¾wÀEÂJj‹y‘D\QSqï³Ý¥_ˆ9ÔHdÂÃq±†Ð/ö{#‡/kÅéÑ–K’åL'|ûÚ(š±lÎ\Z»—÷§¼h™Ôš¬oa^Æ°²™Ùow2QG¡#ÛëñÄ³t¯ò±ŒÔEvrõ[ÙšÛŸTkºM½¯»ŠBŠ'Ü."w±­cp¥{:·\´ÛtÑ[[°â÷±›k¿¯s´jëö¾­–À=*ó1{wzH©;k·mvëCd  ëcîªÀgyfÆ¤yl’²+ o…ß„ ¶S ÉC
+³ÍëËº`œt™ÅT×x-Î5Ü{3ü–èX£‰5•©ÆRNíò¹§ÕôÐZ‚³Ýt±Ða¦Ù3Á×ÉÍ¼–ô'ê1<ÎíÈ‘­€%«×Ò§×™{o‹øÇQ n
+'zwÔèŠˆï[ÚtŽP›„=)sË$fÌvO:ŒEÔMc6"²Óc¼ÒŒ^ôu°åt,g²¨?–ócË´zqßóÂ›%YÙÆû[«ã	&hð<-K©=Y©‹#ÔÞ.“ÙXš5!Þ%Ž#K­§Ò°ùÅÁ›;ñ-iûÄ‡,’µV¼/\cW´÷qÎìùòr±²Bdª1ýzJÜðô††Rå»Œzê„øðú/±;S î¿]L5Á5¿~¼`Òçÿ¬¶ED÷²fÞŒO®ºe¡Wô¤Ó¸øe’÷BoºJX|EÙÔHóIn,[X%2Ó»Uô{Z²(\úèìÙÊ×ÆæÏp0+?âßÐÁ¼½ÈX£Ô,ÖYh1¥ƒpOIçqNÅN­ßw®¾5\þíâÆåž&#J™š‹ô<2ÿËðÿÿ'`(‡Ç¢¡8O àüÝ‰
+endstream
+endobj
+15 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-58 -250 1195 750]
+/FontName/ZMUMXI+CMBX9
+/ItalicAngle 0
+/StemV 117
+/FontFile 14 0 R
+/Flags 4
+>>
+endobj
+14 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 713
+/Length2 2095
+/Length3 533
+/Length 2631
+>>
+stream
+xÚí’gXùÆC@ƒJ¥¨ à†Þ¢”Pš! 0$ JÑ•b*®TK¤ŠR+JUé("TaP@ˆ(‹zwïsÝûå>÷Û}îÌ—9ïyç=¿9óWØ³W1$Ó<A3•¡‚REa c+#gm ¥Š„+(ÓA"ƒB£š @ik£ C¦7 ŽP˜£u4® ÓXtŠ·8d|ø«K0ôé‘
+X> ÿf‰ö4d°TÀ‚ »¯¯v`HÉªp8
+)$à	zS¨pµ¯LXªÐü.“™¶‚AzÐ&ph“ó0°II¦Q!@½àjÖ´Íià&ËŒõo¨~7cB5Ñÿkü×=ý­Mô§@¬hþLH¬hdNýÑê~g3¢A›‚e!
+Éê ò»D	2£„‚d…Aò¼ˆPøM©ä6·ö@`…·rÆ*ÿ¡ß›8"…Êp`üûÕý­Fý³Þ\
+¸ U‘HÔ¦qóþóÉí‡a¦TL¡zö"•L¤“ÿþedD=£‚ÖTÔÑ›¥4ÑÈð5â©”@&ˆ5ÐH$RSCó›JbÒé •ñíl~ðŸµes= 
+’à™Y»)[<ŽH+/ŸZjî?àTß5€ƒ7ä¿½‚^ÉòxAÚ¦:èí‡[ÚÁÃÅg¬’Õ¿Pa¥“Ü¼âÞÂbí-Wòê¸ïòzSš0­òQMàUkzÆßõp©TÎCŸqß&üò=9Ð¸øp¿dÍ§þGÃä‚rcÛPåDÜä=©ß4äÄ%ål•r~j·1™€`•«#Âý>ýÿÁ@Ù[eá7,úl¹©ÌUÖœ:µà^ÑÓ>§ø‹sEšhFå®õî¾˜HÝ¤>ÁÁÝCÏ¥»LOì±>½7£:w:`*„×6;;Sn`os”|¿GßËëØ'Õ~¹˜7OG÷»òæ+ù=
+ÄoøÅ×»ýn Ž?Œëáéá:åPugüü	w‡„‹ß¬u—ˆ 2‰òb/s9—ß=«îåL4£.ËR×9©üN“?ajï/ÌÄÂwìµáv@•Ÿž[H©uD$KV½ª¾]Pi¥+uÏŒÑM-§b•K-<®ói[9õ½S)¸A1Öšk÷ãô)cB%cåÆtâ®ã&ˆxÑÆ¥àÃÁPLŸH	–÷Š‡Hd¯.ÖSÏõÚ÷”)Ylò5‚ký>ÙýpÜ9&ïJø!k¢ˆÝPgßŸVy#´†¼ýÅeãù¥áBŸ[ˆšŸ2Æ…Yú˜y¦+¸sg “3Žˆ¹¼_%wöL_õY×"èŠŸZïï¾v•;ÖTÉO"µë)øpJLOä¶¨Í™èåuLaµvVfÑ®ç‹e[dú|‘hÀŠÙï²}Õ À•V]¢ïf«ù…ùg@UÚ(ÍÜµPµ<!Ýþ­ŠnâlÙu¯‰<dØÕ¢Tˆ±¶a—°æƒß=Â›Ñê—m¢Õmà6[x:9*êˆ#öÏ,·ê˜ó™àJŽG[4Mž”“Á*‹öåñˆ¶L}ˆPTÛmhó`7Õqa˜ëóúAZÚmåïf¥	jhº,°vì¹Ã7é®íÈ´µ ‹6}×çzµ8ñ#÷®=Ñõ+x“nrtÖ‹](ã "a<$tj›ÚÊÄìH¿­Yjâ¶P‚]Í˜ŽöŸ'âZO9^&žÄU¼¬½HE)bOdv¾scõP#çÎuW\ÿÀMH€ÊWütáz>ß~Ëd™]‘ïÀn¥¸¨[=¿.Ôû~h XcN>¥zµ:x;¿0"ä¤í9¦yBýhŠ¤#ÃüZ4§gÖ~A%5¸¨ÅG=áé	ý6™i³âå<áâŸ¢Õ5# Š1Â'Ù®Ó¯›Ü64§—Þ|;ÔÆ+ÏP—AŒrè¼Íºm…!ÒôZîuí|}Ã•N/ž
+›O´£¸%·´ªZ°q}ŸSjÎòßq8h<,$•U“>„”tþD»|YÚO¨YÌáƒ³ÄŽº¯++ËŸÐd÷%É…1¨—j#æ}R~'Qâ ýàð›ï2.¸I^Kyû>N“sbë¬˜vËÝU!gý?ÚÂ2ë'»áËâcé¡a¦W›2¶™ñõNuðÈ€Iu´ñ¡‚†ÇÅ¢åEëx%„'ž‡5v-¥@øœÃž…VžOéZHî¤ &KƒùÄ D‡­ qU³8”Åñ°à|á’hµõ&keˆQwåÛõH{äÙ©Ó}£kWé}ÉDÌXýáÙXËXwüÅUŽ“â:0ÂvQ¸ÕMzƒ™B±Ëö9Ÿ©{à¢‘Ë/ÖJøÒ)àîu)lÝ
+Ÿ‡“\K¸‰‰÷~ÄzÍ­SÔä§—r“Ú€Ic¥¡?Ëo5ÖôZu)™ðÕ‹ì áEFjbWÎ%Ãskg™YÑnEÄt%¯æ‡‘;“'æB„èIG±½
+}Fm{œ
+‚IŸmá­ÇÊ	o¯}|ƒYùýùì(_ÊÑf}"T+]7r]?*tôeOHe':‰~(%çìñ{å™Öñ¤ßæW§cgæBŸ„³ó¥„‚,ídáaPÀü—­z¿ÂÛœÛÇŽîÖ¥_²íZ —]âK$í0‰o¤os,#tûÝÄ÷ñåm×Z|¡?ç[ß{âã>óî7m!Ç[…bØr]°%¿z˜ûåµW'v©›~¸',x'3°rÏLGíÊ)qIÙ†+xOg6\‹f©[ž¶QUÁó`Jðü¼ÒzJ<ö¨¶DEÖÄ1¾_e U7ì'íµØ[Ðœ½	˜ÁªéøIj®Þ²!ao³.d¸è*bvÚÙ õRkåbÉ?ùdˆÙ˜˜D37YC>ÔL¿ÕIÔ;²„oåòÏ%‰/ëÅ‡·X¡£¡ó¶¹Òo1÷æk¡Æ÷3ikžólcd]NƒmÔ§6Âyã 3ï ]ö¥¥ÇªBddƒš÷+;>vxh¾×t#>ó´ÿ#§}ÛbS¹W³_ÁÜËÌ3e^Ã.š6Ló=°t“*Ø(ÔyÁH
+ë¿ê#ŒCXÃ±Šw{äòJÓ›˜¼/–}:âTºŒ¼ý­»²YõÅ„Ñ¹i¨¢g}I&½÷vQs/­oGC'ñ$tC²àªyÂuÑ£‹šøµ§`~PtÜ OdŽn={6ã}M3LBÇ|WVQŽŠuÓÈ3Mª}õX…Ái^ä­ÕÄXNSœl`Ê–Û’"8˜3ÞtÛðÂGU¦íž–ÚöK#ÃD}›ä/¦¿ÑÓ7nÇáNí7›ïz7ùö~ô1žåRk¸4SÜ­fÍ!&hË…Â‡-]‰¸¬#QÕ=×•Zó¥Ÿ³=åÏPífôˆ‚OZ©Ç·X <{ÿåÿÀÿD 	‰tÍŸH÷ƒÃÿ …Rá
+endstream
+endobj
+18 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-39 -250 1036 750]
+/FontName/TPWNPF+CMR9
+/ItalicAngle 0
+/StemV 74
+/FontFile 17 0 R
+/Flags 4
+>>
+endobj
+17 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 712
+/Length2 7700
+/Length3 533
+/Length 8251
+>>
+stream
+xÚí–UTÑ¶¦ƒw×Á	nÁÝÝÝÙÀÆeãA‚»»»»»»»Cà®`7çœ¾·GŸÛ/=ú­GW½Ôüç_ÿújÖzX”dJªÂfö&@	{;0#@T^…ÀÂÈŒ@I)ê4ƒìíÄŒÁ@ 77@ØÅÀÊ`áäaãæáàF@ ˆÚ;x8,,Á QÚ¸¸ Â¶@'©±@Þl	´ýbjlPµ7ÁŒ €°@å¯8T€Î@'W #Àd
+˜ -@vLÿ@’¶3·pýK6sqøÏ–+ÐÉù/€æ/'-à/¥™½ÀhŽÀ¤`ÿw5à_–ÿc¬ÿÕ¿‡K¸ØØ(Ûþ#þï˜þ[×Ødãñ?úö¶.` @ÞÞèd÷ïVMà¿Ðäf ÛïJƒm@¦Âv6@ ó¿$³Èh¦›ZÌmœÿÔvfÿñwlÿD`RSÒTP’ ÿçýWOÉdVópø¯Ô˜ÿY³üÏúïpœ@î ]fFff–¿Æ¿÷>éÿÛZâv¦öf ;€*ØØÎÌØÉì¿„ÿÎ$"bïîÅÀÆ``åø»˜Ù8\ÌÞÿ«QÝäè”p033sq³þS5uqrÚÿ¹	þ~ïÖæ ¿ÓÝ¦™Ø Ã¯ÄôF÷½KäšíSËJ]E©¹83£×ˆ60Œ+V!AÖJ÷«ÈÎ”"SžhHCë|äyc{<<*7qèÌ':u÷xª¢Žæ0›t ™z.‘m†ºô¹^0¨[·f¹`‡î›!2üæ—¥Ÿî5³Júî±Õ†_áŸxL—ÄÝdãé³kaí¦EÍt0ñ<jY1½mýÙ‚ÞÕï„Ô}¥,u· g0KGýÆ¬û<Ú%¸°ð›÷!ú|ÙÞl&k·+…B  ›š!Îýì5‡ÿså?Ì¤«TÎþŸp1£Ä…Oßjí&/òA·§mséi#ÏÜÏj1 qO|jDzÿA^xâWug‰èrOÖ'hš¸UY<Ô‰	æ¸y?µQïÀéÌ*KPSyG·ä=’¥GjÂ<½«JÒîa6[9t„ÏZD¡ßôxÜÝÙÓUÐ{:·kl2U›ÎP"²ês-9öªŒX€W¾ÁœÞ4²’"1›P[‘w”BFÈ%nr}fÑL¿9	1á&¤vÆM]´·5¬FŸJÖÒŽçP¢òF<	òÜ™†}ÿb†~jïëþÅãÆe³"¨TêL÷’àTô[7Klh¥ÙÙ³ý‘œ´ì´¦Þ[ÆêŒ57ÿº®¸ú¼G:WaJ©*ÕÞ-ab¸ÞkÇþ~<Óµª	2?‰ÀþŽ/º&ˆÀ°ÀúÕASôÎdh›0ŽšáÝúµ~ÞJbfY6÷?Oñ³ÉÁåPB/Hu›RcÉWqª¨×îæöUäžaˆF*d<À³>ˆôèóôÏÜ¹’»Jz¸ÀH4(ÔjÖ[ðÛè¨›,²ì@`Þœƒåfm¿¦žÓ¦™«QFUúWJ+QÊÂWfÕ‘&ŽßcåJ˜†ÌälF˜z âëæ3è
+ÃÞƒQwK=ÊnáÃãGÅ;•È¡+	‹w#eöÐop¿± ¡½g=Ÿ½½ï¼bÀ
+ÆHÝ‚Ôür¢¯³z\°G.9‰Ž¤h´pUfq2»x‚>'„h$)û[©úÆ8ÛÐ Á£Y‰%ârÄW’¯x©ã8œØ»·`‹¸³?°ˆß²UüÂæ™Qý<5Üõò Úyío‰qÊOŽ°Ë Äë4°Ù7~ó~Ô‰Q\óë,ê#»ð.t?ËjÌr®ù­‹•¬lQ=ÛVD«'	¢[8V³$}¡lõØ.*æ‚$ÖÇIM~‡¨—Âé€Ædë—ä§VW7Ï¾üˆbW,Œ~èŒ›gŸxFñ®vÉä÷ô%çŽëÎ„Û_m›üÂÎû*WÜü9KSÕÒNÕ°F´Õ«”IØª»ë{)S¦*¿õ¸ªŸ#ãýRwu„˜Åùóºéÿ Ò(gµHQÆ¼›–¡ê×¡ýÆQ¤ð †ó™ûGøìÍ†ÚN:ËRÉÇL&ŠZysÙ+Â>M*A~YAåªÑgÿ¹Z¤Î5coÄRÑf”rHLŠvÇœ"µ9ƒü#ý 4ÁžÒ¯dë¤:È²Ë1
+WÏôcõsÞ³§£écïõO..ŠØö_óŽ3¦³Æ	ÛOrb6;¼H¢Gü-]gÛk³ßKŽ.VWíFÊ”ÛàKNwê Þ¿¹Òf¦A„¬ñcK
+ ,H§}%±³öã*¾ó’¿R·tÇñ7yí–tüˆ	½8â‡$Š"ï÷ÝAÁÆ©‹”ù9¼Ð+}Å	÷ò%¾ð­»i¡Ø`€olŽU Œ¨}¢vpvÜM>)DÉpzF]n-m:ÂaL­òUwyØ'z#7û‘£–ÇË£zT*ñ¿w¡BÍ/ˆÍÌ “Ö¥Fgø@Mž³ŸceÄö4‹kéuÍ1ž“h¸ôQˆIÂ‚VÎ‘‡%Kã+ëðE©é'ð0f½á2×L±m$¡±ø‡âŸZ¸"?…ÅðµÃanÍ…îžJ·§,‡žŽË“Úþún>›g¶EÔ&èÔ=ˆ¶aØVmæ—éyƒy&m„HsØÔ¹•X²PÒ~V	2³<¦›6ÈKóáoîc ¦{xÁî<$¼M¬nè£qï‰\OÿYµW•NödJån{\òåù©Ãß‚¾¸ˆnÕÕó>Îö¼ãôQ[½‡Hfj?L‘º}RÁ–„ù-ˆºañTR&Õ<ê‡\ER0y°éƒª½0É(`ú3ðÉy—k;bÑ^' 4I“Ó™I‘_{Ëõ‰k¤ÆzÍ©î£Èr"Z©æØÁ¾ßwíFG3XÂáî’fæÄ?YŽÈ£?tË¿bÖ04~o…nsVùOÎLZ}ÆÙ fKÊœMS‹L¹¿å‡’˜ y`…ù„ðb{^Jøfú[oËÞ,>4wRî!)B"£lÃÇúíÛ ú~Û½·ç‡–üœº>0RÈ‘²4®Õâ¥’ëÀýOøò­ÓjÇAN¤xå¬¶ÞrvQ2'”Ÿ‘ùºK]ö¿¼[¶ŽJKt)62ó¢,1ïð«±æÆ
++*—\ˆìI²¸ñl`k#6Þ&g$)¹t‡6J“ƒ-Ö0$AŠ/-XÀÔÊkä¢eé2_âTÁ¸V«s±?ÑÄÓîùW)X„ÆC’£w1‹nIm{#hõºjió+ÖWïŸ%M
+¬¼Ó:ÅìqˆÕdlM»yÓT¢ã©Jãôá¹lÊ¿y[
+mx«E-)™9E™$Hé7âàKìÞ'¨x“NàŒ½s3ÌeºúÞˆËê©çMH#ê$'j'´¼ÏÖú)ÌùxÇg÷ê¹Îˆ¹µ!4€d¤öU=t…ÉTÄ9ÜçXÞÔgšzF.ŽïÈ"¨ž‹é»q»xA„½6TJY÷³pvòâoü/Û£yÁ‡ë¯XuºÖœü¶ñm²o;ñ%BýÊ\‚}¢zÖÚ
+ÎdóÎn4º¬œ–ü Á%F™ˆØ+ô¨¨>d?§˜/W„úi‰lyþÈµ1{?¬•ÇçI´øÂ´(pdf¯„¶¸Ç¨Ž|~’'0ý2u–,±.#¼èß?Ë¶°äm5™À½á_§aÿA>Pè}ùN±„²±YH`Ÿ§ŸûôÃ’DïÃœuZÅ/ §¥†•P5#´,bªž*w*›¸µ“	‚ìŸÒ]*DjÂ­)©ÏÁØ¨à>ù õÒÉÒb´3’Âø"?JtÔ^†
+ çÝzÅBÖù+uc­üŒDgüÒ0+6b_¥¶ $óAë½ OÉX1­¦;GÌ9Wùî»é<dXžcï:šæì„X?3…Z!'¹¡†Ä™êOõä:I9©iî@‹”æ€YÎIlÕŠ;Ž§‡M uÕ7=l¤víŸZNã–Ý,$­H/ÖiYOÌ©ò-«œQ'ÝÁì›mò­Îgõ‹Ý9*2TÈª‘è¸™Vç1ðaàû ÜJàòÍÁý`UëÔw4ûœÄã,›ÃåªGªxðØu°ò6­¸ÀÑv4×±(ô&¥Scë¢vŸ„!¢=ëŽÇ'!t<Xé¦„ð{´ó|fQ6åŸ#MÒ&Šˆ’#<”18Ý«ß¦ÇpÞ‡pª8£yi þ?Säfƒýxs¡•¾‘•oÕ$Šðá¶i:³rÖp³«—
+B0_ý›Yó)ÉÜríZNÃÔÁŽ4}êüt|0.ù9ƒøk"ÂolîæWåØ‰·¥ÓZŽ=ã?&B[@qDf<",]ÕÇ4•ÐzRÍt,IÃ³¸W[Mü‚X?¤¸>½jõÜ™›È.W!±Ý; ÏÞ®mÿ	Ê+#6–,;N_ƒ«"TšyÓx fæÒi‡/Ez4kÆµê½Š|Zžh{‚$Ïàq„ÛV¤]*ÅÜSe K¬§‰Aõg-°£Xàøæ¾xñÊïEk³Øöc âçv¨i‡¸øzÍ¢7¾¥Uë]¶“ãî0ÿ²îAº¹—ôÀ#Y,áPÜö"ûvemZ1ÚÒ´Ïâm­ÌÕ(†¯®yæÄËK$®ïLÒèš}\…¹é=TÛµOšºË`cSëpc4”Å™QŒ2LÐN;ÐÏ~gÐÍ¢Ï3‹%†¹…d
+þçˆ÷ó>es	Ò	ú>ÜµZÄ³äÆ¢>ÚŽ”b€îZ€v.—æ]~o×çí £%ÙU:‰¬â(K²w¶¥ö£Àhœ‚“ÄÏ4tÇ–,„y3;Ñ5œR¡_‘„ÅÍ“ó'McÉ]‰üæ­ .¾|Ë·6¨ÈÖa®ÅÖÚ£c©k¦®E³IÉÔ¦g0ž„§Ý¾5BÈSü|85Ö·È­[³Š/(Éq |€
+GÚ°B—ŠÍKéh…áHuåí;ÍÕr–Ðw»CÒÀQÊNâ€„Ødˆ‹i²ºÿ’ÑK^F72©Bw`¿¹–ç—¯mW$§ëM¿–z¶DžKf×ìYÌ…Wå”daµZØ¡…4~­ïÊ/ðJZ=¿ÿtÕ  ÈyãjTS;¬;œê¢l	$C
+“Z«úü†qþe¡÷Õ²—íPòþ¶E¯\~ÿæZGè†âMV®K¸o£«é„dÜ¸Z«}s"õ¹ç’™­Á<ˆ4÷%ÉF–½<];¹š­¹xÓ]ÞíŒ¥óx»çLãn©'êg)¨ÁZA<oØE½sñP°>¯ªc+}<“Alœ3O1V]ßòœQ®nŸ8º±—o°ZîCm¿¾–L\‘¶Qa»¡|‰Ç6q’™ësRo¯Fl•åçì¥ýúVIÓ_öƒMÎ—ß1QµÇéü¬µõN¸;«µFYøXõ-&ã¶Ï²‰Ä¶K•¤‹U~Ù<õ¶´Z/^ë—KMÿT¥8p‹GüŒ ©ÁR{m9—Ç4ãœºËeÐ$]uòÙù{¼7-5Xæ	°>»0ÕÉr8Â5Œ¬!º•¯ç¨àBRî=	^,“¸'äFÞš[Ù,•NÊDT)F¶5F&ôÀ5EÔÅ•RÇog4¢A\êäE½>ÉaæšÖØ$;í‹
+sY­@~!íJ4©žºQ©0<>èß²¯¤Í™£§•ÜaEX½ðMØòd<ý—×ått,]Àˆ¢2ìuRžHÏaTAÄ=Rô´ìæxPéÔÒ<ý©‰(8ÞW*5`–¹ÔÒxÓù*¹`vÎöÎCØb
+AgÃ´ìn[QÃó¿;ó¦j‘yÌyát‡ì¡ÅBU ìéËŸåiÑU1GÀvˆå¢¢ÞÕÑ¿ÖW=‚n¦§ç4w½(1t*ÂL±1UUYçssmÆ|L…¶³r”.-Qw\“­FKQ*hÆ¬)·?ë¤¼oX§Ö2KY3âÇS„y¼ß¯åÖ
+ð8Jœÿ™óFX~`Ãñ2wN<x±:"0)‘JÛ‚S/>&Ì;'[Ÿi²Üð“{ÖQÄvõŒw-\1óç©‰ÒQ*à;'çæ:3¾Ù4‡!™£9þ-2#—º²Çnß]…á×ñíS%|•ßñ¤ÄiBN- åí³"¾)ŽrsîÄ¦â`¼ÉÎ{ã(á@õ/²p3Åjyi*I™[šoüHAA!û{Éšòü5FÒ­ó¡cÜÃ]u½Q±¹Ò¹9…á|ã$‹:ÄH$§Û¢'Ôxý¦ÅÐW™¨…9††_F»œTe=ß"P8‡˜ñÎÖ"´°Ø›¬«[œ2Y%Î>9ê ÐWÃÿ’>\ŠCZ¡\ÇŽ"„-Üžœ9ðÍ¥vi\#ü8•9ÿ,ÕÓq£S¦=‚3¹¨Œ2‘zµÇ6ƒ+ì•­bÔj¶åÆTCgŽdXíÑ@&Òp½Inj‘ãå_ÕXë¿’swûVä)Ù¼RŒõós?Ý2ÆåïVÇžz­:Ÿdƒ\–Cxu»ëŒùQÉðWÀOîŸüoìTÖÕc‰•»½gúƒžÓ£u8þ’E¿GÒ4c­3Ð_|9–©žÕa®”7Â[ñ“CŠ÷x2C?rÔŠÅxµ”åý½ù{"ò™=Ñ~[&¨\ŸlÏ¿Ï–GrÅÉlÀÛì)Oƒˆ¤¤³ˆ›1jJz›îü$¸OãíP˜íe*äºTîDóFÈü$ª½ôÊ
+7dž>!ƒ8Ë×ftòSOµœrfEÈðv§ò2öû}t~-áRó)Ýlè¡¤Ïª/G@d†ï£ÇY_['©„ô‘uµÀÜóÌÐX­’ °Û5^#ã.Ä8MD&þÐÂ?íï{G¯l;n7’´bâæ8>Ešû^ÝVî¼…´ÇG¾¾šÁIx¬}ÅÂÖó£‰¦#ÆÀ|‘µX¡‘Ã–‡$KHÔhi\ÔGŠoý‚žøYÊÊ¥²{Ï(+Ïôqt¿EéþÓÂLÖ 2
+µ»}3—ö`%¾ñÄ¯e¥<ªfSÅ%9ÆZÜòÈ“EH·u¯ö}OêIpt	qÉÝ¹:"RWStÓ–ÅËt¨êÕ± pTÚñXf„ØMÞ°ryçö™Ôð¦ÜáALS½·uÆá@ì¹Ñ9V³ÔHÖÄ2¬)Óã°Ê¹Ÿ`¬=OLià°©Ó¨"bŸªh?6½„\»“ÕUJÄw8²a~X¢óOûC„”Ý¼š÷eûµ—}tR›ýðò&ÜÐÎ;¡!ƒda}TNÆ˜PdŽpð¥caªˆ0}¶Zoe¤kS~]\Èö! z$w§ug™SŽa=Ü/8ƒl<BCRðRNT+ßž(„©Á)!ü8¨½°Ï¾é‡µÕ´`,ÅËYVTò[x’Keüj9ø0ìœZhô§¼ÄyC½j7¨Í	Mc?.D¡^ž©Áž(Gx=õÄl£õŸP¸”×äÌƒm2Æ«7—:èC)Ñ«µ4
+Zû¨sµeUï÷2†4Ê¿¿sóŒ_j,ÜU„ÔSm}£¢šìÝªæx\Š³x/Õû$ÒEOØ%ðœ³êÿrË&µ¬æq|éÛIðs&ã£3Fpú!„ƒÀê½+C,¸¼°µ“djôÉïîþC&£¿L=¸CA¼Å›ëV¦›ü0ùÆŠg_€pí„Eü~†6+ZV‚5ƒ˜·¤L\ë	­¦»~k¤ÛqiB•Ô5h^ø0Þ¯¶cp±˜Ôœ\Ê[Âš¹Ü‘‘Há;—6í¤ºÇkEè$•…q×àh|a’—JÀk{|Qá(OÂ!~êiþñg+^zr H}Ç¶ï§ØMŸŸÅþåØ¨5¹¶^PM8f_ÏN!\¢ak“ÉÃ
+?½L£~'Ç7·³ûƒù£ÉUC`‡e»2ü% äÐ{5"Äàá“‚r˜SƒÅ”3ZzFéŸ
+×rš1uõ*¾WÆè£Ý_ÏH	þý4¥DQS¹Dµªó´˜±Ï+ÙÅr_?·Ô-›g´çU~wìQBú£BõÂŒÍÇ.-ã‡àW_¤Žvf•Býx(—B@¤`: \Tñ_¬T.cKm(RÃ÷zªv»,/Ke’iÔzÉ]YW,óíÉ¦Ð•L‹=óžÖêrSl®†AËålÌ[¬?¹w|ZìÀ™¦ï¨i~ôCëøy¦Jm‡€ªÚ·`}@ŒT÷Ô£ÓÐú/ËÌ“Ëi?ÈÍ–åPjéöüz*¼•@zóÍ…*ÿèÚsÊ2/ßël±Z,ØÔu‹@ô!–Myý¸÷zÛÚ¾dðÌ¯˜øâ±ñ’ãêŽŽ³âi4«£bÜ™Ÿ	pl‘½Ÿx0ò¿T„hŽ]¨9U{†/Îoð óÃöÆìŒh…²'Õö¡`Úø
+'>®=«94s¨>†Z«åÝ¿²4t=(øv~iÍ›+Ij8 £”.a›ë®ÁÅŒe•U‹£Ë{¼!A2h—@i;1èZ=œ±±Ò,'ŠKž¦øG's”µ|†|­¬Sù.R¦ø÷_…öa=ÖJ*×`¸‘;ˆaÓ7þv;CB*x	é–˜cOæµ­¸s¼jzE»ö5_…¹<k)¤Ý6Í¡m:ŠËÑ–W˜Nåé¯ Œ8ËQàºÏÇÁÒU't[›|¿¶è'{0Bý2É›ßoŒÕµXÈ®ÀŸƒ»ÜyÖ?+½ý´›QöMuÔ˜ByÒT6¹C¡æ¾d”êO‰ µh5ßøÞTùjÛw˜³UŸT™Ó9ñ…LlE.ÜY'Š¬úžB(TÔUm8j3¬ª6ø-ÛÎ;ÐÑëÂí•œ¥‘˜uaBaªùÝþn]3º_66h”û‰¥5)¾¾K»<dó®gÓbü(¤èî«¹¥®$«Î[We­–hD¸ØùýÚiDÖUãX¹pÕègŽK	Tøsî¨à^ílçñ€“¶ò´ÙuÅ;\R€¿›aö]Q¼¡\¨Ü¨O4îëñKú…®:·ÑƒvçñÌvaZ4ðÍÙ‹×3c—Žq+¾äf”‚‹.òá”t§¾¼?ÿ4™„;ô`úÑDÞ0÷[rß÷›ï¾»?äzíâÓ·pñF\Æe9h°	_‘åqâêîÖÆI¯£¯‰ÎuµFîOº©¦åª}ÎƒÇmòÅVf[ÙzÊlS¬æŠ’×|éP@Úoõe˜±fÛáI}[¿’E¶Jg·9§ÇØ/Ñ4=´&`mqz8í_*äŽ}±æäÁÃøÑ(!g}»°°eå>xbæM¡ûù=²]N±clûG/o’µ´ÈaXÞMáOºkÎöÚï{Qâ{ÔœSŸ·=iyX½ÕþÍôË_!–[}2lÊ@8ÿÖ(E–ªwåqO¯Š1æÔxÍ˜Ÿ‡t{E”zŽÇß¿Ìe‡x™û‰]6rÈ”4—	™(çÕeíás%ŠpAŸ$òžaî0ÒÒL…	VïTW\ŸïvA˜È¥pÿ¹fð@	\ÝáÇTEï¹Ä¸=M½úöeÚ*bIò1ÕøúU% w›˜tØ_oI[ç9ÎtžÜ#…â·†óL±oâÒd*¿Î¾ðÏ£t¿ÖœhÄ(ú´’ÇI‹Â{¡Ú¯îJoqÆmæùÄ?*ë\õÅ’½™Ò³¹¯Zt¦
+(Ï?2‚;—–ï¼¢ÙóÝËC´3B˜\ä„NO>_¿™èÀÛÅÛÜ.ŠS8Ü=|OºõÜôQjJiÂPØaï\µ¬zËü]öxÝÑˆšeé©'òuM¸>ûïu"‘o$z&Á½ŒN3qµ”ìõTA2„è¿¡…&°s¶ÀÈì($^¹qµd ªŸ|{‰}Â<XrCƒŽÛòÒ>ò…¿sYW¯Eê¼¤¿·}ø©-³I±€<s'ØPÖóA“7YŸÎÒõ:ÅÜ%Ÿ0t§X9Am¡k³ÑßÃåÏ*Ãc’×Ày¹Nf€ëc¦à¼„þÚ¿wÜœ(sëçV¡ÌcòÎlpsn}ôÙ÷'¡õûï
+§,ÚYÀ¾MQÕÏpÝ¥O¢¡(¦±¤›xÚÿ]`®Ý
+ §Séë!Ýl¤oƒ¤5SÎ£Ð7½÷9™Þl¡Þæ–éû½àÁÈàÓçkÕ:(ðïH^ñfm„´gÅ7Óm<h½ã±›ÙrÃt‘Ø}=Ð&è"AU—@M9Y'l$÷xls0`I#t*¥ã-óúöý·³'¼ïâL6ÕîJg›·fÔˆÿÌâŠ—~h 2eô«’Å‹Ýß@Ç•<0¿7h.{õÙ2 —t*s7²‡ÐÅfekÅ QIÑ#J,v%°m( àñó*_»3c!	(¯Q1‹Ž%ÐZAsß&·*KNæ ßO3&îè!pþ³\°Ÿ?¸F7×ÓvBÖ“±OkZ«Wqô‹pžÒ‹˜¼?	¥óØ|`¹J–¸|º†0òƒ¶Ñ'‰þDn+€±‹å{NÉdUxFß!ÈÙgnÂâ•*¡÷»ÛDà|nwÕ„9y>|ÆQ¨´àÏ8¯%µY;ÑEK×jÉj¯ËçÆ'‚C#¹¯üïUª°ýx5Íê VÆHîõ„8×»#2_”:9}we©mw!$¢á3„U#x9#³mMœçïÇ‰KÓ±°&™
+¨ÊþgÂuû4Î¾B_çžËr¸ÛÂ_xinyëp¸ÉR2XòWM¶}Žùõ¨ÂK¦$/x
+Üß2»«[íŽ;ä®<Î·ß¿»D©²´‘û/ ‰(Ñ¨1ÿ_^ÿ?àÿ‰ S ±ØÞÖØÉá? ÕvÜ
+endstream
+endobj
+21 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-251 -250 1009 969]
+/FontName/VQQJAA+CMR10
+/ItalicAngle 0
+/StemV 69
+/FontFile 20 0 R
+/Flags 4
+>>
+endobj
+20 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 720
+/Length2 6420
+/Length3 533
+/Length 6975
+>>
+stream
+xÚí”eP\[·®qî¬q‡Æ=¸Ó¸o ‘ ÝH‚Kpw'îî h'NöÞ÷;·îwîŸSçß­»æªUsŒñ®w>s¬Y‹…AGŸGÎfQ†Aá<ü¼ü ?ÀÏÊc³°(x@Àp'T‡H øÅÅ Ê›?“?·„°„° 66@ææëáäà°+pü¥È¹B<œlÁP w„¸þ1±» ôa¶N¸//  çâÐûëO€ÄâñbÇ‹ÍÏ°s²…l NPl¾¿¨Ô ö0€è?i;/·•^C<<ÿpØÿ&å üá´ƒA]|v{l>-ØŸõ hþÛ`ÿ®7WörqÑ»þeÿW¯þKìêäâû¿0W7/8Ä ‚ÙA< ÿ.5†üÃ‚Ø9y¹þ{Uvq²•ƒ:¸@ ÀRNžÊN>;'¸­#Àìâ	ù;Úý;ÄŸÎýÀg¤««.'ÇõÏgý§¨v‚Â|ÝþÓö/õß1ÿÿŽÿ´ÇÃÉ`üÓ_þ?Â?ã_3‹[L	j³s‚: ôá`¨ØÃî?ÿJ^æãÏ# ÌøóøsÎ€@q€¸ˆxàÿ©4„:¹{AÔÂ@ PT\ðï¬­—‡
+ÿû$üÙñ¿b{§?ý@| ¶ØoôuAìÇì«ä@r«jVöÐ¹‡ŠèP)CÑß.Ò«	{­™Ûõl×C2kÍÎØ,ÂÄÍV‡W5÷OãÁêb<¡Ùã‰sRµÕÎÑ”p¿s#Y­ŸDBõW+ÙBù8ZÖ ¢¶©V£^™ôD)S¾.ü[“@zcxTž€–îC#{t‹63™Î’,][ÒüUÅ[Ý,yÆ°ÑžOŠ®kc+dk¹OÑáZ>šÎ?Å²PW”pp¼^!{b(ÙôÌ:]at
+¡ìØo>HZÆÆó™ÿvÝöLþª]«nM¹¾“Ã•èÄÅq‰"€o¿™°lNzq«Æà ¬[q¨9°ÂKp
+
+™
+îˆßãáõov—GO½ûÇoúy3¾CÝ“7|[~®kÌ8Ÿx"¶4@)ÇÒ9XÏé:É§º´KY®øy<ŽyKSÂ—ÍËà“ÌWF:+ù¡DÚŠ¹yÅšZ#ÆnŒé¥9©g©7”Ù­Œú”¾ž=Ôý]‘­Ê_ŒÆ.1Àjéá^‹ÐOy·O š_y]¥U/Ê8~gtÙ²+´}êHþDfò<Ë¢Ù™yÔúÔi4eÊ+ôxŸwuncYX(šQ– Çþ$‘s:ø‰Ð˜)×³šøýé¨‹û¹§ê ÒÝ"£ý2u[¯'k¼ÜôI!RG‡ŠôA
+çÆ+"O:^EÛØLò ÞJ;-~yo-GBp@yk˜êzXý
+$[Aâ_âu•ó»dg-Ô¨¶uñnõhYPâ¼ÓÀ]¬¥Y§ú¤ìœ,ò[š§@ºåêúãææ’^lÝtÿŒ~ý“–Õ½Ée®©‰[Å‚¶H´á ¦‹SW 2'‚ªž¹\ß]ß<bõóÝ³|ñŽ×³YýGxHŠ}6ûÝM6e§©›,“r„I½ù^Ã¸;¯Âe5V6%NñeRžDÝas…”÷‘["‚Þr•}|Ã ðÓúãó$\§„¦YÏ·ì~uå&çoÁuCC‹fì1íþÙopŸNÍŠsF&‰ü·7Î;Êp$3+h¢X§{L;Û`PÜŸ£UüéÈïÉ¨Èh¸qÐnéÜ0’?I¼>jÔç˜dei!ó¿Ëg:æj>Ž=kí)ýÈXö—.›ÏˆxTg(þmI&G.Ñ´ýRyQ*(ë­·²Š‚÷dê-)Ú•1öýÂÚooãHôd¿6'Û¬ èLö/£ã:;Fã,=£à¤ñ¤Ý3W˜ûLD¨ÀÀ{‡9VÔü½”1—L&·nÈL¤ÂäZR~øÔkwxÓ—ác§nºÂ¯C'™ÇË>Ðêðh9ãã`*ÏO†Öç·¢ÕFÍ*ó¾)rüxö)É‰S±Ê”9>‹¶±µ•y¢àÇž3á˜ôMõPÁ	¡Ë>Øví£Iþ÷AÒÂÃË6}Á8Ïð1Ç
+_blÇîœlé8T’¬ ¶W¼UÜDSËbûUªï\7¯~m×ûteF‘¢¸¾ÊØñ0»¨U¾×KAòD6¨$0Ð”V»x-¾ÖP.mA%ûíÒíç«FD•LrÙ±aªQÆ{á‹ÙŸåÔUfüJ©V”ÂºÇ;aýìx¤Ù+Õs“ñ–@*(QûËÀèôÏRƒ;Cv¿)æý<ŸÇÊn]/vŠÄÉŽóü¸SÌZX5øh
+¡ºc ¿dƒj]	MS|5/«ôœ†ÈpÊÃKš3o²˜QW€žcÎF¹5wEò(Ìè9ñs'±•‡¹lÑWõ>ïŸú)ôpÒ!=ž=¢â¢ò†lòËc|9ÙîÈ7²“í8–·æ0GL,hLïX9ç/ÿê§W’÷¤ðÞÞ¯ù úž"ž¨‹údÑ‘’ìjá4ž'à¨A{êÃŒuíž l"mÔ~»†¶ÿNõqf‡ê’X%ªäÝÊZÇf—òÖî²Ð³=E€Fš…–H,—ÇÔ®©KkÉº[2À÷¡—_ËŒç0/¼uõ9—ðm9ÑÞI—c>¼úÉÏÚ…Ì¶ìÿÈú#æÉ¦\Š*ò-vÉÎ`žkû•µ5!±xƒX»m¤ZñóvƒŸI´k^ŒØãá¬ÞÒxüì­‚-ÄäUC‘$×Å²þ¯·\§%æÕƒÏ²¦@bsd4ÆD²Š3F¾»^Žíå¼ŒˆÝ!F¥ÉYºoë;<ÚßTZÕ£—¸³óù¿Ànú0EÙæÐÎGô…&¿¯ÿ‘_h ô«3LÓë8ËÀ¾ÿ=<˜Ôk„Î"ì]·—ªè*ÊÝ¡ãw¼%hÿÍ[ºášQÏí±\¹”vì™4ö>­Ä‰dÁÓ‘n(‡cþ‚v™`›«Èýr€EHÿ¥yT˜N¾•¼Ñ_„yfY<å&t{> @ð¨–1h	å åïzw…nñZVùtîÆ‰a%;–¦±'yl[ÄfÅÄë ìäÙý­è±Ôy	Õd%T†M|jž®t­¤mF‰’4ú×]GlULÀœY^Â;¡\—Úƒ¢¤™Ü4kYóÍÖÜ°?7‡ßµMš	“u\úu‡"Ï÷&Pù,Ñ‘½õdùLNx•Á.BØp@ zýXs¶Î\EŸþbò’ÿ°ìð	FÜxÞ7M¶ä›€"¸—¸íì^fšš«aÝìQñØXÛŸœÊ³POù¾Šªq&åAµ•é€Á€i3Ðþ«R|³;» Ðq¯_³^Yy 'F´:«þ`à¥4åm»Ša—‘eëÝu6j^ð•ñ˜d¦
+¦*¥Ž½ñ[Ü*Lä¿Çnù
+¨ÿ¾Òú$æ¨“íÃXg‰$OÖë÷ËSãÙI[¯§Â¢H±ÜE]trÓdã>ô¤›aX-¼D”©ç‚áÑ'Ó—·ˆsOÖîÌ>øËã˜[bšŒ2Ké†Ai•xl×òëý05±3š2êd–÷|lðo£GIù]§	H/ØZ5š
+wTZ·ÓÅì™]ôK”EÌr¹HÖ'–vAÙË.v,†QW^}$ÕF¿ ÅO!Tè ‰‘¼ök{ÓÑŽu§’ÆPZƒ¯‹„I{ëØ™¿Ïð4­3kw°ª©¹äœë4½x½ÐžHõº½ÀwY±‡Ñ-¥M]Ë}ó6Øœ%«¸+À¤£Ö#»þä¾º]³—¼Zœ,†ŒEÏ©Àž-
+vŠæƒdØ{cSê‰«©¹"|âOçx…¬÷þ/Ú*°;:y†K8ÞÉæá±})ùr$î~çF†‚“5îtŸÎ[˜¾¨v¢ÀÀ½á¯Þ¨Ò°	WÄPßUŸÕ®œ@ ké¬ùÆ;6Ñ5[ãé½ß÷°ÜOûz×ÖÒoY'ž‘ó¦çtrøƒ
+±Aô¾9ã?É	2H“iI$du¨­!¾ß‰W—”«;÷Ø8Ò¹û ¤ï.PË
+¼|¯<1ìè	zx™†Ô5À?	ë„’¯s"®P²ÔÌä€ŸÆÅÎ–¼ˆ^á &¾œö¢ü*sS°°P½-#æ}¼~ž·ôàžNUÐÓÛ õ~ìMVÃÔEï¦·‘âÙ¯}­Þ]_³·MfU0‹&Ø›¶Uáò(*/ÓÌX—= ä‰4H±,RŽ¿é¼£÷-+íqRÿÍG‹V5hùkæ+£ô½´C×„&åÝèVÜ®í\TO!XŠF¬AïÂöž#èLy¯Ÿücs=ŸE:qÔÔ >{™Í|ÐÆ¯LQÂ]³õ-Ž­5ênÚÄþIëTÓMÿ_g1–ÓëÀnYæ9ISgêXîNœW„²øZ"U=“š€VÜéÉß_ =vê3òÛŽÀHÏÓ›yµ`ko¥É†UÓ3Q/=@¿÷db:™²’Og¿/Î‘˜AO?o¸u³øò	…ÞGKÔ¡Ø <jÄD­Ï£ˆ<ã‘Fhø˜‡ÝE[æ§Å)
+g­)pR©%]©7ž^Ô8Á¾Öe4¢(÷DxÌ~Ÿ{t¦Sqé"4,(Yit–ªƒÑWÇr/*ùßð²ÑY ràW/Ì»[ž[cÉ¬wÍç6’ä¿¶‰¤NÀ|^‹Úù£Ú„bžÇÝ[ÜP©·ûÁ‚X8›Iïúž–ÿm=JÆO™‚•j3âiù€7=AJ²ñH¡ÑD¬ù(×Åh¬‚'ž®OÛ¿`X¡”ïÒ8Î/Åˆ“‚V–v0<@Z| Ha/‹Üy«4 ÿFc×ò+GbU™äpµ=;õ8B!Ÿ£­«)¡Ëk²­Á7?Êç½iÝXxl¨ÃsÖ»ÐÏø+!¯»0H3[À÷Xñ¹ßi<¼mˆöT'î‘Ç„ Ì)õEÈ¦Þ„5m¯ë´Ím2Í®…m³µTqÅ;¥™èaÈ°Úµïq+(CCS¢_ø/1ë;É×$Lnã\œZ ¡Å#]Õ(·aç$’é"<Û<ïn>dÀ‰	EÒå¥4 5’4/Ž&Ý™Ý4‚B¹TÒ¥…*‘éº;<“ ‘Çl×wZê0äÏºü¸	˜MQÜ3pš¼ÓÃp†qÖwœföduÝŸÅYçGé|wà…ÓXÓ6ƒhÇR=›áfÔêî,çè,:¥
+Èµ7÷Ô1X¢‘ll>ŸÏW)-ß¢3¯›•Û0!YÓ/ìš<Ü^D›ÿŒ«Òh¡•‘Š6K1 ¦žÞ,UBT?Ö÷yöÕwR?OòSC[1w&Ö˜6<Š·×’«5-Øêíî¸3©¨fí(¼ãáªqKG(¨ÜFš”·»f7<|6¶6¨Ø€ŽÏSÕØ uù¬•:>Ãz“LÛ] !­O‹fJ4!ºåJûÐy‰‡áe‘/øÏ¾	}ÞX[ÂjRÈœIÃ`·§ ÕÓËö—é’ûdQªµqªÇ•$ì›#Ç¯;pÆ»*».tQ¥Ž…OÏœ'wö,8!ÁÆÚop|YZžnH•º]%á½C4Åá•±ðï¹x´¦Aú Ã7³«Jx:!¦ßR¨)eXš&Ëi›œD«& Uf}(¨WÍÆ2Ä©ÏÃv&|+û~Óóë†hŠ¢õJèŽªáDËOáókï^óžvPµØóÊHF²ÓaÌcÒ"—§xË¼@q/Ó®4<-r³€Çf<./»dôß’õãã/RÑÝù%Õ[Ô19ï;5á#tÞµð·›dÎ°O¬&1m]·¿bÌÁ("©=
+³3»åNRcíaêã`fvO‡ˆå"wÌ‡„Öò³Xt¬®o_zmÔõ«ÕÞ	³ƒ®:ˆÂ:r­|ÁL0¨¶¶2ëŒ”¥qL_ž5Í†v
+Áhà¡å?¶áVxà*±ìá:ÛÉ)÷&½ˆy=»_l‰GÍ“òõÅ­ ñëÔ<­(zWùÍ(Iu]¼Ý·/¶b‹›èi}S0$§ù\›€Á¯°–;Âóß[mšÑþˆÒo•Ê²È&¿¢hžÇÓÅH¢¯<§«IÞyE÷Å>w)^êŒ©<è€ý|AœSK»â«eÂÊ§©(ŠK%Ç59Å“_nßú;ªÝMðA#V¿Jv÷ei£<€÷U¸åŸõ¼–!ÒøãÑ=IËØç^_Ç›#Ùkñ‚¯kÉa^l5Vî‡‡F÷øÏ‘õXE†ð;(­xLÑÜÌ‹újã,G8FÆ‰oˆ‚Â£™ªÆÙ	)Eõô >äüvÔç×‡8Š« þîv1ò° ·Ï7XÄðÀµ,·aÁžk©1½o-ªþ;rŸOËXKruÄgÖ¢+CdVÑ®gTï×MTåCÄ×r×ü×¯é’ì'âÖFÉÅÓ‹ú’ÞR^â…·Mq;ˆKâö'¹	õ©_ÒÂŒ¢»íØÉXuåEr8ôÄªÜ#fqóHD¾·ÊòÃ£R‹ËÐt¿X^Z·3³S~1I½ãeNåÞu8±š§ÒûæÆ„Ýü¡‡?–auÝú¸ýÚ&k·!J–Äæ*_ûD¹š¬±©_ZÀvµÕÆwÎH{¥L&«|ºûr™)^šµ·¤x¶Qe9´I>Câ«§“Ù˜A”êúÀ™|Ã‘ÎfôäR1øaÁÒšus(ãûUŠ6¾º<ôF8ú§o¹÷ý¯‚à˜«*öÝ‹‰‡]¥Ã”m¿Ó§Õ ¯ðL=Såù0BÎ:x0l&‚1£ß¨áD +r`g‹R•ç§¿lE§C’#—xªõ]û—æ‡(Gáô4¹œhµ›„×½k jëeÞXiŸÐÔŒ*Øz8¬º(Kš5®ß¡&H(ùFìþýR¸ŒM‘=’ÓcˆûêJË1¼had·O¿¡š>Ü‚t’¸.¢+2×OzJËÜã½P;|É„lÔ«–È†¸hR»[®µ`ÑøÙÎP
+W–¯Ø	Ho$ž¯ˆÍÑàx—äðÕ"iö–ñÃÖ3:’àå~øÎ®ÓüÕR¶KP‰ØWmÚ-Ñ±½L»Ž†<ßíhžì¹¬ß¶3ë|¸%ù0/¨C¯7‹Àr2çFüNiEé¿³¬EÓw/´qâ)UlÅjM¤úï˜Ð!Ï:Ú{£Æý€Nð0ç'rHV&Š$yP ŒïÐg¤‡Åk¹Ûãùüã!Sî@eŸRŽouƒ°ƒá¾<YéÛ‘çL•¸‘¼¬Èc1STÉI­¹ù¾~mØ2wyâÁ­Ï-«=,Ê$–¤ûà¢ÁP„Ï£ò@v0Ò`IõÅ!`6ÓÍbÿ[Ù->±>óÁ:¦D‡”I¨¸{”Å°Ã÷c¼V÷%Þ½OkÂ+2·ßŸ °É¸)£¸æSô’xª›V§k~ ŸEñmö¹Q
+9¬iw¿ç‘ê@l8ñ¬¦e]P¶+Þ«Hÿ˜â§€Ù à’	Ò<–çžÆ×"êÀ‚RÓUpÏñ_ÖEÐêþ¦Ð:1cNž%OËc=÷Îïžs%3Q¹"rçN+Ÿ+Õá•Gð´„±‡–ŠãfKËNdåäœ»^•ø\$Z¤€ž¯Ìå¾,›T}Q6›Ô5ÙÝ/—ÞÈÔ,®n™u•K_×âJ¨‘o2F0SpDTC…e#.NÛ‚ë]%jTLËJr:#‰ÂýK?èL8KÆñ»Í‘Å ñæ¯wêdZã+UãÞ~ªÚöS–Ü)ðåçEuÐÎÖ§ÑÎÓÒ¯´ÙªøYÑ¿ÙpaÒiªôZ¨ ÓnSV&@ß<3ÒŒÝû'äg ¶Ï8÷§**eÜî2.}F~QC½KÃ÷åióÝçv¿†î5D·t‡;w…dÞ@´ÊD•/Zv,‰IÍ÷ùœƒ¥ŸâhU†I/1Ý™ž{9çêvÍ³ïæå‰±kË±pÎëV‰1$™Ëï"Å\3«à±ÄQÞV…l¨–Y³V¼BI‰þHCiZì ýí¼bT{RPŠž¬ÛÀ‡Á{\èbîÑˆÀO>£ Rî0ˆšYdƒNT§z®%Ä!TtvE‡ÑíÃ0©¿”Ì[×s EþÖ®¶x¦lN»òé:2ð*„n ÁÕþ¥9“çŒhLï9Ò¼½šýÜo{{Àp.¡¯oDX“),¨é’
+f«eÎ4nUÛUóÏª¨4êœ+ˆyè(âr6º¿M_û0)G¦béC°¯ïÏËi,UöX«¦Á|@¥˜@WC\‡£Mjx«Vµ`á-yq$T pÅ™÷,VqM®&îÊºZ[–‹omô·‚Cy$Èy•8 %–¤]•» »JêpáúLox1©S$¸ˆDæe”1Ç(„x=IÁ]¸¾‹8˜e/X
+@«TEêH¥©„Ÿ±v8xx¾¹…±–ßr}2bÈ|—4St:qoŽoÉ(s)2–»<KD"£…ÞosãHÅ†|?#ŽæD&`ËÝ–~”gœtúŒªæ¸mp,“Îw‘[î?ÀÍ_è^!Ëj.ò5!Kü:+ÿ(+T[ÇòV9Ÿ0þç§L;ØæpŸ¶Æ¤‹±bèwâÃE†ŸñÂ0+œ7$ú}Íµ÷ògëã;ê}û[œ¢YŸƒY"|Å\Ÿë(=b‡L,¥7²Vk¤¶†ùš*I4¯¾ñuÁeêW“ýùð<©_„|u^Vvþ6’hÐ7%hS_uÚ—z
+•xAÔ>‚æ»Ñm§˜j¯ßDVÍÊ“ªFM½èj´¬Ù³{r§¿ÊdÁ[2Þ³VùÌ”ÖzY«C‚à ¡¹º¡À´çÑæ"€Ð­o<1Qƒ\R¢Ú©>þ>Î«…jÅ¶fÚûB'U‘9š=}”\SõôŒ“¾Ší—iÐcÉ…Æ`Ï„çº«­$eãû*P¯4¨}€,€!ÓyÎà™ÜTî	¥¬\˜·&¦˜‡=Ç¡lGjx‘.Nb]½aJ˜Ÿ™.YŠ–Ï**èÍ’ôt°­ºF!B;ßÝœY’ß–ç‘ñ†1'gŽ#£°`fµwÞ3Ø)üöŒ&¯WƒDã³Çv†Z†b4®*io–êI`TŸ¦sså{ë§_Äèk¼ÆY¨?­ä£¥hŽÀS-òà¬Ñ”Óð-ŒOJ|<‡J;H©9×»Ï–oxß9,ÿ‡öÿ7øÂÀÖö€Ã\ÁÎØØÿ å³9
+endstream
+endobj
+30 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-53 -251 1139 750]
+/FontName/OXXWTX+CMBX12
+/ItalicAngle 0
+/StemV 109
+/FontFile 29 0 R
+/Flags 4
+>>
+endobj
+29 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 716
+/Length2 2541
+/Length3 533
+/Length 3078
+>>
+stream
+xÚí’y<TýÇËV&-²dIƒìfLÊØ*[–ÈÑ`ÌLÆÌc™$Kƒ’}+;E&e"KbH
+õ	KñØKY#k®êyžûº=÷ŸûºÿÝ×=çŸóý|?¿Ï÷}¾çHKXX+Ä]AC"¢W†k zfºöpU ®ƒHKë‘A4G$è£)  G"áÀI_w@Àj Žh¨@¤="‰JÆ¹{P Y=¹ï®cÀI/ŒÃ 	€šâzm…`ÐxÀšˆÁª2 œÄã«ïG| +Ð$ûXe°8pÝqˆÊw(c‚8öSÆú’þlùdŸ-.@v‹SØ¢Ä	x*€Ý *æÄ­iàËŒõo¨~7ôÅãÍÑ^ßã,êo}´OýÃAô"ùR@2`FÄ‚dÂ¯V;ð'œ.ÿ·1Æ4‡9IpÇƒ ì§„ó1Ä€Xã¸¡ñ>à$`EØZÛ •3ööv6ö
+|ÒŸ]4Ž@±¡’þÊýnÿQÃÿYo­‡Œ aÊ0|Ë¸uÿù„úešCÄâî€5MÀ¢ÉØ¿„¿Séê•Ô€’ª€ÃHà˜,è_¶œ·/h¬¨Á`°cG‘?TŒ/™(?~ƒ­7þ³vÃmí@$#S ·ÝYQLaÑåK}·¤]õ«·Ú‚Ï7Õ–rÛ_ÌîÂs*÷\ˆ÷´øÂÚ½:e}cYVüøÕÒËfšñõKNÏ¨T‘û‚òn-LÇáEâ˜	¥¾
+6•'Ó`ôcgÇ2…\µ@'Î½ïæ±¹RÝ\£„påZwóåº^ì}…º—¬²Ñ¨±šm˜nÓD…,ç¥.B›ÖOˆZ¢Êä†ÿf»pBÉ6¸³ÜÈs"ž·cñ	ã¼ø)Âø¬Sé›ß¦dÒìK“­xo”í_oëŠÖŠ«eßÕ#ÀÚì{e`zÀü¢ÈŠœ	Ò¸?›eVVô­H=MªÛVJ>:7Ú˜±°-•ö8­0sÂˆƒá¹1ýbˆðÖW¡KmÂ/…;ë¥ù”%›R_´žö¾öz%6x·sŠ“’T–Ønñh=[ÂŽ|àa”º©Èæ-òq¹µ‹«ÇxO¤ <jr7>éŒa%sjl|'[K[·[(N£¼•ë¨”,m_·—Ûoä›º£—×¢…Ër?7i ‡¢95£¿ÄH\mkô³OË¼>+î‚pá@ºÖãœD«‚¸÷ìí»fv@”Û®Œ™¨1gï*¦ÒŒ*ç>*ÊbÓ$Gk§Ev¶~¢P£î˜Œõ)7BÔDj/6{lnJÕÄäóÇQL³8¥Þ¶„…JÂ¬ZQnsÌå‚ÇË?Ú²ê`Ò~VmCj®QŸY²šoD¯ó‡K±nÞ€¼ÈÑ±Ñy—=.ÑØ¦õ¶¿]³ÓíåUÞÐÔ©EÑ²~À€s]›»‹$ÒÌžg–Xóíp-…·CEÐ?ÐÙž‰KLh7* 4bví'5ùäÇK*qˆ¸	Ëì¯óR¼šGzÊÏOã›îÝpwŠÅm—$|¶Ø:Ú Q`)ºú¦|³ªÎ×2âòœøùy3V€¯ÚÏŒ‰^Cïô…ò„QEdÝš³ŽQ’ë6ƒEõOò2ó×ÖÈÔU9õÕŒá÷~*@)TË|ˆ]Ï;Ty-'r»ì£ÜŒÑYqqÚûD%¼[ÏÒfj~"â!Ò+S¸Ê‘Oe¼¦Ñ™'Öu·.ö©ûãñâC:	FÈ÷cÝo*_™,LQGÌËÃàgT‡kÓ}ãäkéûü„¦—#æœÓmr#¹2Á\…dïÉ•-zÀð½©£ÃCÌ§½"‘ï¾f¼|€/ã&Fö`—Eï,#å-ùÂÞ—D¤˜É›ûÙÇ6÷#·	nzÓ^»ùEìÙ8²iy@O<$T™N¯KGõ26C$;ª'&Ù_–aéáŽˆ8aÙƒFâ6|§._´£Æß;Ð:9×@¿IL[¶Ò‚ævUjÂRæŠ»—ÄàŸÄGVëÊOiÇˆWi	Ø9]¨Z]$ú©iå.öÔÏ,Ü²ŒnxÁÅSô¬çz{T°V\#¸ªS{*¡¢`£»qÎ0r¡<§H @6½Æ#´âõv‹Wpù jØ¸·8ÃS]=&åýÉ©3ÓÃŸt9ÏMKœ˜!¾:Qy¦C>km*½]½È§0-Áj(4â¶ÚÉáÎpÍdeî:šGJt–Ÿüš~aàNt RBr¨š°ÊIx¬é2Ý~ÍóèHU_mæ“y)*Nûzoˆázâzì­ß¤.«í¼4üå’,Kô3}ÎÂÓÖøiþBÈî*Æ¶‘À©4“æYˆÍv/³`!3¹þßÁœG—¤¶×©\¸ðéË¤{C:7Ñ…o3?¥¶„´iÔ}G' H'îµ`I	KÎ¥€
+SOÅûiº+n‹„ƒÔWJ#ú`~ªÇ‘M“¬Ð}Âö	Šì<þ°Ì¸I0Üp8º;¦ Gÿ6’¸Ð~§çÙãÊÐm›I+V³a…oÝ A
+Ä—ÀÅcy”sKƒƒ7T«-ž]ÝÓva¨—Sm?°( ä\'/w¼®ô}ï€{½
+”jêœÙ}ÁÒKqõ]PI	w:Û1ƒ”Õy~>íô»éÂŠúÚÖ<o¼b¡óž!™i%å¾–D“lù÷é…"GŸþFçÙ«ð¦±†bÓƒ=K5÷×?PgtPÎÏ8®™ÔÜë7•ûýbÝCd–“‘üÓ¶ÒïH™§‚ù¬°·¯Ø\£‹.öÜ1>|6ûI|äÍÌ;°Œ}üUD…½í<ò‰õÍ§æ+12íYÕ(FïNK^o˜_ö¢ëÛùÚ*®Ç>SÒÞÒŸv)6©Rš¤_úò5søÓÜ\òä™uŠ÷ç¶ê®ãO˜§²ÀÐ§ÉÇØvÕ®5ê7žÑ¸Mì»Fžcšn8ŒÜ–8+ãP@L¶9pv ºR¥2‡Q|šb¨&—î¶D“PõfiKåÕeZHehÔ/‰É¦§?-¶eeŸà%Í}œGqr,d"¡ºÙÔ]gËûàå73‡ï(Ú&—'}ÌØfÇ&²Ûž;$ã£úÖê9ÖZ§ý¬Ì•¤jwæ<B<.$‡:Ogµè¾•õú¡4MN™4G-˜ýÒ«:EüÊób•kS$sMÊAƒK×<¢;^ç³¿ô_·¦'
+tùîËÑ
+K×V+·]Ñ‘Ùm™»}.=/©O¶MW“T7¹„›JnQ7»´L4¨7éì:¢ª“T¨bcx6*!›ëÆ‹o§ƒ1eVGÄä™Ò¿íÈ]UÌ“ÛH`}=0ï™C5k¯Ô3,RG¶„G¼Þl­)M$OË£r…­bSíF8!^W{?—<œPXòiŸ3 ÿú‹BB`M¬ûZv]Ô«“Å¦Ç$9™™…¤ëfðÎXj.—ÌüìS&ª£H›RxoŒvLo»ïæ£úðæª^iEÑaV´¬O2(äýu*$m’t+û¥Ýyâ²›¡ŸGê‚6æø"ï¾q,eë³VWZq¥ýÜ'P Šcöº6pJZûÉÅ´•sd^“Ùú¾¦æ¯*Ýç²Ãn¶:u~fKî![æðØ!‰Ïh­–§ ¬=ƒuéwüËý›÷<Îò|iK¯Ií[f;‘‰—Øpuhh"Ý¬.ìˆû(ÎtõUí{ &©x«`iˆ‚Uœâ¶!KëœZÚ£ª+Qqy‚çb9‹äû’,E6Ì«UIŒ¤Ì3×–3ÅO16lðÆß|Þ©„_»ë.5@óuÛG v~Ë0 +	‡çE|Iê„­åO„lÕO4µ?a¢‘À5÷àæÁ`â›Yö#ÒDså}b\Ì>šÁ½Õ¬þ]½´Â‡´7»Lš“…”%µH‹°)šàÜ55¸¡¡PoFªÿÞIÓEŠ¾Ú,ðœÂp~\ô,åy®(žr)û3ì¿¼ ÿøŸÀàA4™BôB“=! †TF«
+endstream
+endobj
+38 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-29 -960 1116 775]
+/FontName/AAGTGA+CMSY10
+/ItalicAngle -14.035
+/StemV 85
+/FontFile 37 0 R
+/Flags 68
+>>
+endobj
+37 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 724
+/Length2 924
+/Length3 533
+/Length 1450
+>>
+stream
+xÚí’iPgÇ	¥r( V*‚Èv!—ÕÈ}LÌ.a!Ù„ÍˆÖ:¨U‡Óâ¢€\RDEAŽEJÃ!õ «Ñq°Ž
+È¥ÀHhÒ~éô[§»_öyþÿý¿¿÷y_Ó€`;&,Üø1Â¢@ÀÓ78ˆ’-,<q„C BÌ‹C  rv† ¦„@4 ¤3¨ ƒF'“- O¡HŠ£¼8Xçi5ë¢L‚£\ørˆ8D 
+árø@°‹"„” L>šýE!bOB`
+™A Œr	`ÂC1²ý,Ôf,VÐçÛ°DôAJBp±ŠX§â´T”°ãK‰%Ûû	U«!*–Œõ7TÃ}$|¾G0?7¨¿èÊ—¾w"	à€¯Fpl¡5™‡óE`T"X¨n&8|”ËÄx|°ƒ) m^@Å>h
+ 7ˆåðÅÈ\Áà…(ªñÍØ3™›B61mÞí¼ÀA1"D*B ð£}®†>Öª1áh
+R@RUï‡¯è«yc\!Œb< ˜à`0‡ÿhü•ÊÃC˜²ËŽêØ9;©®9t:m÷Ÿ¡š(A6{4×Sç)¹G0bî:¨vü¡ŽEUSB„KÎ;iˆ’¶Û~a3Æm¹cÞÐÞÕþ„eäh¥_÷Þœ ½B¿cÑ]]7mlGN§—+Lúi=§R]>å·Õ»>ò_s¥ì³Z“ãI•Tîš;·îW©VŒ¹¾š·#G‹ea%L[­êIeâ®!EÁÔÎýìæM‘¼çoº†ë{÷¬=‚'k€ESƒmíã¢ ”lÞ'WcŽ8Ôê0ÑgôÑî«÷èëç{¸œ¶Üð:Rºå;k/÷N¯‰Ö²wÎaç+V§l©j›~œU¥tÿÙ­!üŠl‡Cÿó¡Ö!]y‚m|^c$ý×G3~ïZw-ù	ËE®O5é{,ŽêŒ¾ÜW›Gª”9w©„™åÁÉ…©9îƒ.õ:6§fÎL„òj&}ÅyÉöY<¿0‰cÛ«ÃÝœ`¼	¨ÙOT|Õ”i*h|”*'¸Üe–zb+v	¹.èˆÜùV-¦Tî÷‹´åll¶ÿÖžÈüKC-i©Ùr%kã‹ŒÞÜU¯ØÄå­žKNXœi±4·Œwk¼N"Éô”Zô¾Ê˜òñúç«uÅ)
+¤?¼d¼éh³KØ:ÃÀÊ²|ÃÆÔï“®Fè½›ŠÒ}uq¯a(šÞÁXIÿ9”Òì`°H!Ë5W(¼ûÜOêøzýÅ¼"·æsãåÓžF>:ñ|—èè´
+Çã°ßÅÕ6`ÄnW7¥1.zPXÃÍ®É]fÖ6¸~»¶6U#ßN­Ns£•õŒºûFªkrlEeÆvád5Hú-·øÆ]Þ­1YžŽ4Ýöê˜©.+§P×Xnô“{ònQMu`ˆqš|iù‚{JðaOFÀ:V]YŽoP§všwo¡µ'Už¨¨s¨ç¦×Fù*ÕíBVÈHFx+ÍP{ú›eÅ·¤úi•…Z‘SŠè‡ãMK©åxgkÑŒò\ÉÐYkÍü{™ŒðÌ¶}¢¹Ö˜»7%û6kÚº É8Y¯2°`XÛLj¥Àó¥!7ËL]ÔUC/­•O/²]›OÔ9-’"Ûv•G}Ù?Ñvp¥™ãê5añÝc2ŠG`òaÇ¹gš˜Ñ—òÔçÉ·××fõÖ°ø‡j."ÆÙ¹e¥÷-·M¸&¼y¥°UkLÖb]£/~ÅbWÉ\½=Ú'IWöÙ3.´vŠ$V$Ä¿q_8ðyo)j·¼¡~ì™nÙª„ËZÛz²ŒÁgÅFNâ6swSødãŠ¬8{û„[ú‡vö‚ÿò!ÿðŸàòN<Lþ_E
+endstream
+endobj
+42 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-163 -250 1146 969]
+/FontName/FFPBTO+CMTI10
+/ItalicAngle -14.04
+/StemV 68
+/FontFile 41 0 R
+/Flags 68
+>>
+endobj
+41 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 728
+/Length2 1814
+/Length3 533
+/Length 2357
+>>
+stream
+xÚí’{8TûÇ%¡)tÁ¶r2cˆ\"1ÂHEÊ˜µf,æÂÌ˜h¦˜"[¨\ÂDîD"*¥Ú•Û.e"EÛD”â‘B)—3iï³ŸÓ>ÿœçüwž³Öúã÷~ßïzŸõ]?M‚‘=È„p:ÛƒÂXX¼·ÆÀ Œ::X&DdÃº#‘YKK ŠâÇÊÌÜ
+cŽ@è XFh$¦±},ò›k+`Oƒ˜0‰HðDvD!© A‚!v$
+ ì©TÀëÛ+,ÀbAL¢ a„(0þ†åB'3€­ße0<ôÏb²Ä\€þ)s‚:5 !2íÎï‰iþc°Ãõãp\8•êN¤}¿ÖßúDLüÃÁ …†³!&€g€“þ£uôp8íÇ®›H…Iöt
+Œ0[PÆ[¾ë0G@ Ì&d"•-éü‘Dœß‡ópðÞeøÇßýÞõ Ât¶wd(ÿe_ª1Õâ”˜pàg,Ž#6Šï?Wþ?ìæD'1@˜Nl"$2Á
+§rp`Dp0æ¦€‘‰™ø¸a¶˜–æ–GþÕ¹›‡…C.Ž€™±±±…‰Å’J
+g2!:{é@ˆ?ùÏš‹S‚ ˆ„ˆ&xâõÇôŸ++,×Õ?&\ìZ®›Æ]YÛšÑ¡Ò“q™‘*%qgWéÎìè%Lâ3m?)m×0*};ëˆº©<}}\:ãÏôåP°õT€ÐíÕAeLÜšŒ©ÉSñnS—”,Þmp^¿¶k×ÐmîÛ¢B–|‚3fa_Ï³‡(ÜÚÀlnÁìCÛŽ‚)ëæÀâ¼CíjúÇŠæþ:uÃÏŸ$ª?åßæµ‡C;UD©È¾5ÅQˆþm<(æjÉéÐ¶»¢ç%Æ“-_OE÷[q.3+²°öq¬U•nÃ-ãí—7¥HÍ‡¯MEùnÓ»K8R?ÏOª»nê[ûbþ¾Lº:Or¯é‹ôy¬uþ!)IS§Ã\uö§DÏù»½ž²4ls¹ÅhÂüÄÁE+Ù*õúªÐ[Î©ŸœZøçÙ˜õ’?’Øk]{éð"þ#ÅsjÒàâ[C3 éœîh\›”„­Œö‘ú»¥¯ÞìêäÚ	Û§÷³7×ÙUÈUK¹E“Z%Û¹üŸÓü¾ÀdÍø‡xÙ4°ëí³™ñ€~•½b÷“·õŠ9fJîY1à‡¼•ç±jÔNƒÂ®«P1%}e8ã7)²1Õz±&$×[õÍÈÉ¦:–à%ïšÇ¾¢d„pÏò›ÓlÌëÆò¡a•Å&ïîžº·Ëœ^§‡Úç¦ˆ¬;Æ>îÆ“•Òg>ä¬ûIVê±¯Ž\rÔÂáúébãÏ¸Å ï9¨}=199¼8r½ÚÂ[!qèèWzNV@ªoö5§]O[fÑè´­JéqåûÌnâŠ“/°²S`ÑäWçj$_ýØøÕŸÔ<W,@g`vßÉ#eè]Øþ¨s˜¯H;Ñe¾>ïjÒybr_îÛeÌÑcê÷ä-Ððsµ­<µQ»¨_
+.k–1”¼=ýUšÔ=$’VÙ¯Ñ*ÉDYíÓ~ 7ö ••R6?c}MAò˜=G˜HÝ©°Ýj³ëžl=.?]Ý q[?å@k™Øk½j§°²­±ýý'd¥ÞÆåÀ†ê×ºÑØyM¿á3³›ž+–)(¿ÜQ*Að÷1¹ã¼±^­WË=Þë÷:žSzÁÖaßf¬ÊJŸö¶c¡®Úª»å³ÝeÓV¿ŽÄ¥Æ E91ÓÏôµôPðaC÷{¨ûxÊi—îòõ¼5¾8.o×•A-¢›ê{Fñ -iTAø	42Øn’Qy¼Çkâ<íL>~½8³åB6lm¼j×E¿ˆÅ­\ˆo^œ³‰æ×’ÍŽÕ¦&òx>Ãá6Úýè‰ýVyä§ˆ†~ÁØÜ]·4¯eùY'ç©™­Gƒ#%f£ßJ ó-õ‹‚=	Ñ“>nVp„‰–þî¼â¬¤Y³(á‚RmŠJÃ¨]ÿ¡ƒ¤¾3órþÎÎÊ…GÚÞ®T¸šØÛ­úº„ Ñ)J0cß×ìPÍ=Õ÷ÙµjK¡`fJ;,ìŽ0©Œ"3øüJÜ{ÒîÕ%ZÂr"':—n–¯	Îæ]Þhq>§UÇ”Qµx[/úøË bì5“ÑúØ
+{«	«»gÌ:ï	UoÁ\BìïMB'&÷žÇ:bðªk¬Yä«\cQFö"9ö×EuîFÍ¨Vw z”åûìØý\ü ¿yslÀ2ß¹wwš"àbï§¢µDEÉÆÏå¶Ír²	´¶š£R¼/¯“2i÷ÛXŒÐÃJ%q¢	OøñE©–N_y¡UñŠÁÈy÷|6'LdâtæV‡ÔoR1œ<¶'ßÞu½ÉmÛ~Ÿž!ïÎ´æ§©e·E ¾«8®uæ ý¶/¬Y¤ZÞ£ú±³!
+JsÈ/\;«‡¤sO`s»œp^Mš*6¦Ð»ÚB’‘éÉØ.ÃFÁ“ÁàÏÓ£OÀ¶ÎM_÷L?JNÌqOieýòcÛMØ,?˜ø>‘“SyŽ'âªt·»¶‘‘IIÑAWK£dZëÑ®­þeþ¾ºäÆ(•9M¥r7r™Ð³ÂÔiY>ëUÃ'Ýs§³kÅ²ß¼á+i:ˆ/lœ­q™nQ«œ¶+ƒ_õåœÛ9»Üã´“*/4Ä´þ¿š¨,ÙvÅšµèX×¼!¥ì•›¡só£¤3?Ò‚F\vô$‹Ü5±ö†HÊü`À¯z÷u]·ÝËÇ³ÝYéÐ%OÞÚwÈ«¸Š2áÙõÃ-•kªn:zÔ¬¾k®ýFf‡fdoú~­Ü«ŒGXsÆaë|u9ºYæ³6=žSNH¥¨èÞIÖM_—´¶:çË=Ò‹ï#üÀ´Áp‹Ç#ÛGÓG>½ýlºy|Å¥kvn~3Ú³}ïäû§«Ùú¼ãZVrã®Éo‘uÎ|ÊMmW(]~Ÿß¾‡ü¾„ÖÔµ	9´
+äÈ¬û¹ÿÖC.L†…Ø]áÿ—âÿþ'¨‘ÉfÐˆÌâµÒãÈ
+endstream
+endobj
+46 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-4 -235 731 800]
+/FontName/JNEICV+CMTT10
+/ItalicAngle 0
+/StemV 69
+/FontFile 45 0 R
+/Flags 4
+>>
+endobj
+45 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 719
+/Length2 10701
+/Length3 533
+/Length 11261
+>>
+stream
+xÚí—UTá¶¥q.tãîîîÁÝÙÀ6ÎÆÝÜ‚ww—àî.ÁÎ9çÞÛ£Ïí—ýÖ£«ê¡ÖZ³æÿÕ¬zù©ÈTÔ™ÄÌLAÒö.LlÌlü 	E6V 3+«82•t;ØK]@ü 6>>v€˜#ÀÎ`cåçdÿ{!#S$=!`K+ ­Ý?T< 1;l´(]¬@vMÌ€¶ u30ÈÅ“ ³µ¨ýãg€Èq™3##³±ÌÁf. S%Ø™åXrö žµÍ]ÿsä‚8ÿåÐþ“”ð—ÓÜÁÞÖ`²@fQrø»è/Íÿ1Øÿ†ëßÍ¥]mm•€vÿ°ÿgXÿm´Ûzþ‡ÂÁÎÑÕ(:˜ƒ öÿ.ÕýNdvµû÷©œÐl&foi°þ«v–{€ÌUÀ.fV ˆ+èŸm½ù¿3üMîŸ,òJRrZÿñ]ÿ5U‚í]4<ÿËöòÖlÿ³þ›ìÐgý0Û_áßó?ïÿm5){3s°½%@Ýho„˜ÿWã¿S‰‹;xx3q˜Ø9¸ <l ^VVßÿU¦ivrÉI¸XYYy9ØÿÙ5s…@@ö.ÿüþ¾ïÖà¿á€@ 3ä uUEÚSÚU<V<ãrjÚ ¹—’ˆÀ AMž7[¡ÕØý–ÔŸšÛa‘µFdª.ìFãÃëŠç÷	y^¦ ô‰os¾‚Çr«c	!^—Z(¢J÷Xœ5×+éœ/Ù(J& ¬Ö©­>‘äo‚z,]è:¾¤Ú.áYìJª/u´ÍÊ”¸*K¢$­qó×%ÕfªiâäÁc½M?%íÖÆWp×2ß#B”<¾ØÜó¦Á®H¡ ’¹ZC;#H3j	©ž^üø‰˜Êþ‡‘ŽÍH!…â»+£q TX6Z<
+µd„Ï±k­–[O_6)Z?TPy™‚h:JÐ3A¸_€jŒìI.ój~’ÒÞ2’RïÂ„ªWÕ©¾p¡ç4É‰Ô—ÓrþYIÁšH—–ó>lõlÒ‹o=ñ/ó½[[JXAß+j-I£!~b­äb8’üVIÄŸÍƒfZ°E¯p~öëUuÓ«¶9è‰)ò:‡¯½Úá¬	š&Å»s¿¬ÜaÏY<n#Í"+B;€àh7æÈ¦õŒ­P¿J`W'£
+ÂÈSpæE'ÖoRcyÎ¹¼0&p÷µ™
+¨˜h3p¼™?¥òÆù^‰G*Ÿ±ám$'Ëö‹Ð#%ýt(XÆÏ•–êƒvµŠ¸§iõSÇGµÿrÊ}û}XÒU2ô`Ü>ý ™ö´ÿ”-ÑŒŒÊFå½mÝ„„’˜ÀÆžÆî*WZDU0YF‘ç–ú¨gþ4¶Ó× -†^ÝõÚ©/¯A QU:˜Ûv¥¿>²Ž5d{Â›S(¸dYƒŠ¨…(Ã ‰œå×& <Ý.¤›%‡ë8¨Žý<{÷åŽ qkôÄûÇ¥j†Ã‹~Y”Õzì¼‹«k×ê†í-– A]ŸÄ{¢¢ê0‚§Ïìo2ßX2½ÖÀ‹±zŽÇŠBúËjlµàÄ;£gž¼RŠK–
+Ñ<çuÂ½RNÿlV«b	ƒešh´Ú€œ¨G‹/Œi™¹xá‚PIrM´
+¡«ŠçX£ÖðmÁt,èk+Œw.?+Œ-Þûý"ŠMd7Ïà¹@Fw-}Wwì‰ì’Ìß•q¦aåÍT
+ÂÄ½â©Ëú¬a?xS
+1kAyU·Í0œÍ:ýøµƒ²–ÿ²1£{uXü‚%"àxÂ=©Ç[Â¼Ð™´LÐ°zÛ)>²ßÖ"ß¦?‡R²ûòQÿòÝ4þÝ˜%˜›ðg«lFºˆ{dÓ†eú†69ó!Ñ1!j*t·šÆ_}o²_ÑV!fájž®¹j2:°:'—Ã\£8C¿Ô|6ß™Ó©ô˜ŠI\ßŒ¹C+šs´RÐ]Ÿea… wïž
+Ïq­u²=G©mì1z8„¼E¥¹¥‰
+.ÍcxÊÔª©íGahÔOúãº{&šû?°)æÚkÐ|	.œð;ùMÕ­›'¢ï,<Á5O$CÏ?®æ„©œ"-O‘u6—ÐS¨'±tåÍ4ùýÜ,Ö{8øþ¤nI¿`¬½<d·3C‚Œ×qMÅ
+¦f¡åt÷rÅÅ!v¯¹0µà›kÍ…ÓxB2è‡åƒU6®Û¥úÍ¸ÃãÉ¢ïG!1ûã›©—´#GŽ¹Yú#I’¸¸Ù~/K®i‘¤¤ÌCð\ÂñNï‘0cNl;Ï¨3ÑB"¶¸û½ŠõéÓfšteÚg
+“/ž™xe©ž/ãù˜’.(Ãx‡Úõq›è	8n˜Ä¦$¤y°—¿$ßòÈŒ©ÜF­§ýY¤]ò0öèI÷Ë>Ù
+~Öjäz'^TøþQ]qÃ¹gˆHãyñ©¿á5óEs‹ž'«ó#ÌüÆr½	ñÜÑ•™¢cmŽš¼ÅV¿àª9Ü™3ž~(ïëXæ;Hžo5/,y"³Âp’Œ¤©;}ÇËäÅÀy1 >Ù]A•h3d<õHebÿAÈàŠf;ÂÉçüÜšÊb‰<868Ýx`°Mö˜”8IW×‘7î
+]Säûô{dÚNàÕ92¾/¯e'8l©øé!÷d ò#=!úqDÈÉSx y9>jÓ´ÂÐF£­ž(íy+¥¸†cª2Ýû`f³gÊC`âA	e»×øëZñÃS·K¶0¤‡#ÝD”è¶_~Ëq‰‰rEÙç9§ªê¶µ`Ë®/ä%ü†rñ ÎÑXrNM¥ý èªè÷Ajma]·Áæ0Ä—´kÃÑ3{€	Z6„x÷ï!©rá„ðO®šfÔƒâ~SbÚÃÇM7™W1lÝEí´ûÁö
+ŒO„»X¦J©l‘É×á!yÄeC•}:B‘0ˆ	Ÿm´QÆueÒ‹êùì·–Cpÿ¡à˜[_±ïä³öåþû$BÞ‰ŒÍL&£•)®­zŸî»Rä¿øòÖ¾H
+¶OT¬ßÛ=åôgÚ¾ÉÓ†Ò¢Æ¢ ]=úêDòØ_xJÚŽ‰+5énáÜ×ºƒ<ÃW9˜É`S[–“†[ºJë&ô*™'ûh/;!p×¼˜*&/²ðþ½.Õéîú´âG•×÷âã®tú(ç†b¨¡8ÖžÛë£@Ây&ÍÑÑ=v×Ìß`œ:^ç©;‡´5—»xC3<¦q¯	ÂÒvƒü©-ê?*±?ŠÝU:cýœ¢wxG	=UqZFótä—ïI‹¬ã³¸¦+¯ŒHêÔiÖÑ´Ñw½ªÂ¡Ž)bs>HH¡Vþžœgî÷$þhê•‰¿_YË¸5•](—Dî½n}Î·SSŠáFæFñ	ë¡"ÈŸ?"a2|(Þ&ÍÇ±8¦(¡)b­àÒ|*}PÖçJ³_©D¤×=…c$ |ê2Ø†ä•©Øa‡1„óQbj­²zñÒJÔËRõ¦âòÌhÒJ;šž–ñ^4Ê©¼w&Yã"« pð–f´£_|åÁUy:÷V¸-/zŽ]\zØ2‹{'Í´ò¡Ê_1Âôu¿.WÁ*U(›†	2àQ¸µÁÕ+80m÷yÀFAÅF[×x2î‚ŠDì4”<	˜çÚV¬èr”‘å<µi[ j³ÕGpT¹²3»ùl­ŠK‰šaóp“Þq`cøíí¢ëo’SÌŽïÉB7XÛ2§)¦$Þ\«4š!Ó‹†šã8§«*ù.Á¥‚/vÆ°Š½­`Z$É(gß®p¬ÏÃÃØŽ
+*Çï¡ñJ$r²J“)ö.0³ˆS?©’[þDct#hþ@€¨ý‚3f‹¼Y5EBýóÎá=‡ÚD•ð}Ž0ùûÒº±žýS€'¸I×¸c\…Ù€ôéFo1O)!V1Ý½QÆí±-yUà.Ž.ÛW—ÒŠsëyP“l‡Ê„ÊRÒäÓZ·oølu¯ñ¨ü‡7õÅòx®zR2h\ÿ½‹ŸË99åÛ¸g¡ ÕžeÑ%—Ÿ-ïÊ™¿…]çÒöcÑ)e·DPè-§³ o\À\ÿTjÉ£íñaÕPzLøÓo:•Ü¨Ëf'÷½Þ®Fà31„‡{ØPr Z\69ÜUóA[ëÎÇÕ)oU£ù:ð+7¥~¨81ØÌi¹b³©*cdHS¬+¦ürå<“ÆÏ—]çO3ñ¶J@E{Ðo±›A‡Œ7ÈÖ·ÜÐ£×÷_ÜJÑv„"0þêS)IŸ?Tæ¥]Î®q­¸ÜÍ[¢X]PÅUØjãÓ7™
+t¥„©¨™ø(ååuœÊg¡™TëáÅç¥ÔISõéi©r®œ=ÙùÜ5	ó±_”z½‰˜#üšð~WbŽ',ácoˆÚ?*q©´—W\ÓC{é±'6›˜ªÐ”Õl}ŸPÕÉÜ³÷óLQúœðíþVzÓ†ý¤Å=…ø3¦ÿSv¿»p†ªÍ²;¶™ƒÄ±2œ'•Ç2ÁÅ¼kV/:-Zßï’†ïYmŸŠ‘¼6¬Ð’œ$OB‘cÊ´7|l½9¢az°\àxáòÒávËzó2š-ð)ÖOéÏ®Öê:âÞ_Jö’(–5û§DÊñ'„y°Öl²?K²ó}˜²2ß;h7@7Ñš 3ï¦¸ÉH„=ŽêH½×¡Çho‰“+žzóÓrÀbAå»c\bïrRqÀ,ÂtYWŠv¿Ìlt¬GüÂ h&wä®µC9ša¨ù1þ	ÈoÃÍC_–P…oìë-£»€züqO‰F,nƒÅªÄ8õª³D03ì$‰ÎUuVy~‡ÊÖ›‡ðËùF=SEeA:Çí×§Ü–2!OÏÇeõÔÍ\ïóQÙ1H
+h)ûõ›ë_Ï*úI‚ˆTz)ÄI¢å¶nÖ&‹fÈG§Í¦:ŠáV®w3ý<Îï"[¡È´Ôµå¤Áúk}ËþÚ*=”Iþ;‡Ì¾Y»Û~cFN…3í ý^ãzXçûáx›K³bãšdüÞþ±¦DU¨Ô_©_ÔÖM¼u’³9[(æ¼µ{€Då¤{Ò(øü“78Ùlp;:Ðz…i˜Bø®)3€2Ï»ÌÁÌCJŽF²–V›¬Ä=—yWci?5ä‘ì!ék†,õ‹¼Ô1aZL§H»b¿ãn1 ¿{£”íg‘+«Ó\8ãÍ‚.Bú@øìõÝ\N2ò²†%äw‘ÔKÃW•í÷k88¢±È7Z,)¿$Ãe³aR/ãôªdëdŽ|/ÿ0Ó€ôfÌû‚ßà®yM‘èþD½+µ”—jæbY.0ÀahÎ)T/³—
+Äåéo© /§Ûu«+SmŠR£	¬-ÈàûÏï¹æi?îožQŸY×®;µi™MÝ'J"ÌR%gÚ!?ûHú`d¢™IšÊÒ"”ùpîQ¯?ÛÃ¦¹X(±w·ðm¯cqlè¹w>gŠnGÒ•2ò(Ï¯ÑEV­jgÉåØøgß7=˜;BÜ–óQ™[t+å°Céõ›Pó&¶RA„vü×6Ë/§ÉoXóæ³+õÑ¬¢¤;gp³p/ß¦®oÞ9¦èý	ß0-…›:¬.ýõ>*AP#¿pzûÀ)è˜'#ü!M·Î*±@æl[ÜÆ1'íÛ¹dÀÅxç»²*¥ÒE+&-<š1R÷}FÇqµ…ìh?ó9DžWHÿ±Ÿ÷‘âíÞÑio.°;&µdî¿ýbUÙ°K¿qVÉ^qÝ¶{•¶I‘û^ú V:ªíƒÍ.ÃšýÑòhÎ?6Áü 5º—oG®©GÄÄEy½½«FX•Åu´.‡g­‘ÛV,;¦‚#²-FYcÓ_v‰³cGÇ:&÷»yÎ^Çüt'.8k¹ˆû î¤ï4ñÈœ¨ügöPfH%=ý³ÊPIhæ·_EÝÊíŽ1±úG–î¶ÒÀ"0V²|í?/ú>N–¡ªô¹Ã}f-÷Àµ±Ä+AÙÝpµ"jÖ2gî¬©"«ø(Ž¶ß›ÊüËÒeví¿d2˜7]}–2*ŠÑÇô†ˆ´É¥u¡z÷ÏñÇ—t¿º;øÒ\ôt¤¶5c/~ÜNR4O0ó€!ê­ÿn`4v«¤åÑzü6S+©Ý·AHÓä/4$Iµüá
++Éó®eÙô‚ ±Œ Ê“€ñvžf{c•õ7©üEg6Y›Ìs]ÿEmãÁÆþ+cMõÃ˜ÊM¼ÚðC‚\ƒW
+	Š–®aV
+åÃÖ×£\úvì¹2«†Rû[íìò¾_µAQ­|…Vï@c9ZS,s¾A¿Ô±M8zÝŽö*T– –éNŠ>¹QŽ´äAÛ5¸ÝÐÑ}›e›3¯åt„ó$MYt±—çgµ«ü]ŒîYÕòI’¶{Wáñ·ŽòØÚÌñÇÉ—»èˆo[¡ËÂ9HÔßßdÐÂæ±ŸÆ"‰0äJ…6'öm6ÉÝuˆü´^ ¢Ï,m²¼âÜ™€Û2jY’4²\–‹aHW[6iËR&=Zžh`GQÛª×…Û•ÖðgN5”*
+øÀ£ K'jõFo›.´å>·J"yÎÁXŽ¾vxè¥,•Cjz#e}¥2HÔ
+›n‚Ù&„[á24_±Å6¢9X ö•xÌÕç‰™Ó Áa§ üDyrÔ›Œ‹ÙóèÌ¨ºµ~ØA²u¨[¤#rƒšt-ç°x<!CK­ü©‡ô™wm<qèHZ¨ÙßÄ5øÕR7~µ™ÄS¶w•ÕXµ¢8$.,£!”©ZÊ;QY¥¢V|’;³K7’hK¬U0‚Øf²÷%ò†•¥öÚJwêöîÓEëª½#?¾øH]yx–Ã$@0/˜§E6mŒŒæ›‡JeœÄC	{¬Ógw—‰’c¸„¬OæYÉÁ~ î»ó4¸ÄºmD‡¢çÈð±Ní›{'`	’“SøÃVêÊ}ø‡°DJÇåØ˜5!29ëÄ¾¹>¯Óýí=‡‡ÙFD$»G	g5J,bsßpBžän:_ý]|#µS*ž4I‹–ñZìmÈ9¹6o4HPëk'!îøùD5½sŸÕüê«kêcs0óÓ.å÷ª¾×–-ßÙy…åÙlmÜÒãM …šì
+ÑºR-6Õpu?$8O	‹V¾ŽqúÚ¡£UF*`}=Íá{Ž¹ª5ÀÖ»ëÀª:ASQæF{¡4ƒSrÄ©"®dæÄ§ÉgA{¬·OÙ>ç‹ ûÝÝc‚Ìì±Ð\ÚŒ[50’z°Z÷Ú0'Ú`4]@ëÍ>àúzäo©ïÑS?Æß@HÎË‚gëi9±ìÑ…‘Þ&ØÏª½Å	ƒÖã«,Ñ¡:såOª³Û¨–¸@Z=Ç*”9ÉÛBþÍpÉMy}ÆD¨l¦X1œ,ßnsá§VN Žï—'Í8…Ø Ö;Á»	GÅy%Ã§ÔîŠÖzE+ÂÑNŒHÓ±ÍC’e¬~q.Y‹|{g€6ó¥~Ì%«Xãf»¹çq·­Oõ&«ä‹_aŽõ1£™÷d‰™p|>±'4²ví×Ã)…8~´	0È=*0ä¸êÉ¿™öôŠïòëÂ sà¯W/¢»x!÷˜-_…ëˆžv$“¢'	n¼µGý>ìláÏO[÷,k¡Ÿ3úFž¨È¨Øµ' ®Q«¾ø½¾D.žÿìtFNB—‹ÁêÐ
+íV<Åïq¾]ìPy§Òxü{bu]ÖÝÂCs€maÐi]ŸÕ®¹#¹‘ÏÐ€²‹‰éšê¼ùà¨ Ñ²1ÈÁ²¿ ·lH¢Sì¯4ì}*ù­ë‰ôxÜAœL:~‘´ýY^µú"‡Ìy/Ÿäý’áWã˜¿÷ã™ÞOòÈ½ñCR~Ñƒ‰£ËKž@¡°îÝbÃ	ª°õU+kå"‚ñYæÅeÉÎoëMˆ1Mn;ßœåùM!Žn1œÙ‘WÖt:|eæà î©O7€ƒë·”Ü)IMÁúÌ˜çØ.÷¸íwi°l-°yÁÄ¨F~¡u’HÃ#®LìáŽc>'S³TqŸó
+ÊQZ@`«‡}½ÔÃå4,£Zs!-ÿvŸp_¹p˜9µQ¯¾áIŽ% >i9Çf.Xþ‚_úÂRk4á:êŸ6]ºãE>tû]©<%!¯ÚÉÅ­ä\µ ÊqÀY¿áx…KÐ¸Ú‚6±¦ñOð’ÿ.^èM]«[Œ/Ÿ:RêæÌ¶2X¡Ü0­’9cËJ½‡%í’#2ƒ¾&­FÏÃV»¶[¤ëzDÈCÊY?>Ò'ƒ›á‘]Ÿ•¿ãô,¼ËYÜx1X<¼@î|†ëæ5ßÎ¤êÒyG B³á,Zw°“Áuïš]àžF=ÕŽN>›šV!¨Õ ‚)È¹ŠC‰ŽÜB‡ã—'›Õ¿½ò“%1§
+ãpŽ­!Yê—1¶3ÛD¬€Ò·ÝaÊ%†Ž4k)ÿã½En¿ÝsW­¨“k®5Ìú€5½I£7áN¨}ã€†–V9e—8~ÀzïƒIÇLxëÛ¡ÜT¡QP  ´& Öí›î/->s¾ß‡Ü¥ëqÃØ‰ú[ÅP Ò-,n Â´íw{FØ,’Ç®iþg¾r‚ß>f¤q‰¬ÝU^¤â²82wºœµg£~¨Á¼j¶Ký÷HM¤R¸ˆø7DÝþŸêhÆt_àÂY3ÕÒþ¾¿­’¾™…“1!?ø*æßúOî¦+b’8…³ÁôÉõäÝ¼ÜX±ö…jE°OVJÕ<ÀÇš«Õ†z°ç¦ãé‡”_@|%y›÷(²÷z3j×öŸg–f^¦é¢K¯fqöñl°];U¢‡ÓÅ—ýÙ(“I’ªj49¤A«P‚ZéÃ€xo„#K Bœ8›…÷ìbôÖ¾àd»2ÔÊ%YúÑb¢zˆM”
+Bw^%6çbEYªË‰§ºç)Áeh4E«®º¿×çG-ÕßcÖ$DÍ¢sNüšh²æKZmíÐS!Xg6ß]	>ÑÃÈét!a\·„ ÷*ßNä×MÓ¬P­ýàãÂ}è¯ø.ãŠØo^ÖöÆú‘LÎì*¼n<fä¤Ò ªÏ7ˆ7ëÜyg<ªòÂÕOnmmÜ:t­b³§‡È5sÏÛâÒ.ÜèËð+[MÅ!æ3©NùCzšˆ½mƒçr}õ†Q‘ø¶úG4eÙZßö´ÛkUûj 37V®à#V XB±Ü¬õ~vMù|S§˜‹tDè·eš^oúQØpR’ñJððžÛ¥B	È+¼Må„«'IÃ‹þUµé)ª[¬h^Ç½MýÕTÚòíƒ‡È”Ý› ™aç¯•~ï>-xJgê¯–+Ñù›µö±\Òí9H£o–VK€Ííx÷É	‰¯æCuQ7E&Ñ&Á²ëÏg6ÙžÕ(¿l§ˆ¤
+aÖb³éõìïŒæõ£fÉË|YO–´íÞ9›Vr:7ÎÐ$WÔå¬Æ?Sp³œ^…&-Ý	Ô-2•[«·>JüéãXÐpis	ß4vÓÄ³*ÏQžOikhŠÆðA²YMMn¿ª@Eåÿ%/VÊ„Åé³rJŸoc^d¡ØLkc7Ää‚°b<eµMyÞv’ÔŸ)W%ê€q°»ÿt{˜ÜËÎ™Ï”j!f|)Üþ¥e>œÌ,¾ˆâihk™¦ ¬˜ëûr@ß†„§â;ØØÁ?¡ÐYžÎ€Ïo‡I{x‡OÕB«¢–yc'e]“®û&Z4ùr¡¦¿þÈÎx¶±ë%{÷þ<­näÝQû»‹µpêˆ¹ùY
++ÎÔ~<¢ú2©XÅ=Ýýu"W¯ûBà…÷ÝõG!o3Ê8¥Ô?	ÿŠÕêwaw&þ×@¨¥6qnH(rJaã•î¾S‰19ag8öp‡;“¡£öù¨Yñ`Zçä.@ùònµpVá4í/6õ@GÀµ–Ý/¶©‹ÀÔ‡è¾§.‡°ŠþÄuŽu” Q]A÷›ø;-šZãZrŸoî\‹Ã‚QK« ³Ì“(ìæ³W&hsÓ$ˆ™îG;„!¿<o^#¿ó7Áý€öïÇ{[ aè­·¬îrw&ï!!Ø¶¼¥ì**K£„ïÅÕz›ñÜ7ÍÒ‰Ràõãv£Î¹¹]\üîä¹YäkVóÑ"ýZ;­¼VžZmcÃ)ª£ÉÆ³Ù¶1†Ñë|FnQÃæ3ãþPzíS¸X45!B Öæàú©Lò 2ø³ÕÜïñu‰Ñ6CY4“¸ªw÷;±ÝmRbËÚKàÙÐ0s	LnÂ+…ÊuFú.…áA÷U…P3<|œ¦!µ=Mn€yeúCßù{ ~KOT¬D–á1tÀNwÕG®d¦Ç4«>³¾‡"È%Ê1®å»œC(ŠäÀn4~±=´.$÷È¢(ìC&~WÀbò±é-	ï1‹Y†%Ö…ðùlA«±ËÞß¿;Â»ñb*?ÂcLVd,3³BkÇg„X–™WÄÕñÚÀæÆ&£ï¤qñäFø:›£`hÐÇè·Gt*%Á•ÒbðaÜ«+þ&75œ#­ëYs«Í¤^¶‚÷¬Ã½éSÈÛWž#J*vðÚŸÃ¥¬ü(”±#þ¬3^Ï8¾!ä/‹ÐËµžÁ©éºÑÊ¯÷87¨¼º |Tê¸ÙVlãÃÙŽ|­bdd­ç
+`ÅW©VùÍ=/×æhGÆðéPw›Óê3¯$Õçp¢z˜Iƒ‹®Žd‚×ÆH#é3z§ÖIþåÖSãX…­	É„Y¬áÊL´$Ï=SëÅé›9ddßDry€(P8ÆÐ§á×Rãêúƒ­aÁ²à÷k…A˜í“WËCµø
+¨(ËÛä¡Àº:uI,22ây=¾¿›+½#Søº¾M	þ®±ï@çË¯àÒÜ‹îP8Ï¯z-g^:ŸmŽVì&@LÃœj“ce\µ\D_\Mkœ‰‘‚I./¾d¬E¢…Ï¶ÁÉG8ij?f}]G½Éqnih£+Ð¶Ì,%R!« ëë‰Gýú'iy”-Tø:U%5ôÓÞ9×Âý*ê¸'Ü	rÞéºäéOÙ€ûÐ§“¯?ÒQûF
+®ôÍ¨Øà>bÔ¿ý¾h‰ÏmÙØÛmæO›gè)©ü8·ý9x>Ã£#Ów4*2@µ‚ëµáLó]0Û:¨ÉŠ*}..ý±¡îã¢XnpÇïT™Åë²Bž‰jzWìoçDÙyIÍvryõÝí½6~jô°zè½‡R…¹Ht¨Šc¶æÄÕñÏPMò{7Ë6L¨zâ¶C9«ïÏÆ°ì	âê¶<yURýƒPt¤¶ô9˜1X>ý”:ä’«'	q¬(ˆÒƒLáÙÁ“äFþ`Ç¯‹2ÔrŠ¯»fõC+øû¸¬r¶GTz€öEŽ'Â ‹© Üy€¸ƒ,ªCŒt=¬£Ù‰
+*f–2m‡77Y€$3‰ÕÑú
+zÅ•^†Aås)éù§ñû4¹•¶³.‰ˆ¿w-Ò¸èÞ©á{_Ô|ÚíÊ­ÑÓh.QmWµˆœ2
+Z@
+oUüñ¡³ùN$?4ò´ Òav{YãÏ¡©ÁÇøÛ¥HÉ‘Ÿj‚ôSD'‹ž”‡ÈIëGóŸ3r«žðN˜Sº$ô/ÑÃWX0êÝ±ŠB˜ä{,û+F¸ôÈ’‘Ûs*èˆÖâ®$ù0w'½çhS/ÕPÕÊÙ\Ý<ŠGd(Îµ0>ìÕÒÈ‡ïé¬¼~;Ùc1ž\zÅÒÝ~$P÷[LÈØøHÍŠù½?KZŠ¦x2É ŽLóTùè¶	%FobvŠUíƒqÌÅéþòˆË1ã#ì*0|#s&”ù`šÿÃoáÏs~Ð4¾b†ån†eëLÿvDHžT'ïžLÂQ*Ž·¹þ>±—&.AÜ¤×¯qžâƒüŸAlªƒ/­›û‰Ðq6DDÚ{ë•Š%§ OX[Õ$­BÑþ+TM­ˆZYI;õ!•…Å­•5¢ù1•D/­«x”Å¡EJéëçÖ¥4ü¢G„º«é{ôN’«×âñ¬U±¹ü¡3á^£çÇ]¢>ö°ÓF¯±5¹må\š»†jz…Ù8Ri:}¥ÂÿŽ­ ¤±d™#gx×àª^È¾™œ€ô‚²ª?Þ0Põì…¦=§63`íðÐÔ›fø1&¹Káæ2óÅüú]—â½Çå”Ù„w<Ý€;p…(Quïø_+Z¾m‡¶¾²Ä8Æ¾“¡RkˆŽ1 Q¾ïùÜ£[Òm¥—òd	[²æ3ñé=>‡´²¢Ô¤Ê’O­^ü˜.É¸ó‹Î#
+ÙL,-óÔ};øN‰Oª•dÃ!ð¥_$Ê~+ýqÀüÉgàµŽEyYö‡ïîÃ#\MDÿ+>UC??Ì—R1k]È¶MQìü,BÁ ý”ëŠoO$µÑ•eQ™êˆÚ:;Žl„Íê·nÑÒUUëœú?Ö—}œKGe±»—Vg¨¹Mu:SÎ‘ÏÀ£õæüm#*ØÜ7œøFBÒ´â-²)¶•œž¿ÜR\ba›ÑØ–Äï N¦Ön¤½°ï°œïô8rh«W)ªs»ñ¥¦Úƒ…%¹(a¶AË5½ÈîJ8û@•P2`Æ	+£ïÈ#ž3´cÔìŒqŽÇ×ã)¸V*aä™÷Êd]&|I”]<Ÿ˜•ãÁ“4f¼Û~jÊU¡¯Ý˜7FgcÂ§LÁŽØÞCÂ!*©\…%å‹[U€Fù+†¥JÚIfÎ“3K¦û<…1¹;BL…ÏqØ´XûîÉ£ûO‚p?Ò¬h"|qBDäÜñ6ýðˆ$ÂX<K$+(ÊR¡G¡%f”~/ð/ÌÚÖª´N‡áÊªª¢}Ä“sTó3%bÄŒùv5Œx…‰¦/nŠ1Æïï¼'ˆÒ+wÅ²Mò©môiêN
+í“‚:÷ß'2ðNÂÈ2øÈ ë(v¹¹[Du¤ÂÐÛÕ;l.‚fÜ<¬v®ùtç¢zæ?s™ó(…»W—'2GªBÏ¨ûÔ¬'ëÞm1¨Þ‘:ÅV±d`2÷Õy×|ŽÞ‘!gÇrfæé–y¤TÎÑ¤Ã7åÅj9>­z¸¯é
+é­'¬&óÉ~ìêj1p”áYÒœn5§Rå9¦7|†JÕÃ675õ@¸þŠà£K“æë)0f"Je¿ö¡½háHƒ~ßCE‚&e¸0DÎ¹T ô- AaZ©#rí3fýÙfËùú:¬’Âôy`=yÏF¬x€îÍ¯Z‰ZH*3Ð=kã3èÂJ#¡ý=K¯MÔëÃ‘f!DêºêÍ@ôôkMÛŽË’w±á4QéœŒ–¤è¤á©z?)Â0~û÷ÏçƒãK}q²9úDav)w”I´âH­¿É‡æ\IæIóG/~OÉ†þ¡)¤¶íªO0Oÿñðl‰ýdeNû¡ƒ{GsÜ?^ßýçEšÇuÅ¸›ÅåÚÝÕ»—wBþç™ÎóØ6GwqßÚ<¿„?ŸœíbøýQ€hÓ£”¢˜z]J×KÔjT¼%ŽÇ°§oÕR¢ÑûÃªs†´·YR×^Íc]:Å'„9w¯e»”K²z£ÌBêWÚÇ‡~Þ…|ÕÛíÅÅò“Àû–‘ëëÙË%GŸ[ºæ€jJÑKE1‡³ïëùIqØ…o‘ÒIb‡úgðIY(òKý2½ˆÏÞŸg—‰”çÝT+U¹"ïìaÆà|“²OU•ñ?wg‚©>£Ò½ý¨:ìËÈÌö˜’îWãî¬;ŽR¬Å‘ªTeC¶ýâ,_ªãl»ÒÕÿHmäC«Š›=ª’n­üÑ}mpž­å×ÏHYiJÉÑL³J”"„c5•"7õ&‡ån£”Oó\_ãóŽõ½ÕZá^4*:…æ1g^Ðó©êÕ’pzÖ½@_„ï='Èzˆe=˜ú×µÊºÂÞ.e{·œHcM0P({9Í—»ORƒf¯KeÓñœö~ÓUà—ÍI§ÝŸfƒrñveV‰ãx±w[ŒW”—$ŸÑ¸æÜ~	#«™%|úBN‹×&oàEçñ3ù†¿íJóXnuŒ¡@ºH4Àe¬ñÁåsnï7È™>’’×!WØò)ùÓšo&+sàRKG1¹Ÿ~ÁÉ›ÁXz…^ÏÂú›N8cÅœ%¯,…ìŸöâ&LIq–þ/;%ïxÜ;1Ú	‘Ï±ùÉIÍb…ñŒÉ¢ú°mæ3HBw¢òa*Á[¿7Ââà’Iã/Rk5¶J\‘JÿÔ¹—Éc_tX+ã£‹«üÁŽI¼­†%Ê%BV/nØ³C´­…ÚÏá?ªqÆd¦1ø&Çç{
+h¡¾“¥ºï³…JqÁXcvg´Âx>,TñãnA)Å…Wz®4»sê¨%ŽüCŠ&‘^¿!Gñ‚oóà`ŒøNoõ0ÍpŽÔxJeÖûÌXíKN:í¿nUSN)˜OoŸûqbÉ6§l?¶p¿yä>ah Þƒ/‹%åØB}MÈ[ìtgÀIê±6èåŒõÅVw³KtÉ¸;.ï«iý>"ÙÚôî[!óä/W¤AÈÝ
+˜á`® ¾oñ¹Å…õÿò@þÿÿO˜Ù‚€; Äù 2|9[
+endstream
+endobj
+369 0 obj
+<<
+/Type/FontDescriptor
+/CapHeight 850
+/Ascent 850
+/Descent -200
+/FontBBox[-301 -250 1164 946]
+/FontName/NXNDGO+CMBX10
+/ItalicAngle 0
+/StemV 114
+/FontFile 368 0 R
+/Flags 4
+>>
+endobj
+368 0 obj
+<<
+/Filter[/FlateDecode]
+/Length1 721
+/Length2 5063
+/Length3 533
+/Length 5612
+>>
+stream
+xÚí’UT\Û–†	œàÁ)‚îîî®EQ…)
+wNA‚‚\ƒ.	œP@ ÁšsÎ½·GŸÛ/=ú­Gï½ÖœóßÿüÖ\‹IßˆWÁî Q…{ yø$J:Šæ@€ ¨ˆÇÆ¦„€€.pe"	¨Bî÷Ÿ¤ˆ°$P ÷ôC¸89#œJ\¨Ä 
+î„äÐ!!î÷&``»@~| €0üã/€!Ä‚ð8òáá	 ]ÀH€ÄÉÅÿ,( öWÚÑÛóŸ%ÂëžÀù')àžÓîó8B xüºðû~{šÿ1ØÃõwsUoLäþ‡ýŸÃú·:ÈÝæ÷ÜÝÓ	A tàŽ„Çß¥f¿àá°k£Á\À
+N0 øWÊÅKÕÅâ¨ï‚;  ˜äÏ<ÄÃñï÷ƒû€_×\WYMûÇúWUäâ4öóü—ïò?cÿŒïÇƒpñXïç+p/¼ÿ¹²ù[70ÜÑÅÃ	`„y8‚ŽÿJü;•¢"Ü÷9¯Ð½¯ Èý=H‹þW¥‰‡ËSoˆ†2@Š‰Šÿ™{#äŸ7á~ËÿŒ¡.÷‚@|!`¼#ÎÎEJ ¥];gØ—ë²˜Ð0i±[˜ÌbâVKæZ@-Çù ÜR£^ Ûµi£ÝÎiåÕÝ§`MqÞ°¬OI_¥÷4;GR#ü˜âËë^×ž.d	_çâëÚHZ'ZL{å2’¤-ù»ˆ.ÍÍÑ9‚º×õœ1Íz¬úsò­ÉÓ§e5`ƒWŠÌá#=McÊîK£KÙw1º¾Únâ¯0Tð	˜¼]x=Tå1•18Ø†Ê	§R:¨f<î)\Gè=¯Þä¬Æx·”Ñ‡a¤Òc›Å|«±†šañ¢4ãí0{¨»8\»KV²>m›¹ö:EÉz"îÛHc¤úw-.rÕÙØAÔe¿ m¸é.²Ø·ž‰|Ö¶W$CÎØržf°£u3ô\R“žmÍ¹uRØDÏÕœÌwpjöàm%.¦u_ÉêaÔ‰™®<×†ºÔþÝÍv–â„£m!!·£ü§Þ_£š2/ßháù	q5È›8ç4N—‡Ë|~¢õšÁŒ…ÎþÍˆ"_•+Qàf ›—¶ÿøÄ%~¸(Ô‚ºTÁ¡æyx¹jRuöÀ¨É^È·÷«>.T}.(¶ TŸƒ“$´2Šõ§ÕîW»÷üX°Á•€/hùãÇ±O„Ý”©ždÉ½¥¹Î¾xtñ„©0‡Hc‘n´(p¶À¾d€O‚[yÖ´3ëÓÙIY±{ª™2âk~¦âój|Õ”J|¯‚WBâ#®äU=E[¿ÐdJ‚W¶ƒ©ËÃv¦èS±H¦+ÃïT14vF—.†	¨•m€(Ù]Ì65
+–£ßÛ×Ò2äü6îwÝrâ{Óé¯ÔBR3Ê2@Q0Ôžá(åÔ¹¿ŒQXLâ}_‰ÜRmów_'ÔC›D3ÙB”8J»Ìõë‘G×ä¼ Ýv#ùÛh¢l­Ú˜­ÈAÚiÒKbj±5É»Õ¬}æ?Ü-}¨Ö
+fÂu¢7Î•¸!¶ûÓ# ²ZÂ¯xeò~°8¥Éþ<¥2À¦å¶¥ÚÅodxÊäN6]wáI|jû;cÊ'{ÕV°}|ìŒó/±ð_"¯Þm…‚DƒH_PlÐÜÊ]¿eµU(Zó$&Ò˜á/Ø`ni¸@½^etxãüe.ªWk‡˜.Ó2ißfn3•m#?¡²Ú2Ý–!)pr›!L!„ýÎrPQÍ)‹S“ÜÚ1‚T3d.õà[¡½Q”¢ýˆŸ¿¥ì|¬2”,ZHð`³üfc•§(40ïl«‡äbÕÐ«7UŒa:p;´ð:ÂnJˆïnUßg±˜¶–…Q.y3ÈA=ª£ I°†_c4 ÑVßëé-WëÏÀEÂ(!“k_mS#pÎm¾ýÉ×þp äxÆþ³¶N¤÷êCÚùY×2Í-ˆœÈJö1Î{bÒ
+ùrÑuŒ—p¶ ižœ¾mÏf?˜ƒè¯ºÈÏ½R…‘”f¼¾qfëG‹ÈïMqŠ¿~Ñ
+ÅßžvO`+|üjí¦ÁË£d ‹Ãé;ã>•£e€ífœ–ñëú¢Ûªˆ„žófp˜Ç¹w;©Yè…ÿ\ŒNãÊ±{tÎãÞ€,éhø{Í.wíAÚJF	;Í‰¡‹Ûâdb
+…‡ÏÝÐð|ÏÜq~P «2Ô3õ©Ì£°ÞröåóZ
+õâpÂ$24QÄä3•Î:{Y}¨æZƒ£¦y©Oá‹w7,‹1{·fº¯<3Ï„î^„„>!Šêž`«®Ô 4%­ÊeM*7Œ¢¶ Þ,]/QŠ”h'<éÕhùÒ@Ÿä8Dq«ÿ žûÜUí–DLå0´Ÿ°¶}V§=±Õ×	ëxl8®e	Í\`Yv§¹ã{.ÃRÑ´ô•AÌ=L-Ý" >í¤zÄ±¹¿ÿ7{3’WCºý¡’©7Qá´áÀÂÎäjŽ &f¤l¸ÓÏMu#Ü-
+_Ö"Ãsiùw{E^rÓ#üÙÜÓïžÁEzÐ¸ƒ½».öÅr·ßš}G‘ý»nÙu¥2‘=’ç|ÀÒ‘Ž Wr‹$dXºæX(Är•³üÙÞš‹å¸Ý	¦N<ÜuÈ˜÷ã’”wÅõc´.ØÔàXË€¢HA´Zi¡©ÄqMª×Ûïdx8žº58¶ý5Mæ—óÒì)…zø'`6xn’^C!)ŸœI
+Ü*š¼öáSÍ>ÚÈ˜áø’k…ÿè±V@ÁÊÑ×DcŽ*p;ÿì®7=×Î´#öÌgÍöýVØ'|ˆñ(Ü«Æ¡}&ÿÀ'ty-gãœù†m=zÛÑ|žP²c íœV½f6ª˜Ž’6%h¡¶^ƒ)E×kÿã.%±([™ÒRÌçµCÖþƒÌ«zA­0)£ÛV%IÔS^-Š–¿¤BGuµ$M…}ˆÝû™³ŠÓÓ&ÞŒ#>€´ÙHW¦“õ /á];©k,b$²}—˜{Ræ¯¦tÖýZÂÑ/¤úiUÅìÌÖ_SºMHøY+üÜ{…w¿-1/e«^ZWŠëC¶‹iÑT¿Ú!»´_‘§åbëÌ`Ì¶ù¾áãj—Hoë›†c§/EaUî˜jØÃJñ»îF,À ÞÞVùÂ­þ#µN§O·xÓ¢?o+ŽãÔW²¢¥„žæå?‚ÆÊDšiÂº»±€Ceh3à¥y"Ùð:óBx›É÷³tV‡'8¤³–j«Â´w!>¿c¤¸Bë;¿„Î,çÄ°¨àFöðs—NËízË«ä™%³/Q¹ítHÛ+Ÿ1àùÉqÛûÞüdchú\¯‰UëÓ€B]$ó£$WØ+Lä˜ÌUÔ_àËHA~’Î¤~,ãX<is„-I‘O‡Ðþsös- ÆG´8MñäŠEžc
+xmŒßÐÖ"7×zr¸¡úfhŒ­õäØIë*‰&Dû\%m´=ä‰´)ºs4…¶Âœ¿x2U£#0EžZ.ÇÞÒ–çŸ}*†·€Q6GóÛSmâqW_¨v†‘¯£Ì!).8w‚o´Ç{æ •%Ïh;FÐfYÒCj#ÓY£D£*èéõñêe¸û: p·h¼éx-gŒeµÇfè ÷Û˜“1ÆàP—dû_÷#¦o]‰Hê#h
+`ÖÛRêvšæ˜wqçUpïL˜Vóg¡[d""Ü9yy4hµnoe—*l%:Ó¬œ‹‡å¼¦ÿ·XväkÅFÛrnäãqå>…´‘Ð4´´>uÉÐÆÛ¨kœÈ;ôv–	ÂGÇ’SÑ‚£Oƒªe®ƒS%±›–¯M¦Š*Î‹=†Ý3sÌ{×ÄíkŽ`!^ä&ú	šy¬AÙµ/ËöbBøqPQBØ_j‘y¥ÏÈÇÙû±*c¹àÍyÆ¹e»9UçÚ?ßQ^L-yŽ¢irYËAA "ö:Qìð´ëÕgÝ0Tƒv×'n¾‰‡‡x3©0ÝÃj2‰KóˆQÆ:Ru±°9ÊÏ‹±¡*‹ÇU4¡z{Òo[þ#Aâ|bÈ
+÷äí=dy¼Òr_Ár¡Ï¯Úeù¿+¤QEdAl,RbŠÊãbDÌ;…ˆ<àN^xeMå¤ðÓf¿ôk›EÍÔ´”WìÄÖM«SfŠ:ÑÞfN$³ý#€¹«™å_ì¤ÃSØ¯»Ö¬J®õWÎòÛÓDiŠ ó3m7¤ Qâ	N¹ËJåôƒ@÷v&•ñ°ˆ„BÎ¡×c@ìÞògú×'Û¹…¤Ó•u‰]|Ã?Útå÷i“Þ"^Š’lp}ü±Î"„ûÑ„AKa/#u¼6Ø†˜ÞŽRwWHî’Õã%µ®Õ/6±¨0Ê*M|YŒ~Ž>Zƒœ+v|›»ÄV£ÜXh–m”ÎÌx?T~§ºÏ©°i©˜{Ö(YáŠû4YmŽüF66 aš`o0I‹ò““ê$á¤îZí%ˆ+ôIÞÐüT¶fÓSQøEuéê73Kz'–µ/À3ì MSKùéf"@±åoÀ¿!õ(”[Ejld!†Z\p¦ÐÙ› U
+–µ"9Àªã¯—>yXÕ,Oð´†”‘üp­È"ó',”¹>h}ÂÉQèÑdÓIîr¼05P÷ì[h¬53øÅ;ÿzKÏ‡ÊÝyåþÐ;bdçÈf-—È5	4§üð`6:þšV—puÍ*N0»ØŸaI9œZ;‰c+TPO3Ï´YR?#5waãé¯NgF…òÿ(|"ïÂýîÙòhCµ1·Š„C²—ïM/RhnIS¹kLãöfÐÓ¾úÃ\òTmJ+tM+hPÊ;×¶XºŸ›ì´½8ÂTGÖ7ë=‡=³>E+A~5õçÞj´'å\|éº-»\ëM/€¶7h­¾òa¥¯|%x×ókž3¹/«ý.£eÂ^/TÜÂ®ù ðz÷y
+”XgŸ_ÙìÎlÏGb³ÜÅ‚VnöýVÔ?RÓ™#›ªôý×T'Ç+µý“…ïªÀ\§FB¼SÈÎËÑ«Ó®*ëÔc«ÚOÐùÓò)V¸K´Í«²ëT‘W9Q˜M/6u‰ÍC&JGž?‘'Îkhþ!_œS"¯$0Ä>0€˜å)¢ï*J“OÖ0x<ãq;ÚtµÑ^ÉkYº™È®2¸ÏoÇRÐ¡ðNÄ¹jtÝÞnMØ»°‡Ã%ï©Þ”ïF=DNÍØÝ!ZD®uË08}WûÍ1©ôìÈ3¥ÔCüG$—U5Þà`6½6œ^!G6>5ÒUEÎug´ÂYWØtHÒÀºy4W8W­¼ÊÇá¥iìsiÅhœŽ+;$vT¯¨äjÄ·†U¼Ø™µKGœÕxÞ˜8Ý–˜äLñ­b/LÂXeðË§™ä[ñt×øû	û‡(øöµé'Ù'–ÊTY‘Í)¡—¯ò5i^7Ö}ùpV7§süIˆAÙîd¿Ï‡v¥óbùZ…‡àÉ„Ï‡,±>yˆ¸¸JÕ)\G¢m`÷"ÎÄiþ+š¿Ãª›î‰â~_­kUrÑ­˜%UJé.ôÝ©Ìrsr=ÎÙã»-ÏGÝTóœ|ŒŒ’)„—r6øý<ðë‚ˆ¸ƒýÍ¶¤kH
+] ïÀ%ó)ŽƒP*éê¥s»Ÿ$c}ßÉ¿ª]dö{®ê9ÓƒÃ›I¨kPò¿¡CLñ<Dï¡“/u¤™¯•ÓLÍ`ò‚_.âqµé˜¼Íÿ•‚õ50¢Ê56"9³º}C?(uèÍÔ«øâ!å”‰'Ìß)u‚öl„Ö–îM2Ö¯F·u×B¡¾´ÓØ+5/Ï/g<ƒ½U²c0*­òÝ.”Dqúêd0Žg3d(„ÍÙõQ8º´Æìr¦°7e¶Z·z™W9ì{ÂÇÇO`YÔ§hèßät‚Gç4ýC¨zj)¹ž“-^æ’"DƒÀ@Ç¤D¢Ûd}á¬“†*»ø4ÔÐ‡gç*ÍZÚÃhu“Iüí=†½Ÿ4ïcï¦8Fk{ÑÌ´¶q‹¢§&EO+ë³sË
+ZžJäLDååà(0A­*P>ùÛÃýsGdé{|OéÆM•0¾g¹Ã‡¡Hãö­VAßÏ?¢Ì¾”žW·’¶ˆ_™ÜD†kz„dörˆ®”	Oð—5V¼ü\£ÄtZÙn­¼0ü=èÁr÷šQk®ï@Zá¦#Fº;Ih‘†Ïw²Í-Ðú’s7Ö ÆË-ÚèË`‡]KS¤äAÄÙäb¿Õ[îu®9ãE÷œ•všRãœ[Dh×2íbI¿=ç/¿ôšŠzÊ8ÔêÐÚSGgÖ\;q¬24*3ÜˆÝ˜=½I‘Î§ßç¬,@xdÕ¿ýÛ¦ûÎÇ…7ªFmi	2ag-Cbé¤E°è÷ZËS—ËæŒýl¨j¡áúÄ:ÛôzEúûµãÕÁ0|q™NÓyÔ'ùï€â	w<¹cæCn,î¦;î<Î«ç¾Öo³#Ü­h$)¨fær@èB¯£Jú9é«Ã×”e'$±YUSËŠÈW6.‡GµöDä2‡tÓÌà½„1û6Õ@!ÞGŒ©5AI-&¤ò>A¡Ù=À’ñØ©m±ò‚â3óŸ·ÑEÞ1À€ëÎIç´^Gþ*Øê>øfyt[×ŒøUA)w5Eïy[^^Ÿ²š Ë#:Ž{£¾˜T÷‹‰mmÍbä|€Fÿê@–‰ƒq,ø’ìØÏªø’øÛ„;\…m:Šj'W#‰§*Í:oÔ©7ÔUqÍIAÝÊO=mâíÒRÛì;«HïqÖô<ü}ºgeµ–â=Êk/1	¨ül©¡Ê’úv+¸ÄM ¢76ê;éþ·LÎ¶Džn¶Öó^òk‰gÐœ8çK‹'jÏªžFš)eT±øEpÎ|yrhŽhÎ—›kTc½êfê6èÅ6&ºGÕ)8LÛëfWìkóÚqÕ¨³8Vnñ8Kø‰§Éôš`öåWPIû(¤c
+b&ú¢èœ,§t-G{˜Èõ´ê‡n>ÎoSc[v8 ÝôFKœ}ºÚkNLº[ßFGïsã¶ÎèëÑÃr7àç1˜”èþ.(Òp*	S|Bú½˜‚ö²˜"Zn‰8ÂVmšå%~—­$%b¯ÂuPtœ°x¦ü_>xÿoðÂ ƒ€H¸;á†‡÷Ñ[•
+endstream
+endobj
+1 0 obj
+<<
+/Creator( TeX output 2008.12.30:1746)
+/Producer(dvipdfm 0.13.2c, Copyright \251 1998, by Mark A. Wicks)
+/CreationDate(D:20081230174624-05'00')
+>>
+endobj
+5 0 obj
+<<
+/Type/Page
+/Resources 6 0 R
+/Contents[23 0 R 4 0 R 24 0 R 25 0 R]
+/Parent 374 0 R
+>>
+endobj
+27 0 obj
+<<
+/Type/Page
+/Resources 28 0 R
+/Contents[23 0 R 4 0 R 32 0 R 25 0 R]
+/Parent 374 0 R
+>>
+endobj
+34 0 obj
+<<
+/Type/Page
+/Resources 35 0 R
+/Contents[23 0 R 4 0 R 48 0 R 25 0 R]
+/Parent 374 0 R
+>>
+endobj
+50 0 obj
+<<
+/Type/Page
+/Resources 51 0 R
+/Contents[23 0 R 4 0 R 52 0 R 25 0 R]
+/Parent 375 0 R
+>>
+endobj
+54 0 obj
+<<
+/Type/Page
+/Resources 55 0 R
+/Contents[23 0 R 4 0 R 56 0 R 25 0 R]
+/Parent 375 0 R
+>>
+endobj
+375 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[50 0 R 54 0 R]
+/Parent 374 0 R
+>>
+endobj
+374 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[5 0 R 27 0 R 34 0 R 375 0 R]
+/Parent 373 0 R
+>>
+endobj
+58 0 obj
+<<
+/Type/Page
+/Resources 59 0 R
+/Contents[23 0 R 4 0 R 60 0 R 25 0 R]
+/Parent 376 0 R
+>>
+endobj
+62 0 obj
+<<
+/Type/Page
+/Resources 63 0 R
+/Contents[23 0 R 4 0 R 64 0 R 25 0 R]
+/Parent 376 0 R
+>>
+endobj
+66 0 obj
+<<
+/Type/Page
+/Resources 67 0 R
+/Contents[23 0 R 4 0 R 68 0 R 25 0 R]
+/Parent 376 0 R
+>>
+endobj
+70 0 obj
+<<
+/Type/Page
+/Resources 71 0 R
+/Contents[23 0 R 4 0 R 72 0 R 25 0 R]
+/Parent 377 0 R
+>>
+endobj
+74 0 obj
+<<
+/Type/Page
+/Resources 75 0 R
+/Contents[23 0 R 4 0 R 76 0 R 25 0 R]
+/Parent 377 0 R
+>>
+endobj
+377 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[70 0 R 74 0 R]
+/Parent 376 0 R
+>>
+endobj
+376 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[58 0 R 62 0 R 66 0 R 377 0 R]
+/Parent 373 0 R
+>>
+endobj
+78 0 obj
+<<
+/Type/Page
+/Resources 79 0 R
+/Contents[23 0 R 4 0 R 80 0 R 25 0 R]
+/Parent 378 0 R
+>>
+endobj
+82 0 obj
+<<
+/Type/Page
+/Resources 83 0 R
+/Contents[23 0 R 4 0 R 84 0 R 25 0 R]
+/Parent 378 0 R
+>>
+endobj
+86 0 obj
+<<
+/Type/Page
+/Resources 87 0 R
+/Contents[23 0 R 4 0 R 88 0 R 25 0 R]
+/Parent 378 0 R
+>>
+endobj
+90 0 obj
+<<
+/Type/Page
+/Resources 91 0 R
+/Contents[23 0 R 4 0 R 92 0 R 25 0 R]
+/Parent 379 0 R
+>>
+endobj
+94 0 obj
+<<
+/Type/Page
+/Resources 95 0 R
+/Contents[23 0 R 4 0 R 96 0 R 25 0 R]
+/Parent 379 0 R
+>>
+endobj
+379 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[90 0 R 94 0 R]
+/Parent 378 0 R
+>>
+endobj
+378 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[78 0 R 82 0 R 86 0 R 379 0 R]
+/Parent 373 0 R
+>>
+endobj
+98 0 obj
+<<
+/Type/Page
+/Resources 99 0 R
+/Contents[23 0 R 4 0 R 100 0 R 25 0 R]
+/Parent 380 0 R
+>>
+endobj
+102 0 obj
+<<
+/Type/Page
+/Resources 103 0 R
+/Contents[23 0 R 4 0 R 104 0 R 25 0 R]
+/Parent 380 0 R
+>>
+endobj
+106 0 obj
+<<
+/Type/Page
+/Resources 107 0 R
+/Contents[23 0 R 4 0 R 108 0 R 25 0 R]
+/Parent 380 0 R
+>>
+endobj
+110 0 obj
+<<
+/Type/Page
+/Resources 111 0 R
+/Contents[23 0 R 4 0 R 112 0 R 25 0 R]
+/Parent 381 0 R
+>>
+endobj
+114 0 obj
+<<
+/Type/Page
+/Resources 115 0 R
+/Contents[23 0 R 4 0 R 116 0 R 25 0 R]
+/Parent 381 0 R
+>>
+endobj
+381 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[110 0 R 114 0 R]
+/Parent 380 0 R
+>>
+endobj
+380 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[98 0 R 102 0 R 106 0 R 381 0 R]
+/Parent 373 0 R
+>>
+endobj
+373 0 obj
+<<
+/Type/Pages
+/Count 20
+/Kids[374 0 R 376 0 R 378 0 R 380 0 R]
+/Parent 3 0 R
+>>
+endobj
+118 0 obj
+<<
+/Type/Page
+/Resources 119 0 R
+/Contents[23 0 R 4 0 R 120 0 R 25 0 R]
+/Parent 383 0 R
+>>
+endobj
+122 0 obj
+<<
+/Type/Page
+/Resources 123 0 R
+/Contents[23 0 R 4 0 R 124 0 R 25 0 R]
+/Parent 383 0 R
+>>
+endobj
+126 0 obj
+<<
+/Type/Page
+/Resources 127 0 R
+/Contents[23 0 R 4 0 R 128 0 R 25 0 R]
+/Parent 383 0 R
+>>
+endobj
+130 0 obj
+<<
+/Type/Page
+/Resources 131 0 R
+/Contents[23 0 R 4 0 R 132 0 R 25 0 R]
+/Parent 384 0 R
+>>
+endobj
+134 0 obj
+<<
+/Type/Page
+/Resources 135 0 R
+/Contents[23 0 R 4 0 R 136 0 R 25 0 R]
+/Parent 384 0 R
+>>
+endobj
+384 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[130 0 R 134 0 R]
+/Parent 383 0 R
+>>
+endobj
+383 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[118 0 R 122 0 R 126 0 R 384 0 R]
+/Parent 382 0 R
+>>
+endobj
+138 0 obj
+<<
+/Type/Page
+/Resources 139 0 R
+/Contents[23 0 R 4 0 R 140 0 R 25 0 R]
+/Parent 385 0 R
+>>
+endobj
+142 0 obj
+<<
+/Type/Page
+/Resources 143 0 R
+/Contents[23 0 R 4 0 R 144 0 R 25 0 R]
+/Parent 385 0 R
+>>
+endobj
+146 0 obj
+<<
+/Type/Page
+/Resources 147 0 R
+/Contents[23 0 R 4 0 R 148 0 R 25 0 R]
+/Parent 385 0 R
+>>
+endobj
+150 0 obj
+<<
+/Type/Page
+/Resources 151 0 R
+/Contents[23 0 R 4 0 R 152 0 R 25 0 R]
+/Parent 386 0 R
+>>
+endobj
+154 0 obj
+<<
+/Type/Page
+/Resources 155 0 R
+/Contents[23 0 R 4 0 R 156 0 R 25 0 R]
+/Parent 386 0 R
+>>
+endobj
+386 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[150 0 R 154 0 R]
+/Parent 385 0 R
+>>
+endobj
+385 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[138 0 R 142 0 R 146 0 R 386 0 R]
+/Parent 382 0 R
+>>
+endobj
+158 0 obj
+<<
+/Type/Page
+/Resources 159 0 R
+/Contents[23 0 R 4 0 R 160 0 R 25 0 R]
+/Parent 387 0 R
+>>
+endobj
+162 0 obj
+<<
+/Type/Page
+/Resources 163 0 R
+/Contents[23 0 R 4 0 R 164 0 R 25 0 R]
+/Parent 387 0 R
+>>
+endobj
+166 0 obj
+<<
+/Type/Page
+/Resources 167 0 R
+/Contents[23 0 R 4 0 R 168 0 R 25 0 R]
+/Parent 387 0 R
+>>
+endobj
+170 0 obj
+<<
+/Type/Page
+/Resources 171 0 R
+/Contents[23 0 R 4 0 R 172 0 R 25 0 R]
+/Parent 388 0 R
+>>
+endobj
+174 0 obj
+<<
+/Type/Page
+/Resources 175 0 R
+/Contents[23 0 R 4 0 R 176 0 R 25 0 R]
+/Parent 388 0 R
+>>
+endobj
+388 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[170 0 R 174 0 R]
+/Parent 387 0 R
+>>
+endobj
+387 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[158 0 R 162 0 R 166 0 R 388 0 R]
+/Parent 382 0 R
+>>
+endobj
+178 0 obj
+<<
+/Type/Page
+/Resources 179 0 R
+/Contents[23 0 R 4 0 R 180 0 R 25 0 R]
+/Parent 389 0 R
+>>
+endobj
+182 0 obj
+<<
+/Type/Page
+/Resources 183 0 R
+/Contents[23 0 R 4 0 R 184 0 R 25 0 R]
+/Parent 390 0 R
+>>
+endobj
+186 0 obj
+<<
+/Type/Page
+/Resources 187 0 R
+/Contents[23 0 R 4 0 R 188 0 R 25 0 R]
+/Parent 390 0 R
+>>
+endobj
+390 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[182 0 R 186 0 R]
+/Parent 389 0 R
+>>
+endobj
+190 0 obj
+<<
+/Type/Page
+/Resources 191 0 R
+/Contents[23 0 R 4 0 R 192 0 R 25 0 R]
+/Parent 389 0 R
+>>
+endobj
+194 0 obj
+<<
+/Type/Page
+/Resources 195 0 R
+/Contents[23 0 R 4 0 R 196 0 R 25 0 R]
+/Parent 391 0 R
+>>
+endobj
+198 0 obj
+<<
+/Type/Page
+/Resources 199 0 R
+/Contents[23 0 R 4 0 R 200 0 R 25 0 R]
+/Parent 391 0 R
+>>
+endobj
+391 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[194 0 R 198 0 R]
+/Parent 389 0 R
+>>
+endobj
+389 0 obj
+<<
+/Type/Pages
+/Count 6
+/Kids[178 0 R 390 0 R 190 0 R 391 0 R]
+/Parent 382 0 R
+>>
+endobj
+382 0 obj
+<<
+/Type/Pages
+/Count 21
+/Kids[383 0 R 385 0 R 387 0 R 389 0 R]
+/Parent 3 0 R
+>>
+endobj
+202 0 obj
+<<
+/Type/Page
+/Resources 203 0 R
+/Contents[23 0 R 4 0 R 204 0 R 25 0 R]
+/Parent 393 0 R
+>>
+endobj
+206 0 obj
+<<
+/Type/Page
+/Resources 207 0 R
+/Contents[23 0 R 4 0 R 208 0 R 25 0 R]
+/Parent 393 0 R
+>>
+endobj
+210 0 obj
+<<
+/Type/Page
+/Resources 211 0 R
+/Contents[23 0 R 4 0 R 212 0 R 25 0 R]
+/Parent 393 0 R
+>>
+endobj
+214 0 obj
+<<
+/Type/Page
+/Resources 215 0 R
+/Contents[23 0 R 4 0 R 216 0 R 25 0 R]
+/Parent 394 0 R
+>>
+endobj
+218 0 obj
+<<
+/Type/Page
+/Resources 219 0 R
+/Contents[23 0 R 4 0 R 220 0 R 25 0 R]
+/Parent 394 0 R
+>>
+endobj
+394 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[214 0 R 218 0 R]
+/Parent 393 0 R
+>>
+endobj
+393 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[202 0 R 206 0 R 210 0 R 394 0 R]
+/Parent 392 0 R
+>>
+endobj
+222 0 obj
+<<
+/Type/Page
+/Resources 223 0 R
+/Contents[23 0 R 4 0 R 224 0 R 25 0 R]
+/Parent 395 0 R
+>>
+endobj
+226 0 obj
+<<
+/Type/Page
+/Resources 227 0 R
+/Contents[23 0 R 4 0 R 228 0 R 25 0 R]
+/Parent 395 0 R
+>>
+endobj
+230 0 obj
+<<
+/Type/Page
+/Resources 231 0 R
+/Contents[23 0 R 4 0 R 232 0 R 25 0 R]
+/Parent 395 0 R
+>>
+endobj
+234 0 obj
+<<
+/Type/Page
+/Resources 235 0 R
+/Contents[23 0 R 4 0 R 236 0 R 25 0 R]
+/Parent 396 0 R
+>>
+endobj
+238 0 obj
+<<
+/Type/Page
+/Resources 239 0 R
+/Contents[23 0 R 4 0 R 240 0 R 25 0 R]
+/Parent 396 0 R
+>>
+endobj
+396 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[234 0 R 238 0 R]
+/Parent 395 0 R
+>>
+endobj
+395 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[222 0 R 226 0 R 230 0 R 396 0 R]
+/Parent 392 0 R
+>>
+endobj
+242 0 obj
+<<
+/Type/Page
+/Resources 243 0 R
+/Contents[23 0 R 4 0 R 244 0 R 25 0 R]
+/Parent 397 0 R
+>>
+endobj
+246 0 obj
+<<
+/Type/Page
+/Resources 247 0 R
+/Contents[23 0 R 4 0 R 248 0 R 25 0 R]
+/Parent 397 0 R
+>>
+endobj
+250 0 obj
+<<
+/Type/Page
+/Resources 251 0 R
+/Contents[23 0 R 4 0 R 252 0 R 25 0 R]
+/Parent 397 0 R
+>>
+endobj
+254 0 obj
+<<
+/Type/Page
+/Resources 255 0 R
+/Contents[23 0 R 4 0 R 256 0 R 25 0 R]
+/Parent 398 0 R
+>>
+endobj
+258 0 obj
+<<
+/Type/Page
+/Resources 259 0 R
+/Contents[23 0 R 4 0 R 260 0 R 25 0 R]
+/Parent 398 0 R
+>>
+endobj
+398 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[254 0 R 258 0 R]
+/Parent 397 0 R
+>>
+endobj
+397 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[242 0 R 246 0 R 250 0 R 398 0 R]
+/Parent 392 0 R
+>>
+endobj
+262 0 obj
+<<
+/Type/Page
+/Resources 263 0 R
+/Contents[23 0 R 4 0 R 264 0 R 25 0 R]
+/Parent 399 0 R
+>>
+endobj
+266 0 obj
+<<
+/Type/Page
+/Resources 267 0 R
+/Contents[23 0 R 4 0 R 268 0 R 25 0 R]
+/Parent 400 0 R
+>>
+endobj
+270 0 obj
+<<
+/Type/Page
+/Resources 271 0 R
+/Contents[23 0 R 4 0 R 272 0 R 25 0 R]
+/Parent 400 0 R
+>>
+endobj
+400 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[266 0 R 270 0 R]
+/Parent 399 0 R
+>>
+endobj
+274 0 obj
+<<
+/Type/Page
+/Resources 275 0 R
+/Contents[23 0 R 4 0 R 276 0 R 25 0 R]
+/Parent 399 0 R
+>>
+endobj
+278 0 obj
+<<
+/Type/Page
+/Resources 279 0 R
+/Contents[23 0 R 4 0 R 280 0 R 25 0 R]
+/Parent 401 0 R
+>>
+endobj
+282 0 obj
+<<
+/Type/Page
+/Resources 283 0 R
+/Contents[23 0 R 4 0 R 284 0 R 25 0 R]
+/Parent 401 0 R
+>>
+endobj
+401 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[278 0 R 282 0 R]
+/Parent 399 0 R
+>>
+endobj
+399 0 obj
+<<
+/Type/Pages
+/Count 6
+/Kids[262 0 R 400 0 R 274 0 R 401 0 R]
+/Parent 392 0 R
+>>
+endobj
+392 0 obj
+<<
+/Type/Pages
+/Count 21
+/Kids[393 0 R 395 0 R 397 0 R 399 0 R]
+/Parent 3 0 R
+>>
+endobj
+286 0 obj
+<<
+/Type/Page
+/Resources 287 0 R
+/Contents[23 0 R 4 0 R 288 0 R 25 0 R]
+/Parent 403 0 R
+>>
+endobj
+290 0 obj
+<<
+/Type/Page
+/Resources 291 0 R
+/Contents[23 0 R 4 0 R 292 0 R 25 0 R]
+/Parent 403 0 R
+>>
+endobj
+294 0 obj
+<<
+/Type/Page
+/Resources 295 0 R
+/Contents[23 0 R 4 0 R 296 0 R 25 0 R]
+/Parent 403 0 R
+>>
+endobj
+298 0 obj
+<<
+/Type/Page
+/Resources 299 0 R
+/Contents[23 0 R 4 0 R 300 0 R 25 0 R]
+/Parent 404 0 R
+>>
+endobj
+302 0 obj
+<<
+/Type/Page
+/Resources 303 0 R
+/Contents[23 0 R 4 0 R 304 0 R 25 0 R]
+/Parent 404 0 R
+>>
+endobj
+404 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[298 0 R 302 0 R]
+/Parent 403 0 R
+>>
+endobj
+403 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[286 0 R 290 0 R 294 0 R 404 0 R]
+/Parent 402 0 R
+>>
+endobj
+306 0 obj
+<<
+/Type/Page
+/Resources 307 0 R
+/Contents[23 0 R 4 0 R 308 0 R 25 0 R]
+/Parent 405 0 R
+>>
+endobj
+310 0 obj
+<<
+/Type/Page
+/Resources 311 0 R
+/Contents[23 0 R 4 0 R 312 0 R 25 0 R]
+/Parent 405 0 R
+>>
+endobj
+314 0 obj
+<<
+/Type/Page
+/Resources 315 0 R
+/Contents[23 0 R 4 0 R 316 0 R 25 0 R]
+/Parent 405 0 R
+>>
+endobj
+318 0 obj
+<<
+/Type/Page
+/Resources 319 0 R
+/Contents[23 0 R 4 0 R 320 0 R 25 0 R]
+/Parent 406 0 R
+>>
+endobj
+322 0 obj
+<<
+/Type/Page
+/Resources 323 0 R
+/Contents[23 0 R 4 0 R 324 0 R 25 0 R]
+/Parent 406 0 R
+>>
+endobj
+406 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[318 0 R 322 0 R]
+/Parent 405 0 R
+>>
+endobj
+405 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[306 0 R 310 0 R 314 0 R 406 0 R]
+/Parent 402 0 R
+>>
+endobj
+326 0 obj
+<<
+/Type/Page
+/Resources 327 0 R
+/Contents[23 0 R 4 0 R 328 0 R 25 0 R]
+/Parent 407 0 R
+>>
+endobj
+330 0 obj
+<<
+/Type/Page
+/Resources 331 0 R
+/Contents[23 0 R 4 0 R 332 0 R 25 0 R]
+/Parent 407 0 R
+>>
+endobj
+334 0 obj
+<<
+/Type/Page
+/Resources 335 0 R
+/Contents[23 0 R 4 0 R 336 0 R 25 0 R]
+/Parent 407 0 R
+>>
+endobj
+338 0 obj
+<<
+/Type/Page
+/Resources 339 0 R
+/Contents[23 0 R 4 0 R 340 0 R 25 0 R]
+/Parent 408 0 R
+>>
+endobj
+342 0 obj
+<<
+/Type/Page
+/Resources 343 0 R
+/Contents[23 0 R 4 0 R 344 0 R 25 0 R]
+/Parent 408 0 R
+>>
+endobj
+408 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[338 0 R 342 0 R]
+/Parent 407 0 R
+>>
+endobj
+407 0 obj
+<<
+/Type/Pages
+/Count 5
+/Kids[326 0 R 330 0 R 334 0 R 408 0 R]
+/Parent 402 0 R
+>>
+endobj
+346 0 obj
+<<
+/Type/Page
+/Resources 347 0 R
+/Contents[23 0 R 4 0 R 348 0 R 25 0 R]
+/Parent 409 0 R
+>>
+endobj
+350 0 obj
+<<
+/Type/Page
+/Resources 351 0 R
+/Contents[23 0 R 4 0 R 352 0 R 25 0 R]
+/Parent 410 0 R
+>>
+endobj
+354 0 obj
+<<
+/Type/Page
+/Resources 355 0 R
+/Contents[23 0 R 4 0 R 356 0 R 25 0 R]
+/Parent 410 0 R
+>>
+endobj
+410 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[350 0 R 354 0 R]
+/Parent 409 0 R
+>>
+endobj
+358 0 obj
+<<
+/Type/Page
+/Resources 359 0 R
+/Contents[23 0 R 4 0 R 360 0 R 25 0 R]
+/Parent 409 0 R
+>>
+endobj
+362 0 obj
+<<
+/Type/Page
+/Resources 363 0 R
+/Contents[23 0 R 4 0 R 364 0 R 25 0 R]
+/Parent 411 0 R
+>>
+endobj
+366 0 obj
+<<
+/Type/Page
+/Resources 367 0 R
+/Contents[23 0 R 4 0 R 371 0 R 25 0 R]
+/Parent 411 0 R
+>>
+endobj
+411 0 obj
+<<
+/Type/Pages
+/Count 2
+/Kids[362 0 R 366 0 R]
+/Parent 409 0 R
+>>
+endobj
+409 0 obj
+<<
+/Type/Pages
+/Count 6
+/Kids[346 0 R 410 0 R 358 0 R 411 0 R]
+/Parent 402 0 R
+>>
+endobj
+402 0 obj
+<<
+/Type/Pages
+/Count 21
+/Kids[403 0 R 405 0 R 407 0 R 409 0 R]
+/Parent 3 0 R
+>>
+endobj
+3 0 obj
+<<
+/Type/Pages
+/Count 83
+/Kids[373 0 R 382 0 R 392 0 R 402 0 R]
+/MediaBox[0 0 595 842]
+>>
+endobj
+23 0 obj
+<<
+/Length 1
+>>
+stream
+
+endstream
+endobj
+25 0 obj
+<<
+/Length 1
+>>
+stream
+
+endstream
+endobj
+4 0 obj
+<<
+/Length 33
+>>
+stream
+1.00028 0 0 1.00028 72 769.82 cm
+endstream
+endobj
+412 0 obj
+<<
+>>
+endobj
+413 0 obj
+null
+endobj
+414 0 obj
+<<
+>>
+endobj
+2 0 obj
+<<
+/Type/Catalog
+/Pages 3 0 R
+/Outlines 412 0 R
+/Threads 413 0 R
+/Names 414 0 R
+>>
+endobj
+xref
+0 415
+0000000000 65535 f 
+0000129463 00000 n 
+0000142433 00000 n 
+0000142078 00000 n 
+0000142283 00000 n 
+0000129627 00000 n 
+0000006353 00000 n 
+0000000009 00000 n 
+0000075823 00000 n 
+0000075639 00000 n 
+0000000913 00000 n 
+0000080857 00000 n 
+0000080671 00000 n 
+0000001906 00000 n 
+0000085603 00000 n 
+0000085415 00000 n 
+0000002823 00000 n 
+0000088534 00000 n 
+0000088348 00000 n 
+0000003822 00000 n 
+0000097087 00000 n 
+0000096899 00000 n 
+0000004790 00000 n 
+0000142183 00000 n 
+0000005707 00000 n 
+0000142233 00000 n 
+0000006276 00000 n 
+0000129730 00000 n 
+0000007573 00000 n 
+0000104365 00000 n 
+0000104176 00000 n 
+0000006414 00000 n 
+0000007360 00000 n 
+0000007529 00000 n 
+0000129835 00000 n 
+0000014439 00000 n 
+0000007635 00000 n 
+0000107752 00000 n 
+0000107557 00000 n 
+0000009251 00000 n 
+0000010202 00000 n 
+0000109510 00000 n 
+0000109315 00000 n 
+0000011109 00000 n 
+0000012090 00000 n 
+0000112167 00000 n 
+0000111981 00000 n 
+0000013067 00000 n 
+0000013811 00000 n 
+0000014373 00000 n 
+0000129940 00000 n 
+0000015109 00000 n 
+0000014501 00000 n 
+0000015065 00000 n 
+0000130045 00000 n 
+0000015892 00000 n 
+0000015171 00000 n 
+0000015848 00000 n 
+0000130326 00000 n 
+0000016678 00000 n 
+0000015954 00000 n 
+0000016634 00000 n 
+0000130431 00000 n 
+0000017453 00000 n 
+0000016740 00000 n 
+0000017409 00000 n 
+0000130536 00000 n 
+0000018300 00000 n 
+0000017515 00000 n 
+0000018256 00000 n 
+0000130641 00000 n 
+0000019104 00000 n 
+0000018362 00000 n 
+0000019060 00000 n 
+0000130746 00000 n 
+0000019889 00000 n 
+0000019166 00000 n 
+0000019845 00000 n 
+0000131028 00000 n 
+0000020720 00000 n 
+0000019951 00000 n 
+0000020676 00000 n 
+0000131133 00000 n 
+0000021554 00000 n 
+0000020782 00000 n 
+0000021510 00000 n 
+0000131238 00000 n 
+0000022523 00000 n 
+0000021616 00000 n 
+0000022479 00000 n 
+0000131343 00000 n 
+0000023387 00000 n 
+0000022585 00000 n 
+0000023343 00000 n 
+0000131448 00000 n 
+0000024159 00000 n 
+0000023449 00000 n 
+0000024115 00000 n 
+0000131730 00000 n 
+0000024943 00000 n 
+0000024221 00000 n 
+0000024898 00000 n 
+0000131836 00000 n 
+0000025707 00000 n 
+0000025006 00000 n 
+0000025662 00000 n 
+0000131944 00000 n 
+0000026493 00000 n 
+0000025771 00000 n 
+0000026448 00000 n 
+0000132052 00000 n 
+0000027241 00000 n 
+0000026557 00000 n 
+0000027196 00000 n 
+0000132160 00000 n 
+0000028077 00000 n 
+0000027305 00000 n 
+0000028032 00000 n 
+0000132547 00000 n 
+0000028845 00000 n 
+0000028141 00000 n 
+0000028800 00000 n 
+0000132655 00000 n 
+0000029713 00000 n 
+0000028909 00000 n 
+0000029668 00000 n 
+0000132763 00000 n 
+0000030613 00000 n 
+0000029777 00000 n 
+0000030568 00000 n 
+0000132871 00000 n 
+0000031397 00000 n 
+0000030677 00000 n 
+0000031352 00000 n 
+0000132979 00000 n 
+0000032178 00000 n 
+0000031461 00000 n 
+0000032133 00000 n 
+0000133269 00000 n 
+0000032925 00000 n 
+0000032242 00000 n 
+0000032880 00000 n 
+0000133377 00000 n 
+0000033832 00000 n 
+0000032989 00000 n 
+0000033787 00000 n 
+0000133485 00000 n 
+0000034506 00000 n 
+0000033896 00000 n 
+0000034461 00000 n 
+0000133593 00000 n 
+0000035208 00000 n 
+0000034570 00000 n 
+0000035163 00000 n 
+0000133701 00000 n 
+0000035883 00000 n 
+0000035272 00000 n 
+0000035838 00000 n 
+0000133991 00000 n 
+0000036330 00000 n 
+0000035947 00000 n 
+0000036285 00000 n 
+0000134099 00000 n 
+0000037207 00000 n 
+0000036394 00000 n 
+0000037140 00000 n 
+0000134207 00000 n 
+0000037963 00000 n 
+0000037271 00000 n 
+0000037918 00000 n 
+0000134315 00000 n 
+0000038803 00000 n 
+0000038027 00000 n 
+0000038758 00000 n 
+0000134423 00000 n 
+0000039477 00000 n 
+0000038867 00000 n 
+0000039432 00000 n 
+0000134713 00000 n 
+0000040242 00000 n 
+0000039541 00000 n 
+0000040197 00000 n 
+0000134821 00000 n 
+0000040898 00000 n 
+0000040306 00000 n 
+0000040853 00000 n 
+0000134929 00000 n 
+0000041616 00000 n 
+0000040962 00000 n 
+0000041571 00000 n 
+0000135120 00000 n 
+0000042330 00000 n 
+0000041680 00000 n 
+0000042285 00000 n 
+0000135228 00000 n 
+0000043102 00000 n 
+0000042394 00000 n 
+0000043057 00000 n 
+0000135336 00000 n 
+0000043858 00000 n 
+0000043166 00000 n 
+0000043813 00000 n 
+0000135724 00000 n 
+0000044587 00000 n 
+0000043922 00000 n 
+0000044542 00000 n 
+0000135832 00000 n 
+0000045419 00000 n 
+0000044651 00000 n 
+0000045374 00000 n 
+0000135940 00000 n 
+0000046322 00000 n 
+0000045483 00000 n 
+0000046277 00000 n 
+0000136048 00000 n 
+0000047046 00000 n 
+0000046386 00000 n 
+0000047001 00000 n 
+0000136156 00000 n 
+0000047815 00000 n 
+0000047110 00000 n 
+0000047770 00000 n 
+0000136446 00000 n 
+0000048579 00000 n 
+0000047879 00000 n 
+0000048534 00000 n 
+0000136554 00000 n 
+0000049304 00000 n 
+0000048643 00000 n 
+0000049259 00000 n 
+0000136662 00000 n 
+0000050102 00000 n 
+0000049368 00000 n 
+0000050057 00000 n 
+0000136770 00000 n 
+0000050822 00000 n 
+0000050166 00000 n 
+0000050777 00000 n 
+0000136878 00000 n 
+0000051475 00000 n 
+0000050886 00000 n 
+0000051430 00000 n 
+0000137168 00000 n 
+0000052247 00000 n 
+0000051539 00000 n 
+0000052202 00000 n 
+0000137276 00000 n 
+0000053003 00000 n 
+0000052311 00000 n 
+0000052958 00000 n 
+0000137384 00000 n 
+0000053726 00000 n 
+0000053067 00000 n 
+0000053681 00000 n 
+0000137492 00000 n 
+0000054465 00000 n 
+0000053790 00000 n 
+0000054420 00000 n 
+0000137600 00000 n 
+0000055254 00000 n 
+0000054529 00000 n 
+0000055209 00000 n 
+0000137890 00000 n 
+0000055982 00000 n 
+0000055318 00000 n 
+0000055937 00000 n 
+0000137998 00000 n 
+0000056723 00000 n 
+0000056046 00000 n 
+0000056678 00000 n 
+0000138106 00000 n 
+0000057471 00000 n 
+0000056787 00000 n 
+0000057426 00000 n 
+0000138297 00000 n 
+0000058246 00000 n 
+0000057535 00000 n 
+0000058201 00000 n 
+0000138405 00000 n 
+0000058988 00000 n 
+0000058310 00000 n 
+0000058943 00000 n 
+0000138513 00000 n 
+0000059743 00000 n 
+0000059052 00000 n 
+0000059698 00000 n 
+0000138901 00000 n 
+0000060533 00000 n 
+0000059807 00000 n 
+0000060488 00000 n 
+0000139009 00000 n 
+0000061252 00000 n 
+0000060597 00000 n 
+0000061207 00000 n 
+0000139117 00000 n 
+0000062032 00000 n 
+0000061316 00000 n 
+0000061987 00000 n 
+0000139225 00000 n 
+0000062762 00000 n 
+0000062096 00000 n 
+0000062717 00000 n 
+0000139333 00000 n 
+0000063525 00000 n 
+0000062826 00000 n 
+0000063480 00000 n 
+0000139623 00000 n 
+0000064218 00000 n 
+0000063589 00000 n 
+0000064173 00000 n 
+0000139731 00000 n 
+0000065004 00000 n 
+0000064282 00000 n 
+0000064959 00000 n 
+0000139839 00000 n 
+0000065773 00000 n 
+0000065068 00000 n 
+0000065728 00000 n 
+0000139947 00000 n 
+0000066559 00000 n 
+0000065837 00000 n 
+0000066514 00000 n 
+0000140055 00000 n 
+0000067242 00000 n 
+0000066623 00000 n 
+0000067197 00000 n 
+0000140345 00000 n 
+0000067937 00000 n 
+0000067306 00000 n 
+0000067892 00000 n 
+0000140453 00000 n 
+0000068646 00000 n 
+0000068001 00000 n 
+0000068601 00000 n 
+0000140561 00000 n 
+0000069392 00000 n 
+0000068710 00000 n 
+0000069347 00000 n 
+0000140669 00000 n 
+0000070176 00000 n 
+0000069456 00000 n 
+0000070131 00000 n 
+0000140777 00000 n 
+0000070894 00000 n 
+0000070240 00000 n 
+0000070849 00000 n 
+0000141067 00000 n 
+0000071551 00000 n 
+0000070958 00000 n 
+0000071506 00000 n 
+0000141175 00000 n 
+0000072233 00000 n 
+0000071615 00000 n 
+0000072188 00000 n 
+0000141283 00000 n 
+0000072931 00000 n 
+0000072297 00000 n 
+0000072886 00000 n 
+0000141474 00000 n 
+0000073627 00000 n 
+0000072995 00000 n 
+0000073582 00000 n 
+0000141582 00000 n 
+0000074248 00000 n 
+0000073691 00000 n 
+0000074203 00000 n 
+0000141690 00000 n 
+0000075575 00000 n 
+0000123736 00000 n 
+0000123544 00000 n 
+0000074312 00000 n 
+0000075251 00000 n 
+0000075517 00000 n 
+0000132449 00000 n 
+0000130231 00000 n 
+0000130150 00000 n 
+0000130932 00000 n 
+0000130851 00000 n 
+0000131634 00000 n 
+0000131553 00000 n 
+0000132351 00000 n 
+0000132268 00000 n 
+0000135626 00000 n 
+0000133170 00000 n 
+0000133087 00000 n 
+0000133892 00000 n 
+0000133809 00000 n 
+0000134614 00000 n 
+0000134531 00000 n 
+0000135527 00000 n 
+0000135037 00000 n 
+0000135444 00000 n 
+0000138803 00000 n 
+0000136347 00000 n 
+0000136264 00000 n 
+0000137069 00000 n 
+0000136986 00000 n 
+0000137791 00000 n 
+0000137708 00000 n 
+0000138704 00000 n 
+0000138214 00000 n 
+0000138621 00000 n 
+0000141980 00000 n 
+0000139524 00000 n 
+0000139441 00000 n 
+0000140246 00000 n 
+0000140163 00000 n 
+0000140968 00000 n 
+0000140885 00000 n 
+0000141881 00000 n 
+0000141391 00000 n 
+0000141798 00000 n 
+0000142365 00000 n 
+0000142388 00000 n 
+0000142410 00000 n 
+trailer
+<<
+/Size 415
+/Root 2 0 R
+/Info 1 0 R
+>>
+startxref
+142531
+%%EOF
diff --git a/src/axiom-website/CATS/kamke7.input.pamphlet b/src/axiom-website/CATS/kamke7.input.pamphlet
new file mode 100644
index 0000000..eb989d3
--- /dev/null
+++ b/src/axiom-website/CATS/kamke7.input.pamphlet
@@ -0,0 +1,1538 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input kamke7.input}
+\author{Timothy Daly}
+\maketitle
+\begin{abstract}
+This is the remaining ODEs of the Kamke test suite as published by 
+E. S. Cheb-Terrab\cite{1}. They have been rewritten using Axiom
+syntax. Where possible we show that the particular solution actually
+satisfies the original ordinary differential equation.
+
+Note that after a certain point Axiom can no longer generate useful
+results. The failures fall into several cases which have been included
+in other regression test files.
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{Generated results}
+<<*>>=
+)spool kamke7.output
+)set break resume
+)set mes auto off
+)clear all
+
+--S 1 of 97
+y:=operator 'y
+--R 
+--R
+--R   (1)  y
+--R                                                          Type: BasicOperator
+--E 1
+
+--S 2 of 97
+f:=operator 'f
+--R 
+--R
+--R   (2)  f
+--R                                                          Type: BasicOperator
+--E 2
+
+--S 3 of 97
+g:=operator 'g
+--R 
+--R
+--R   (3)  g
+--R                                                          Type: BasicOperator
+--E 3
+
+--S 4 of 97
+h:=operator 'h
+--R 
+--R
+--R   (4)  h
+--R                                                          Type: BasicOperator
+--E 4
+
+--S 5 of 97
+fa:=operator 'fa
+--R 
+--R
+--R   (5)  fa
+--R                                                          Type: BasicOperator
+--E 5
+
+--S 6 of 97
+fb:=operator 'fb
+--R 
+--R
+--R   (6)  fb
+--R                                                          Type: BasicOperator
+--E 6
+
+--S 7 of 97
+fc:=operator 'fc
+--R 
+--R
+--R   (7)  fc
+--R                                                          Type: BasicOperator
+--E 7
+
+--S 8 of 97
+fd:=operator 'fd
+--R 
+--R
+--R   (8)  fd
+--R                                                          Type: BasicOperator
+--E 8
+
+--S 9 of 97
+fe:=operator 'fe
+--R 
+--R
+--R   (9)  fe
+--R                                                          Type: BasicOperator
+--E 9
+
+--S 10 of 97
+ff:=operator 'ff
+--R 
+--R
+--R   (10)  ff
+--R                                                          Type: BasicOperator
+--E 10
+
+--S 11 of 97
+ode352 := D(y(x),x)*(cos(y(x))-sin(alpha)*sin(x))*cos(y(x))+(cos(x)-_
+            sin(alpha)*sin(y(x)))*cos(x)
+--R 
+--R
+--R   (11)
+--R               2                              ,
+--R     (cos(y(x))  - sin(alpha)sin(x)cos(y(x)))y (x) - cos(x)sin(alpha)sin(y(x))
+--R
+--R   + 
+--R           2
+--R     cos(x)
+--R                                                     Type: Expression Integer
+--E 11
+
+--S 12 of 97
+yx:=solve(ode352,y,x)
+--R 
+--R
+--R         (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x) + y(x) + x
+--R   (12)  ------------------------------------------------------------------
+--R                                          2
+--R                                          Type: Union(Expression Integer,...)
+--E 12
+
+--S 13 of 97
+ode352expr := D(yx,x)*(cos(yx)-sin(alpha)*sin(x))*cos(yx)+(cos(x)-_
+                sin(alpha)*sin(yx))*cos(x)
+--R 
+--R
+--R   (13)
+--R       -
+--R            2cos(x)sin(alpha)
+--R         *
+--R            sin
+--R                   (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x)
+--R                 + 
+--R                   y(x) + x
+--R              /
+--R                 2
+--R     + 
+--R                       2            2                                   ,
+--R           (- sin(y(x))  + cos(y(x))  - 2sin(alpha)sin(x)cos(y(x)) + 1)y (x)
+--R
+--R         + 
+--R                                                2         2
+--R           - 2cos(x)sin(alpha)sin(y(x)) - sin(x)  + cos(x)  + 1
+--R      *
+--R           (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x) + y(x) + x 2
+--R       cos(------------------------------------------------------------------)
+--R                                            2
+--R     + 
+--R                                        2                            2
+--R               sin(alpha)sin(x)sin(y(x))  - sin(alpha)sin(x)cos(y(x))
+--R             + 
+--R                          2      2
+--R               2sin(alpha) sin(x) cos(y(x)) - sin(alpha)sin(x)
+--R          *
+--R              ,
+--R             y (x)
+--R
+--R         + 
+--R                            2                                  3
+--R           2cos(x)sin(alpha) sin(x)sin(y(x)) + sin(alpha)sin(x)
+--R         + 
+--R                    2
+--R           (- cos(x)  - 1)sin(alpha)sin(x)
+--R      *
+--R           (cos(y(x)) - 2sin(alpha)sin(x))sin(y(x)) + cos(x)sin(x) + y(x) + x
+--R       cos(------------------------------------------------------------------)
+--R                                            2
+--R     + 
+--R              2
+--R       2cos(x)
+--R  /
+--R     2
+--R                                                     Type: Expression Integer
+--E 13
+
+--S 14 of 97
+ode353 := x*D(y(x),x)*cos(y(x))+sin(y(x))
+--R 
+--R
+--R                     ,
+--R   (14)  x cos(y(x))y (x) + sin(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 14
+
+--S 15 of 97
+yx:=solve(ode353,y,x)
+--R 
+--R
+--R   (15)  x sin(y(x))
+--R                                          Type: Union(Expression Integer,...)
+--E 15
+
+--S 16 of 97
+ode353expr := x*D(yx,x)*cos(yx)+sin(yx)
+--R 
+--R
+--R                              2          ,
+--R   (16)  sin(x sin(y(x))) + (x cos(y(x))y (x) + x sin(y(x)))cos(x sin(y(x)))
+--R
+--R                                                     Type: Expression Integer
+--E 16
+
+--S 17 of 97
+ode354 := (x*sin(y(x))-1)*D(y(x),x)+cos(y(x))
+--R 
+--R
+--R                           ,
+--R   (17)  (x sin(y(x)) - 1)y (x) + cos(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 17
+
+--S 18 of 97
+yx:=solve(ode354,y,x)
+--R 
+--R
+--R         - sin(y(x)) + x
+--R   (18)  ---------------
+--R            cos(y(x))
+--R                                          Type: Union(Expression Integer,...)
+--E 18
+
+--S 19 of 97
+ode354expr := (x*sin(yx)-1)*D(yx,x)+cos(yx)
+--R 
+--R
+--R   (19)
+--R                      2    2                       2  ,
+--R         ((x sin(y(x))  - x sin(y(x)) + x cos(y(x)) )y (x) - x cos(y(x)))
+--R
+--R      *
+--R             sin(y(x)) - x
+--R         sin(-------------)
+--R               cos(y(x))
+--R     + 
+--R                2    sin(y(x)) - x
+--R       cos(y(x)) cos(-------------)
+--R                       cos(y(x))
+--R     + 
+--R                 2                          2  ,
+--R       (sin(y(x))  - x sin(y(x)) + cos(y(x)) )y (x) - cos(y(x))
+--R
+--R  /
+--R              2
+--R     cos(y(x))
+--R                                                     Type: Expression Integer
+--E 19
+
+--S 20 of 97
+ode355 := (x*cos(y(x))+cos(x))*D(y(x),x)-y(x)*sin(x)+sin(y(x))
+--R 
+--R
+--R                                ,
+--R   (20)  (x cos(y(x)) + cos(x))y (x) + sin(y(x)) - y(x)sin(x)
+--R
+--R                                                     Type: Expression Integer
+--E 20
+
+--S 21 of 97
+yx:=solve(ode355,y,x)
+--R 
+--R
+--R   (21)  x sin(y(x)) + y(x)cos(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 21
+
+--S 22 of 97
+ode355expr := (x*cos(yx)+cos(x))*D(yx,x)-yx*sin(x)+sin(yx)
+--R 
+--R
+--R   (22)
+--R     sin(x sin(y(x)) + y(x)cos(x))
+--R   + 
+--R          2                      ,
+--R       ((x cos(y(x)) + x cos(x))y (x) + x sin(y(x)) - x y(x)sin(x))
+--R
+--R    *
+--R       cos(x sin(y(x)) + y(x)cos(x))
+--R   + 
+--R                                2  ,
+--R     (x cos(x)cos(y(x)) + cos(x) )y (x) + (- x sin(x) + cos(x))sin(y(x))
+--R
+--R   + 
+--R     - 2y(x)cos(x)sin(x)
+--R                                                     Type: Expression Integer
+--E 22
+
+--S 23 of 97
+ode356 := (x**2*cos(y(x))+2*y(x)*sin(x))*D(y(x),x)+2*x*sin(y(x))+y(x)**2*cos(x)
+--R 
+--R
+--R           2                         ,                         2
+--R   (23)  (x cos(y(x)) + 2y(x)sin(x))y (x) + 2x sin(y(x)) + y(x) cos(x)
+--R
+--R                                                     Type: Expression Integer
+--E 23
+
+--S 24 of 97
+yx:=solve(ode356,y,x)
+--R 
+--R
+--R          2                2
+--R   (24)  x sin(y(x)) + y(x) sin(x)
+--R                                          Type: Union(Expression Integer,...)
+--E 24
+
+--S 25 of 97
+ode356expr:=(x**2*cos(yx)+2*yx*sin(x))*D(yx,x)+2*x*sin(yx)+yx**2*cos(x)
+--R 
+--R
+--R   (25)
+--R             2                2
+--R     2x sin(x sin(y(x)) + y(x) sin(x))
+--R   + 
+--R          4              2            ,        3             2    2
+--R       ((x cos(y(x)) + 2x y(x)sin(x))y (x) + 2x sin(y(x)) + x y(x) cos(x))
+--R
+--R    *
+--R            2                2
+--R       cos(x sin(y(x)) + y(x) sin(x))
+--R   + 
+--R            4                    2          2
+--R         (2x sin(x)cos(y(x)) + 4x y(x)sin(x) )sin(y(x))
+--R       + 
+--R           2    2      2                 3      3
+--R         2x y(x) sin(x) cos(y(x)) + 4y(x) sin(x)
+--R    *
+--R        ,
+--R       y (x)
+--R
+--R   + 
+--R        3          4                2
+--R     (4x sin(x) + x cos(x))sin(y(x))
+--R   + 
+--R             2      2     2    2                              4            2
+--R     (4x y(x) sin(x)  + 4x y(x) cos(x)sin(x))sin(y(x)) + 3y(x) cos(x)sin(x)
+--R                                                     Type: Expression Integer
+--E 25
+
+--S 26 of 97
+ode358 := D(y(x),x)*sin(y(x))*cos(x)+cos(y(x))*sin(x)
+--R 
+--R
+--R                         ,
+--R   (26)  cos(x)sin(y(x))y (x) + sin(x)cos(y(x))
+--R
+--R                                                     Type: Expression Integer
+--E 26
+
+--S 27 of 97
+yx:=solve(ode358,y,x)
+--R 
+--R
+--R   (27)  - cos(x)cos(y(x))
+--R                                          Type: Union(Expression Integer,...)
+--E 27
+
+--S 28 of 97
+ode358expr := D(yx,x)*sin(yx)*cos(x)+cos(yx)*sin(x)
+--R 
+--R
+--R   (28)
+--R              2          ,
+--R     (- cos(x) sin(y(x))y (x) - cos(x)sin(x)cos(y(x)))sin(cos(x)cos(y(x)))
+--R
+--R   + 
+--R     sin(x)cos(cos(x)cos(y(x)))
+--R                                                     Type: Expression Integer
+--E 28
+
+--S 29 of 97
+ode361 := (x*sin(x*y(x))+cos(x+y(x))-sin(y(x)))*D(y(x),x)+_
+              y(x)*sin(x*y(x))+cos(x+y(x))+cos(x)
+--R 
+--R
+--R   (29)
+--R                                                 ,
+--R     (x sin(x y(x)) - sin(y(x)) + cos(y(x) + x))y (x) + y(x)sin(x y(x))
+--R
+--R   + 
+--R     cos(y(x) + x) + cos(x)
+--R                                                     Type: Expression Integer
+--E 29
+
+--S 30 of 97
+yx:=solve(ode361,y,x)
+--R 
+--R
+--R   (30)
+--R          y(x) 2                     y(x)                  y(x)
+--R     2cos(----) sin(y(x) + x) - 2cos(----)cos(y(x) + x)sin(----) - cos(x y(x))
+--R            2                          2                     2
+--R   + 
+--R     cos(y(x))
+--R                                          Type: Union(Expression Integer,...)
+--E 30
+
+--S 31 of 97
+ode361expr:=(x*sin(x*yx)+cos(x+yx)-sin(yx))*D(yx,x)+_
+              yx*sin(x*yx)+cos(x+yx)+cos(x)
+--R 
+--R
+--R   (31)
+--R              2                                               y(x) 2
+--R             x sin(x y(x)) - x sin(y(x)) + x cos(y(x) + x)sin(----)
+--R                                                                2
+--R           + 
+--R                   y(x) 2
+--R             x cos(----) cos(y(x) + x)
+--R                     2
+--R        *
+--R            ,
+--R           y (x)
+--R
+--R       + 
+--R                                     y(x)     y(x)         y(x) 2
+--R         x y(x)sin(x y(x)) + (2x cos(----)sin(----) + 2cos(----) )sin(y(x) + x)
+--R                                       2        2            2
+--R       + 
+--R                y(x)                  y(x)
+--R         - 2cos(----)cos(y(x) + x)sin(----) - cos(x y(x))
+--R                  2                     2
+--R       + 
+--R                y(x) 2
+--R         2x cos(----) cos(y(x) + x) + cos(y(x))
+--R                  2
+--R    *
+--R       sin
+--R                   y(x) 2                       y(x)                  y(x)
+--R            2x cos(----) sin(y(x) + x) - 2x cos(----)cos(y(x) + x)sin(----)
+--R                     2                            2                     2
+--R          + 
+--R            - x cos(x y(x)) + x cos(y(x))
+--R   + 
+--R                                                            y(x) 2
+--R             - x sin(x y(x)) + sin(y(x)) - cos(y(x) + x)sin(----)
+--R                                                              2
+--R           + 
+--R                   y(x) 2
+--R             - cos(----) cos(y(x) + x)
+--R                     2
+--R        *
+--R            ,
+--R           y (x)
+--R
+--R       + 
+--R                                  y(x)     y(x)
+--R         - y(x)sin(x y(x)) - 2cos(----)sin(----)sin(y(x) + x)
+--R                                    2        2
+--R       + 
+--R                y(x) 2
+--R         - 2cos(----) cos(y(x) + x)
+--R                  2
+--R    *
+--R       sin
+--R                 y(x) 2                     y(x)                  y(x)
+--R            2cos(----) sin(y(x) + x) - 2cos(----)cos(y(x) + x)sin(----)
+--R                   2                          2                     2
+--R          + 
+--R            - cos(x y(x)) + cos(y(x))
+--R   + 
+--R                                                          y(x) 2
+--R             x sin(x y(x)) - sin(y(x)) + cos(y(x) + x)sin(----)
+--R                                                            2
+--R           + 
+--R                 y(x) 2
+--R             cos(----) cos(y(x) + x)
+--R                   2
+--R        *
+--R            ,
+--R           y (x)
+--R
+--R       + 
+--R                                y(x)     y(x)
+--R         y(x)sin(x y(x)) + 2cos(----)sin(----)sin(y(x) + x)
+--R                                  2        2
+--R       + 
+--R              y(x) 2
+--R         2cos(----) cos(y(x) + x) + 1
+--R                2
+--R    *
+--R       cos
+--R                 y(x) 2                     y(x)                  y(x)
+--R            2cos(----) sin(y(x) + x) - 2cos(----)cos(y(x) + x)sin(----)
+--R                   2                          2                     2
+--R          + 
+--R            - cos(x y(x)) + cos(y(x)) + x
+--R   + 
+--R     cos(x)
+--R                                                     Type: Expression Integer
+--E 31
+
+--S 32 of 97
+ode363 := (x*D(y(x),x)-y(x))*cos(y(x)/x)**2+x
+--R 
+--R
+--R               y(x) 2 ,              y(x) 2
+--R   (32)  x cos(----) y (x) - y(x)cos(----)  + x
+--R                 x                     x
+--R                                                     Type: Expression Integer
+--E 32
+
+--S 33 of 97
+yx:=solve(ode363,y,x)
+--R 
+--R
+--R               y(x)     y(x)
+--R         x cos(----)sin(----) + 2x log(x) + y(x)
+--R                 x        x
+--R   (33)  ---------------------------------------
+--R                            2x
+--R                                          Type: Union(Expression Integer,...)
+--E 33
+
+--S 34 of 97
+ode363expr := (x*D(yx,x)-yx)*cos(yx/x)**2+x
+--R 
+--R
+--R   (34)
+--R                    y(x) 2         y(x) 2      ,              y(x) 2
+--R           (- x sin(----)  + x cos(----)  + x)y (x) + y(x)sin(----)
+--R                      x              x                          x
+--R         + 
+--R                   y(x)     y(x)            y(x) 2
+--R           - x cos(----)sin(----) - y(x)cos(----)  - 2x log(x) - 2y(x) + 2x
+--R                     x        x               x
+--R      *
+--R                   y(x)     y(x)                     2
+--R             x cos(----)sin(----) + 2x log(x) + y(x)
+--R                     x        x
+--R         cos(---------------------------------------)
+--R                                 2
+--R                               2x
+--R     + 
+--R         2
+--R       2x
+--R  /
+--R     2x
+--R                                                     Type: Expression Integer
+--E 34
+
+--S 35 of 97
+ode364 := (y(x)*sin(y(x)/x)-x*cos(y(x)/x))*x*D(y(x),x)-_
+            (x*cos(y(x)/x)+y(x)*sin(y(x)/x))*y(x)
+--R 
+--R
+--R   (35)
+--R              y(x)     2    y(x)   ,          2    y(x)              y(x)
+--R   (x y(x)sin(----) - x cos(----))y (x) - y(x) sin(----) - x y(x)cos(----)
+--R                x             x                      x                 x
+--R                                                     Type: Expression Integer
+--E 35
+
+--S 36 of 97
+yx:=solve(ode364,y,x)
+--R 
+--R
+--R                     y(x)
+--R   (36)  - x y(x)cos(----)
+--R                       x
+--R                                          Type: Union(Expression Integer,...)
+--E 36
+
+--S 37 of 97
+ode364expr := (yx*sin(yx/x)-x*cos(yx/x))*x*D(yx,x)-_
+                (x*cos(yx/x)+yx*sin(yx/x))*yx
+--R 
+--R
+--R   (37)
+--R           2    2    y(x)     y(x)     3        y(x) 2  ,
+--R         (x y(x) cos(----)sin(----) - x y(x)cos(----) )y (x)
+--R                       x        x                 x
+--R       + 
+--R                 3    y(x)     y(x)
+--R         - x y(x) cos(----)sin(----)
+--R                        x        x
+--R    *
+--R                   y(x)
+--R       sin(y(x)cos(----))
+--R                     x
+--R   + 
+--R             2        y(x)     3    y(x)   ,            2    y(x)
+--R         (- x y(x)sin(----) + x cos(----))y (x) + x y(x) sin(----)
+--R                        x             x                        x
+--R       + 
+--R           2        y(x)
+--R         2x y(x)cos(----)
+--R                      x
+--R    *
+--R                   y(x)
+--R       cos(y(x)cos(----))
+--R                     x
+--R                                                     Type: Expression Integer
+--E 37
+
+--S 38 of 97
+ode434 := D(y(x),x)-1
+--R 
+--R
+--R          ,
+--R   (38)  y (x) - 1
+--R
+--R                                                     Type: Expression Integer
+--E 38
+
+--S 39 of 97
+ode434a:=solve(ode434,y,x)
+--R 
+--R
+--R   (39)  [particular= x,basis= [1]]
+--RType: Union(Record(particular: Expression Integer,basis: List Expression Integer),...)
+--E 39
+
+--S 40 of 97
+yx:=ode434a.particular
+--R 
+--R
+--R   (40)  x
+--R                                                     Type: Expression Integer
+--E 40
+
+--S 41 of 97
+ode434expr := D(yx,x)-1
+--R 
+--R
+--R   (41)  0
+--R                                                     Type: Expression Integer
+--E 41
+
+--S 42 of 97
+ode683 := (D(y(x),x) = y(x)*(-1+log(x*(x+1))*y(x)*x**4-log(x*(x+1))*x**3)/x)
+--R 
+--R
+--R                  4    2    3          2
+--R          ,     (x y(x)  - x y(x))log(x  + x) - y(x)
+--R   (42)  y (x)= ------------------------------------
+--R                                  x
+--R                                            Type: Equation Expression Integer
+--E 42
+
+--S 43 of 97
+solve(ode683,y,x)
+--R 
+--R
+--R                           - x y(x) + 1
+--R   (43)  -----------------------------------------------
+--R                           3     2          3     2
+--R                         6x log(x  + x) - 4x  + 3x  - 6x
+--R                         -------------------------------
+--R               3+-----+                 18
+--R         x y(x)\|x + 1 %e
+--R                                          Type: Union(Expression Integer,...)
+--E 43
+
+--S 44 of 97
+ode703 := (D(y(x),x) = y(x)*(1-x+y(x)*x**2*log(x)+y(x)*x**3-x*log(x)-x**2)/_
+            (x-1)/x)
+--R 
+--R
+--R                  2    2                    3    2       2
+--R          ,     (x y(x)  - x y(x))log(x) + x y(x)  + (- x  - x + 1)y(x)
+--R   (44)  y (x)= -------------------------------------------------------
+--R                                          2
+--R                                         x  - x
+--R                                            Type: Equation Expression Integer
+--E 44
+
+--S 45 of 97
+solve(ode703,y,x)
+--R 
+--R
+--R                 - x y(x) + 1
+--R   (45)  ----------------------------
+--R           2           - dilog(x) + x
+--R         (x  - x)y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 45
+
+--S 46 of 97
+ode714 := (D(y(x),x) = -y(x)*(-log(1/x)+exp(x)+y(x)*x**2*log(x)+_
+            y(x)*x**3-x*log(x)-x**2)/(-log(1/x)+exp(x))/x)
+--R 
+--R
+--R   (46)
+--R            2    2                           1          x    3    2    2
+--R          (x y(x)  - x y(x))log(x) - y(x)log(-) + y(x)%e  + x y(x)  - x y(x)
+--R    ,                                        x
+--R   y (x)= ------------------------------------------------------------------
+--R                                         1        x
+--R                                   x log(-) - x %e
+--R                                         x
+--R                                            Type: Equation Expression Integer
+--E 46
+
+--S 47 of 97
+solve(ode714,y,x)
+--R 
+--R
+--R   (47)
+--R       -
+--I                                         1      %I     2
+--I                     x %I log(%I) + log(--) - %e   + %I
+--I                   ++                   %I
+--I                   |   --------------------------------- d%I
+--I                  ++                  1         %I
+--I                              %I log(--) - %I %e
+--I                                     %I
+--R            y(x)%e
+--R         *
+--R            INTSIGN
+--R           ,
+--R               x
+--R           ,
+--R                                                        2
+--I                                       - %I log(%I) - %I
+--R                 --------------------------------------------------------------
+--I                                                           1      %I     2
+--I                                      %I %I log(%I) + log(--) - %e   + %I
+--I                                    ++                    %I
+--I                                    |    --------------------------------- d%I
+--I                                   ++                   1         %I
+--I                                                %I log(--) - %I %e
+--I                       1      %I                       %I
+--R                 (log(--) - %e  )%e
+--I                      %I
+--R              *
+--I                 d%I
+--R     + 
+--R       1
+--R  /
+--I                                  1      %I     2
+--I              x %I log(%I) + log(--) - %e   + %I
+--I            ++                   %I
+--I            |   --------------------------------- d%I
+--I           ++                  1         %I
+--I                       %I log(--) - %I %e
+--I                              %I
+--R     y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 47
+
+--S 48 of 97
+ode719 := (D(y(x),x) = y(x)*(-exp(x)+log(2*x)*x**2*y(x)-log(2*x)*x)/x/exp(x))
+--R 
+--R
+--R                  2    2                          x
+--R          ,     (x y(x)  - x y(x))log(2x) - y(x)%e
+--R   (48)  y (x)= -----------------------------------
+--R                                   x
+--R                               x %e
+--R                                            Type: Equation Expression Integer
+--E 48
+
+--S 49 of 97
+solve(ode719,y,x)
+--R 
+--R
+--R                    - x y(x) + 1
+--R   (49)  ----------------------------------
+--I                  x                 %I
+--I                ++  %I log(2%I) + %e
+--I                |   ------------------ d%I
+--I               ++              %I
+--I                          %I %e
+--R         y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 49
+
+--S 50 of 97
+ode736 := (D(y(x),x) = (2*x**2+2*x+x**4-2*y(x)*x**2-1+y(x)**2)/(x+1))
+--R 
+--R
+--R                    2     2        4     2
+--R          ,     y(x)  - 2x y(x) + x  + 2x  + 2x - 1
+--R   (50)  y (x)= -----------------------------------
+--R                               x + 1
+--R                                            Type: Equation Expression Integer
+--E 50
+
+--S 51 of 97
+solve(ode736,y,x)
+--R 
+--R
+--R           2                  4     3     2
+--R         (x  + 2x - 2)y(x) - x  - 2x  + 3x  + 2x + 4
+--R   (51)  -------------------------------------------
+--R                                 2
+--R                       2y(x) - 2x  - 2
+--R                                          Type: Union(Expression Integer,...)
+--E 51
+
+--S 52 of 97
+ode765 := (D(y(x),x) = y(x)*(-1-log((x-1)*(1+x)/x)+_
+            log((x-1)*(1+x)/x)*x*y(x))/x)
+--R 
+--R
+--R                                     2
+--R                       2            x  - 1
+--R                (x y(x)  - y(x))log(------) - y(x)
+--R          ,                            x
+--R   (52)  y (x)= ----------------------------------
+--R                                 x
+--R                                            Type: Equation Expression Integer
+--E 52
+
+--S 53 of 97
+solve(ode765,y,x)
+--R 
+--R
+--R                   - x y(x) + 1
+--R   (53)  --------------------------------
+--R                          2
+--I                        %I  - 1
+--R                  x log(-------) + 1
+--I                ++         %I
+--I                |   ---------------- d%I
+--I               ++          %I
+--R         y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 53
+
+--S 54 of 97
+ode766 := (D(y(x),x) = y(x)*(-log(x)-x*log((x-1)*(1+x)/x)+_
+            log((x-1)*(1+x)/x)*x**2*y(x))/x/log(x))
+--R 
+--R
+--R                                                      2
+--R                                 2    2              x  - 1
+--R                - y(x)log(x) + (x y(x)  - x y(x))log(------)
+--R          ,                                             x
+--R   (54)  y (x)= --------------------------------------------
+--R                                  x log(x)
+--R                                            Type: Equation Expression Integer
+--E 54
+
+--S 55 of 97
+solve(ode766,y,x)
+--R 
+--R
+--R   (55)
+--R       -
+--R                                          2
+--I                                        %I  - 1
+--I                     x log(%I) + %I log(-------)
+--I                   ++                      %I
+--I                   |   ------------------------- d%I
+--I                  ++           %I log(%I)
+--R            y(x)%e
+--R         *
+--R                                           2
+--I                                         %I  - 1
+--I               x                  %I log(-------)
+--I             ++                             %I
+--I             |   - --------------------------------------------- d%I
+--R            ++                                       2
+--I                                                   %I  - 1
+--I                               %I log(%I) + %I log(-------)
+--I                             ++                       %I
+--I                             |    ------------------------- d%I
+--I                            ++            %I log(%I)
+--I                   log(%I)%e
+--R     + 
+--R       1
+--R  /
+--R                                   2
+--I                                 %I  - 1
+--I              x log(%I) + %I log(-------)
+--I            ++                      %I
+--I            |   ------------------------- d%I
+--I           ++           %I log(%I)
+--R     y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 55
+
+--S 56 of 97
+ode776 := (D(y(x),x) = y(x)*(-log(1/x)-log((x**2+1)/x)*x+_
+              log((x**2+1)/x)*x**2*y(x))/x/log(1/x))
+--R 
+--R
+--R                                       2
+--R                  2    2              x  + 1            1
+--R                (x y(x)  - x y(x))log(------) - y(x)log(-)
+--R          ,                              x              x
+--R   (56)  y (x)= ------------------------------------------
+--R                                       1
+--R                                 x log(-)
+--R                                       x
+--R                                            Type: Equation Expression Integer
+--E 56
+
+--S 57 of 97
+solve(ode776,y,x)
+--R 
+--R
+--R                        - x y(x) + 1
+--R   (57)  -----------------------------------------
+--R                             2
+--I                           %I  + 1         1
+--I                  x %I log(-------) + log(--)
+--I                ++            %I          %I
+--I                |   ------------------------- d%I
+--R               ++                   1
+--I                            %I log(--)
+--I                                   %I
+--R         y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 57
+
+--S 58 of 97
+ode872 := (D(y(x),x) = 1/5*(-30*y(x)*x**3+12*x**6+70*x**(7/2)-30*x**3-_
+            25*y(x)*x**(1/2)+50*x-25*x**(1/2)-25)/_
+            (-5*y(x)+2*x**3+10*x**(1/2)-5)/x)
+--R 
+--R
+--R                               3       +-+      3          6      3
+--R          ,     (- 25y(x) + 70x  - 25)\|x  - 30x y(x) + 12x  - 30x  + 50x - 25
+--R   (58)  y (x)= --------------------------------------------------------------
+--R                                    +-+                 4
+--R                                50x\|x  - 25x y(x) + 10x  - 25x
+--R                                            Type: Equation Expression Integer
+--E 58
+
+--S 59 of 97
+solve(ode872,y,x)
+--R 
+--R
+--R   (59)
+--R               +-+                  3        +-+         2       3
+--R       100log(\|x ) + (100y(x) - 40x  + 100)\|x  - 25y(x)  + (20x  - 50)y(x)
+--R     + 
+--R           6      3
+--R       - 4x  + 20x  - 100x
+--R  /
+--R     2
+--R                                          Type: Union(Expression Integer,...)
+--E 59
+
+--S 60 of 97
+ode555 := sqrt(D(y(x),x)**2+1)+x*D(y(x),x)-y(x)
+--R 
+--R
+--R          +----------+
+--R          | ,   2          ,
+--R   (60)   |y (x)  + 1  + xy (x) - y(x)
+--R         \|
+--R                                                     Type: Expression Integer
+--E 60
+
+--S 61 of 97
+solve(ode555,y,x)
+--R 
+--R
+--R               +-----------+
+--R               | ,    2
+--I            x  |y (%I)  + 1  - y(x)
+--R          ++  \|
+--I   (61)   |   --------------------- d%I
+--R         ++              2
+--I                       %I
+--R                                          Type: Union(Expression Integer,...)
+--E 61
+
+--S 62 of 97
+ode557 := x*(sqrt(D(y(x),x)**2+1)+D(y(x),x))-y(x)
+--R 
+--R
+--R           +----------+
+--R           | ,   2          ,
+--R   (62)  x |y (x)  + 1  + xy (x) - y(x)
+--R          \|
+--R                                                     Type: Expression Integer
+--E 62
+
+--S 63 of 97
+solve(ode557,y,x)
+--R 
+--R
+--R                 +-----------+
+--R                 | ,    2
+--I            x %I |y (%I)  + 1  - y(x)
+--R          ++    \|
+--I   (63)   |   ----------------------- d%I
+--R         ++               2
+--I                        %I
+--R                                          Type: Union(Expression Integer,...)
+--E 63
+
+--S 64 of 97
+ode558 := a*x*sqrt(D(y(x),x)**2+1)+x*D(y(x),x)-y(x)
+--R 
+--R
+--R             +----------+
+--R             | ,   2          ,
+--R   (64)  a x |y (x)  + 1  + xy (x) - y(x)
+--R            \|
+--R                                                     Type: Expression Integer
+--E 64
+
+--S 65 of 97
+solve(ode558,y,x)
+--R 
+--R
+--R                   +-----------+
+--R                   | ,    2
+--I            x %I a |y (%I)  + 1  - y(x)
+--R          ++      \|
+--I   (65)   |   ------------------------- d%I
+--R         ++                2
+--I                         %I
+--R                                          Type: Union(Expression Integer,...)
+--E 65
+
+--S 66 of 97
+ode562 := a*(D(y(x),x)**3+1)**(1/3)+b*x*D(y(x),x)-y(x)
+--R 
+--R
+--R            +----------+
+--R            | ,   3           ,
+--R   (66)  a 3|y (x)  + 1 + b xy (x) - y(x)
+--R           \|
+--R                                                     Type: Expression Integer
+--E 66
+
+--S 67 of 97
+solve(ode562,y,x)
+--R 
+--R
+--I                    log(%I)                         log(%I)
+--R                  - -------  +-----------+        - -------
+--R                       b     | ,    3                  b
+--I            x a %e          3|y (%I)  + 1 - y(x)%e
+--R          ++                \|
+--I   (67)   |   --------------------------------------------- d%I
+--I         ++                         %I
+--R                                          Type: Union(Expression Integer,...)
+--E 67
+
+--S 68 of 97
+ode563 := log(D(y(x),x))+x*D(y(x),x)+a*y(x)+b
+--R 
+--R
+--R              ,         ,
+--R   (68)  log(y (x)) + xy (x) + a y(x) + b
+--R
+--R                                                     Type: Expression Integer
+--E 68
+
+--S 69 of 97
+solve(ode563,y,x)
+--R 
+--R
+--I                a log(%I)     ,                      a log(%I)
+--I            x %e         log(y (%I)) + (a y(x) + b)%e
+--R          ++
+--I   (69)   |   ------------------------------------------------ d%I
+--I         ++                          %I
+--R                                          Type: Union(Expression Integer,...)
+--E 69
+
+--S 70 of 97
+ode564 := log(D(y(x),x))+a*(x*D(y(x),x)-y(x))
+--R 
+--R
+--R              ,           ,
+--R   (70)  log(y (x)) + a xy (x) - a y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 70
+
+--S 71 of 97
+solve(ode564,y,x)
+--R 
+--R
+--R                   ,
+--I            x log(y (%I)) - a y(x)
+--R          ++
+--I   (71)   |   -------------------- d%I
+--R         ++              2
+--I                       %I
+--R                                          Type: Union(Expression Integer,...)
+--E 71
+
+--S 72 of 97
+ode571 := a*x**n*f(D(y(x),x))+x*D(y(x),x)-y(x)
+--R 
+--R
+--R            n   ,         ,
+--R   (72)  a x f(y (x)) + xy (x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 72
+
+--S 73 of 97
+solve(ode571,y,x)
+--R 
+--R
+--R                  n   ,
+--I            x a %I f(y (%I)) - y(x)
+--R          ++
+--I   (73)   |   --------------------- d%I
+--R         ++              2
+--I                       %I
+--R                                          Type: Union(Expression Integer,...)
+--E 73
+
+--S 74 of 97
+ode573 := f(x*D(y(x),x)**2)+2*x*D(y(x),x)-y(x)
+--R 
+--R
+--R              ,   2       ,
+--R   (74)  f(x y (x) ) + 2xy (x) - y(x)
+--R
+--R                                                     Type: Expression Integer
+--E 74
+
+--S 75 of 97
+solve(ode573,y,x)
+--R 
+--R
+--R                    ,    2
+--I            x f(%I y (%I) ) - y(x)
+--R          ++
+--I   (75)   |   -------------------- d%I
+--R         ++             +--+
+--I                     %I\|%I
+--R                                          Type: Union(Expression Integer,...)
+--E 75
+
+--S 76 of 97
+ode683 := (D(y(x),x) = y(x)*(-1+log(x*(x+1))*y(x)*x**4-log(x*(x+1))*x**3)/x)
+--R 
+--R
+--R                  4    2    3          2
+--R          ,     (x y(x)  - x y(x))log(x  + x) - y(x)
+--R   (76)  y (x)= ------------------------------------
+--R                                  x
+--R                                            Type: Equation Expression Integer
+--E 76
+
+--S 77 of 97
+solve(ode683,y,x)
+--R 
+--R
+--R                           - x y(x) + 1
+--R   (77)  -----------------------------------------------
+--R                           3     2          3     2
+--R                         6x log(x  + x) - 4x  + 3x  - 6x
+--R                         -------------------------------
+--R               3+-----+                 18
+--R         x y(x)\|x + 1 %e
+--R                                          Type: Union(Expression Integer,...)
+--E 77
+
+--S 78 of 97
+ode703 := (D(y(x),x) = y(x)*(1-x+y(x)*x**2*log(x)+y(x)*x**3-x*log(x)-x**2)/_
+            (x-1)/x)
+--R 
+--R
+--R                  2    2                    3    2       2
+--R          ,     (x y(x)  - x y(x))log(x) + x y(x)  + (- x  - x + 1)y(x)
+--R   (78)  y (x)= -------------------------------------------------------
+--R                                          2
+--R                                         x  - x
+--R                                            Type: Equation Expression Integer
+--E 78
+
+--S 79 of 97
+solve(ode703,y,x)
+--R 
+--R
+--R                 - x y(x) + 1
+--R   (79)  ----------------------------
+--R           2           - dilog(x) + x
+--R         (x  - x)y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 79
+
+--S 80 of 97
+ode714 := (D(y(x),x) = -y(x)*(-log(1/x)+exp(x)+y(x)*x**2*log(x)+_
+           y(x)*x**3-x*log(x)-x**2)/(-log(1/x)+exp(x))/x)
+--R 
+--R
+--R   (80)
+--R            2    2                           1          x    3    2    2
+--R          (x y(x)  - x y(x))log(x) - y(x)log(-) + y(x)%e  + x y(x)  - x y(x)
+--R    ,                                        x
+--R   y (x)= ------------------------------------------------------------------
+--R                                         1        x
+--R                                   x log(-) - x %e
+--R                                         x
+--R                                            Type: Equation Expression Integer
+--E 80
+
+--S 81 of 97
+solve(ode714,y,x)
+--R 
+--R
+--R   (81)
+--R       -
+--I                                         1      %I     2
+--I                     x %I log(%I) + log(--) - %e   + %I
+--I                   ++                   %I
+--I                   |   --------------------------------- d%I
+--I                  ++                  1         %I
+--I                              %I log(--) - %I %e
+--I                                     %I
+--R            y(x)%e
+--R         *
+--R            INTSIGN
+--R           ,
+--R               x
+--R           ,
+--R                                                        2
+--I                                       - %I log(%I) - %I
+--R                 --------------------------------------------------------------
+--I                                                           1      %I     2
+--I                                      %I %I log(%I) + log(--) - %e   + %I
+--I                                    ++                    %I
+--I                                    |    --------------------------------- d%I
+--I                                   ++                   1         %I
+--I                                                %I log(--) - %I %e
+--I                       1      %I                       %I
+--R                 (log(--) - %e  )%e
+--I                      %I
+--R              *
+--I                 d%I
+--R     + 
+--R       1
+--R  /
+--I                                  1      %I     2
+--I              x %I log(%I) + log(--) - %e   + %I
+--I            ++                   %I
+--I            |   --------------------------------- d%I
+--I           ++                  1         %I
+--I                       %I log(--) - %I %e
+--I                              %I
+--R     y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 81
+
+--S 82 of 97
+ode719 := (D(y(x),x) = y(x)*(-exp(x)+log(2*x)*x**2*y(x)-log(2*x)*x)/x/exp(x))
+--R 
+--R
+--R                  2    2                          x
+--R          ,     (x y(x)  - x y(x))log(2x) - y(x)%e
+--R   (82)  y (x)= -----------------------------------
+--R                                   x
+--R                               x %e
+--R                                            Type: Equation Expression Integer
+--E 82
+
+--S 83 of 97
+solve(ode719,y,x)
+--R 
+--R
+--R                    - x y(x) + 1
+--R   (83)  ----------------------------------
+--I                  x                 %I
+--I                ++  %I log(2%I) + %e
+--I                |   ------------------ d%I
+--I               ++              %I
+--I                          %I %e
+--R         y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 83
+
+--S 84 of 97
+ode736 := (D(y(x),x) = (2*x**2+2*x+x**4-2*y(x)*x**2-1+y(x)**2)/(x+1))
+--R 
+--R
+--R                    2     2        4     2
+--R          ,     y(x)  - 2x y(x) + x  + 2x  + 2x - 1
+--R   (84)  y (x)= -----------------------------------
+--R                               x + 1
+--R                                            Type: Equation Expression Integer
+--E 84
+
+--S 85 of 97
+solve(ode736,y,x)
+--R 
+--R
+--R           2                  4     3     2
+--R         (x  + 2x - 2)y(x) - x  - 2x  + 3x  + 2x + 4
+--R   (85)  -------------------------------------------
+--R                                 2
+--R                       2y(x) - 2x  - 2
+--R                                          Type: Union(Expression Integer,...)
+--E 85
+
+--S 86 of 97
+ode765 := (D(y(x),x) = y(x)*(-1-log((x-1)*(1+x)/x)+_
+            log((x-1)*(1+x)/x)*x*y(x))/x)
+--R 
+--R
+--R                                     2
+--R                       2            x  - 1
+--R                (x y(x)  - y(x))log(------) - y(x)
+--R          ,                            x
+--R   (86)  y (x)= ----------------------------------
+--R                                 x
+--R                                            Type: Equation Expression Integer
+--E 86
+
+--S 87 of 97
+solve(ode765,y,x)
+--R 
+--R
+--R                   - x y(x) + 1
+--R   (87)  --------------------------------
+--R                          2
+--I                        %I  - 1
+--R                  x log(-------) + 1
+--I                ++         %I
+--I                |   ---------------- d%I
+--I               ++          %I
+--R         y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 87
+
+--S 88 of 97
+ode766 := (D(y(x),x) = y(x)*(-log(x)-x*log((x-1)*(1+x)/x)+_
+           log((x-1)*(1+x)/x)*x**2*y(x))/x/log(x))
+--R 
+--R
+--R                                                      2
+--R                                 2    2              x  - 1
+--R                - y(x)log(x) + (x y(x)  - x y(x))log(------)
+--R          ,                                             x
+--R   (88)  y (x)= --------------------------------------------
+--R                                  x log(x)
+--R                                            Type: Equation Expression Integer
+--E 88
+
+--S 89 of 97
+solve(ode766,y,x)
+--R 
+--R
+--R   (89)
+--R       -
+--R                                          2
+--I                                        %I  - 1
+--I                     x log(%I) + %I log(-------)
+--I                   ++                      %I
+--I                   |   ------------------------- d%I
+--I                  ++           %I log(%I)
+--R            y(x)%e
+--R         *
+--R                                           2
+--I                                         %I  - 1
+--I               x                  %I log(-------)
+--I             ++                             %I
+--I             |   - --------------------------------------------- d%I
+--R            ++                                       2
+--I                                                   %I  - 1
+--I                               %I log(%I) + %I log(-------)
+--I                             ++                       %I
+--I                             |    ------------------------- d%I
+--I                            ++            %I log(%I)
+--I                   log(%I)%e
+--R     + 
+--R       1
+--R  /
+--R                                   2
+--I                                 %I  - 1
+--I              x log(%I) + %I log(-------)
+--I            ++                      %I
+--I            |   ------------------------- d%I
+--I           ++           %I log(%I)
+--R     y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 89
+
+--S 90 of 97
+ode776 := (D(y(x),x) = y(x)*(-log(1/x)-log((x**2+1)/x)*x+_
+            log((x**2+1)/x)*x**2*y(x))/x/log(1/x))
+--R 
+--R
+--R                                       2
+--R                  2    2              x  + 1            1
+--R                (x y(x)  - x y(x))log(------) - y(x)log(-)
+--R          ,                              x              x
+--R   (90)  y (x)= ------------------------------------------
+--R                                       1
+--R                                 x log(-)
+--R                                       x
+--R                                            Type: Equation Expression Integer
+--E 90
+
+--S 91 of 97
+solve(ode776,y,x)
+--R 
+--R
+--R                        - x y(x) + 1
+--R   (91)  -----------------------------------------
+--R                             2
+--I                           %I  + 1         1
+--I                  x %I log(-------) + log(--)
+--I                ++            %I          %I
+--I                |   ------------------------- d%I
+--R               ++                   1
+--I                            %I log(--)
+--I                                   %I
+--R         y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 91
+
+--S 92 of 97
+ode872 := (D(y(x),x) = 1/5*(-30*y(x)*x**3+12*x**6+70*x**(7/2)-30*x**3-_
+            25*y(x)*x**(1/2)+50*x-25*x**(1/2)-25)/(-5*y(x)+2*x**3+_
+            10*x**(1/2)-5)/x)
+--R 
+--R
+--R                               3       +-+      3          6      3
+--R          ,     (- 25y(x) + 70x  - 25)\|x  - 30x y(x) + 12x  - 30x  + 50x - 25
+--R   (92)  y (x)= --------------------------------------------------------------
+--R                                    +-+                 4
+--R                                50x\|x  - 25x y(x) + 10x  - 25x
+--R                                            Type: Equation Expression Integer
+--E 92
+
+--S 93 of 97
+solve(ode872,y,x)
+--R 
+--R
+--R   (93)
+--R               +-+                  3        +-+         2       3
+--R       100log(\|x ) + (100y(x) - 40x  + 100)\|x  - 25y(x)  + (20x  - 50)y(x)
+--R     + 
+--R           6      3
+--R       - 4x  + 20x  - 100x
+--R  /
+--R     2
+--R                                          Type: Union(Expression Integer,...)
+--E 93
+
+--S 94 of 97
+ode956 := (D(y(x),x) = 1/(1+log(x))*y(x)*(-1-x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*x**2-x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*x**2*log(x)+x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*x**2*y(x)+2*x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*x**2*y(x)*log(x)+x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*x**2*y(x)*log(x)**2)/x)
+--R 
+--R
+--R   (94)
+--R    ,
+--R   y (x) =
+--R
+--R             2    2      2      2    2    2               2    2    2
+--R           (x y(x) log(x)  + (2x y(x)  - x y(x))log(x) + x y(x)  - x y(x))
+--R        *
+--R                     2
+--R              2log(x)        2
+--R             ---------- ----------
+--R             log(x) + 1 log(x) + 1
+--R           %e          x
+--R       + 
+--R         - y(x)
+--R    /
+--R       x log(x) + x
+--R                                            Type: Equation Expression Integer
+--E 94
+
+--S 95 of 97
+solve(ode956,y,x)
+--R 
+--R
+--R          - y(x)log(x) - y(x) + 1
+--R   (95)  -------------------------
+--R                4                4
+--R               x                x
+--R               --               --
+--R                4                4
+--R         y(x)%e  log(x) + y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 95
+
+--S 96 of 97
+ode957 := (D(y(x),x) = 1/(1+log(x))*y(x)*(-1-x**3*x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)-x**3*x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*log(x)+x**3*x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*y(x)+2*x**3*x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*y(x)*log(x)+x**3*x**(2/(1+log(x)))*_
+            exp(2/(1+log(x))*log(x)**2)*y(x)*log(x)**2)/x)
+--R 
+--R
+--R   (96)
+--R    ,
+--R   y (x) =
+--R
+--R             3    2      2      3    2    3               3    2    3
+--R           (x y(x) log(x)  + (2x y(x)  - x y(x))log(x) + x y(x)  - x y(x))
+--R        *
+--R                     2
+--R              2log(x)        2
+--R             ---------- ----------
+--R             log(x) + 1 log(x) + 1
+--R           %e          x
+--R       + 
+--R         - y(x)
+--R    /
+--R       x log(x) + x
+--R                                            Type: Equation Expression Integer
+--E 96
+
+--S 97 of 97
+solve(ode957,y,x)
+--R 
+--R
+--R          - y(x)log(x) - y(x) + 1
+--R   (97)  -------------------------
+--R                5                5
+--R               x                x
+--R               --               --
+--R                5                5
+--R         y(x)%e  log(x) + y(x)%e
+--R                                          Type: Union(Expression Integer,...)
+--E 97
+)spool
+)lisp (bye)
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} {\bf http://www.cs.uwaterloo.ca/$\tilde{}$ecterrab/odetools.html}
+\end{thebibliography}
+\end{document}
diff --git a/src/axiom-website/CATS/kamke7.input.pdf b/src/axiom-website/CATS/kamke7.input.pdf
new file mode 100644
index 0000000..c3054c2
Binary files /dev/null and b/src/axiom-website/CATS/kamke7.input.pdf differ
